• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4593522)   Today's Articles (3468)   Subscriber (49321)
For: Tong J, Li Y, Wu D, Wu ZJ. Theoretical Study on Polynuclear Superalkali Cations with Various Functional Groups as the Central Core. Inorg Chem 2012;51:6081-8. [DOI: 10.1021/ic202675j] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Number Cited by Other Article(s)
1
Sarkar S, Debnath T, Das AK. Superalkalis with Hydrogen as Central Electronegative Atom and their Possible Applications: Ab Initio and DFT Study. Chemistry 2024;30:e202304223. [PMID: 38477396 DOI: 10.1002/chem.202304223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
2
Sarkar S, Debnath T, Das AK. Designing metal-free organic superalkalis by modifying benzene: a theoretical perspective. Theor Chem Acc 2023. [DOI: 10.1007/s00214-022-02941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
3
Pandey SK, Arunan E, Das R, Roy A, Mishra AK. Recent advances in in silico design and characterization of superalkali-based materials and their potential applications: A review. Front Chem 2022;10:1019166. [DOI: 10.3389/fchem.2022.1019166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]  Open
4
Sun WM, Cheng X, Wang WL, Li XH. Designing Magnetic Superalkalis with Extremely Large Nonlinear Optical Responses. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
5
Srivastava H, Srivastava AK. Role of central core and methyl substitutions in XH4-x(CH3)x (X = N, P, As; x = 0–4) superalkalis: an ab initio study. Struct Chem 2022. [DOI: 10.1007/s11224-022-02003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
6
Tkachenko NV, Rublev P, Boldyrev AI, Lehn JM. Superalkali Coated Rydberg Molecules. Front Chem 2022;10:880804. [PMID: 35494656 PMCID: PMC9043523 DOI: 10.3389/fchem.2022.880804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022]  Open
7
Ye YL, Pan KY, Ni BL, Sun WM. Designing Special Nonmetallic Superalkalis Based on a Cage-like Adamanzane Complexant. Front Chem 2022;10:853160. [PMID: 35360533 PMCID: PMC8963935 DOI: 10.3389/fchem.2022.853160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022]  Open
8
X(CH3)+1+ superalkali cations (X = F, O and N) with methyl ligands. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
9
Sun WM, Cheng X, Ye YL, Li XH, Ni BL. On the Possibility of Using Aza-Cryptands to Design Superalkalis. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
10
Imidazolium based superalkalis as building block for Lewis base. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
11
Jha R, Giri S, Chattaraj PK. Effect of confinement on the behavior of superhalogen and superalkali. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
12
Pandey SK. Novel and Polynuclear K- and Na-Based Superalkali Hydroxides as Superbases Better Than Li-Related Species and Their Enhanced Properties: An Ab Initio Exploration. ACS OMEGA 2021;6:31077-31092. [PMID: 34841150 PMCID: PMC8613824 DOI: 10.1021/acsomega.1c04395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/08/2021] [Indexed: 05/07/2023]
13
1-Alkyl-3-methylimidazolium belong to superalkalis. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
14
Naaresh Reddy G, Parida R, Muñoz-Castro A, Jana M, Giri S. Doped deltahedral organo-Zintl superalkali cations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
15
Ab initio investigations on bimetallic mononuclear superalkali clusters. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
16
Yang H, Wu D, He HM, Yu D, Li Y, Li ZR. Distinctive Characteristics of Al7Li: A Superatom Counterpart of Group IVA Elements. Inorg Chem 2020;59:14093-14100. [DOI: 10.1021/acs.inorgchem.0c01871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Guo JC, Cheng YX, Wu XF. C2 CO2Li3+: A superalkali cation with planar pentacoordinate carbon. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Theoretical study on novel superalkali doped graphdiyne complexes: Unique approach for the enhancement of electronic and nonlinear optical response. J Mol Graph Model 2020;97:107573. [PMID: 32114080 DOI: 10.1016/j.jmgm.2020.107573] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022]
19
Srivastava AK. MC6Li6 (M = Li, Na and K): a new series of aromatic superalkalis. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1730991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
20
Srivastava AK. (x = 1–5): a unique series of organic superalkali cations. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1615648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
21
Srivastava AK, Misra N, Tiwari SN. Superalkali behavior of ammonium (NH4+) and hydronium (OH3+) cations: a computational analysis. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]  Open
22
BHx+ (x = 1–6) clusters: In the quest for superalkali cation with B-core and H-ligands. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
23
Tkachenko NV, Sun ZM, Boldyrev AI. Record Low Ionization Potentials of Alkali Metal Complexes with Crown Ethers and Cryptands. Chemphyschem 2019;20:2060-2062. [PMID: 31184431 DOI: 10.1002/cphc.201900422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/10/2019] [Indexed: 11/10/2022]
24
Sun WM, Wu D. Recent Progress on the Design, Characterization, and Application of Superalkalis. Chemistry 2019;25:9568-9579. [PMID: 31025432 DOI: 10.1002/chem.201901460] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 11/10/2022]
25
Srivastava AK. O H2+1+ clusters: A new series of non-metallic superalkali cations by trapping H3O+ into water. J Mol Graph Model 2019;88:292-298. [DOI: 10.1016/j.jmgm.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/09/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022]
26
Sun W, Zhang X, Pan K, Chen J, Wu D, Li C, Li Y, Li Z. On the Possibility of Using the Jellium Model as a Guide To Design Bimetallic Superalkali Cations. Chemistry 2019;25:4358-4366. [DOI: 10.1002/chem.201806194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 11/06/2022]
27
Srivastava AK. Design of the NnH3n+1+ series of “non-metallic” superalkali cations. NEW J CHEM 2019. [DOI: 10.1039/c8nj06126b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
28
Reddy GN, Kumar AV, Parida R, Chakraborty A, Giri S. Zintl superalkalis as building blocks of supersalts. J Mol Model 2018;24:306. [DOI: 10.1007/s00894-018-3806-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
29
Jena P, Sun Q. Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chem Rev 2018;118:5755-5870. [DOI: 10.1021/acs.chemrev.7b00524] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
30
Liu JY, Li RY, Li Y, Ma HD, Wu D. Superalkali Cations with Trivalent Anion MF63− (M = Al, Ga, Sc) as Central Core. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1363-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
31
Srivastava AK. Organic superalkalis with closed-shell structure and aromaticity. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1438678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
32
Price C, Winfough M, Park H, Meloni G. Computational investigation of LiF containing hypersalts. Dalton Trans 2018;47:13204-13213. [DOI: 10.1039/c8dt02530d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
33
Hou JH, Wu D, Liu JY, Li SY, Yu D, Li Y. The effect of hydration on the electronic structure and stability of the superalkali cation Li3+. Phys Chem Chem Phys 2018;20:15174-15182. [DOI: 10.1039/c8cp00862k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Winfough M, Meloni G. Ab initio analysis on potential superbases of several hyperlithiated species: Li3F2O and Li3F2OHn (n = 1, 2). Dalton Trans 2018;47:159-168. [DOI: 10.1039/c7dt03579a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
35
Parida R, Reddy GN, Ganguly A, Roymahapatra G, Chakraborty A, Giri S. On the making of aromatic organometallic superalkali complexes. Chem Commun (Camb) 2018;54:3903-3906. [DOI: 10.1039/c8cc01170b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
36
Zhao T, Wang Q, Jena P. Rational design of super-alkalis and their role in CO2 activation. NANOSCALE 2017;9:4891-4897. [PMID: 28247884 DOI: 10.1039/c7nr00227k] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
37
Stasyuk AJ, Solà M. Does the endohedral borospherene supersalt FLi2@B39maintain the “super” properties of its subunits? Phys Chem Chem Phys 2017;19:21276-21281. [DOI: 10.1039/c7cp02550e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
38
Milovanović M, Veličković S, Veljković F, Jerosimić S. Structure and stability of small lithium-chloride LinClm(0,1+) (n ≥ m, n = 1–6, m = 1–3) clusters. Phys Chem Chem Phys 2017;19:30481-30497. [DOI: 10.1039/c7cp04181k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
39
Liu JY, Xi YJ, Li Y, Li SY, Wu D, Li ZR. Does Alkaline-Earth-Metal-Based Superalkali Exist? J Phys Chem A 2016;120:10281-10288. [DOI: 10.1021/acs.jpca.6b10555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
40
Sun WM, Li XH, Li Y, Liu JY, Wu D, Li CY, Ni BL, Li ZR. On the feasibility of designing hyperalkali cations using superalkali clusters as ligands. J Chem Phys 2016;145:194303. [DOI: 10.1063/1.4967461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
41
Mohtadi R, Remhof A, Jena P. Complex metal borohydrides: multifunctional materials for energy storage and conversion. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016;28:353001. [PMID: 27384871 DOI: 10.1088/0953-8984/28/35/353001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
42
Paduani C, Rappe AM. Assemblage of Superalkali Complexes with Ever Low-Ionization Potentials. J Phys Chem A 2016;120:6493-9. [DOI: 10.1021/acs.jpca.6b05958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
43
Prediction of superalkali@C60 endofullerenes, their enhanced stability and interesting properties. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.05.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
44
Guo JC, Tian WJ, Wang YJ, Zhao XF, Wu YB, Zhai HJ, Li SD. Star-like superalkali cations featuring planar pentacoordinate carbon. J Chem Phys 2016;144:244303. [DOI: 10.1063/1.4954658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]  Open
45
Sun WM, Li Y, Li XH, Wu D, He HM, Li CY, Chen JH, Li ZR. Stability and Nonlinear Optical Response of Alkalides that Contain a Completely Encapsulated Superalkali Cluster. Chemphyschem 2016;17:2672-8. [DOI: 10.1002/cphc.201600389] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 11/08/2022]
46
Hydrogenated superalkalis and their possible applications. J Mol Model 2016;22:122. [DOI: 10.1007/s00894-016-2994-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
47
Srivastava AK, Misra N. M2X (M= Li, Na; X= F, Cl): the smallest superalkali clusters with significant NLO responses and electride characteristics. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2015.1132840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
48
Giri S, Reddy GN, Jena P. Organo-Zintl Clusters [P7R4]: A New Class of Superalkalis. J Phys Chem Lett 2016;7:800-805. [PMID: 26882875 DOI: 10.1021/acs.jpclett.5b02892] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
49
Srivastava AK, Misra N. OLi3O− anion: Designing the strongest base to date using OLi3 superalkali. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
50
Reddy GN, Giri S. Organic heterocyclic molecules become superalkalis. Phys Chem Chem Phys 2016;18:24356-60. [DOI: 10.1039/c6cp04430a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA