1
|
Jin XY, Wang JY, Yang X, Chen ZN. Attaining Exceptional Stable Copper(I) Metallacyclopentadiene Diradicaloids through Ligand Engineering. Inorg Chem 2023; 62:19323-19331. [PMID: 37955402 DOI: 10.1021/acs.inorgchem.3c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Diradicaloids are generally high-energy molecules with open-shell configuration and are quite reactive. In this work, we report a feasible synthetic approach to attaining exceptionally stable copper(I) metallacyclopentadiene diradicaloids through ligand engineering. Copper(I)-hybrid cyclopentadiene diradicaloids 1c-6c that absorb intensely in visible regions were successfully prepared in stoichiometrical yields under UV light irradiation. The diradicaloids originate from the C-C bonding coupling of two side-by-side-arranged ethynyl groups in complexes 1-6 upon photocyclization. By rational selection of substituents in triphosphine ligands, we systematically modulate the kinetic behavior of diradicaloids 1c-6c in the thermal decoloration process. With precise ligand design, we are able to obtain exceptionally stable copper(I)-hybrid cyclopentadiene diradicaloids with a half-life as long as ca. 40 h in CH2Cl2 solution at ambient temperature. As demonstrated by electron paramagnetic resonance (EPR) and variable-temperature magnetic studies, the diradicaloids manifest a singlet ground state, but they are readily populated to a triplet excited state through thermal activation in view of a small singlet-triplet energy gap of -0.39 kcal mol-1. The diradicaloids show two-step quasi-reversible reduction waves at about -0.5 and -1.0 V ascribed to successive one-electron-accepting processes, coinciding perfectly with the characteristics of diradicals.
Collapse
Affiliation(s)
- Xu-Yuan Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xin Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
2
|
Frogley BJ, Hill AF, Welsh SS. Symmetric and non-symmetric anthracen-diyl bis(alkylidynes). Dalton Trans 2021; 50:15502-15523. [PMID: 34676857 DOI: 10.1039/d1dt02537f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three examples of 9-bromo-10-(alkylidynyl)anthracenes, [W{CC(C6H4)2CBr}(CO)2(L)] (L = hydrotris(dimethylpyrazol-1-yl)borate Tp*, hydrotris(pyrazol-1-yl)borate Tp, hydrotris(2-mercapto-N-methylimidazol-1-yl)borate Tm) were prepared via modified Fischer-Mayr acyl oxide-abstraction protocols. With a sufficiently bulky ancillary ligand (L = Tp*) the aryl bromide is ammenable to cross-coupling reactions that enable more elaborate derivatives to be prepared. These including symmetric bis(alkylidynyl)anthracenes as well as non-palindromic examples bearing disparate metals and/or co-ligands. In contrast, these couplings fail for smaller ligands (L = Tp, Tm) where it was found that Pd0 or Pt0 were instead able to coordinate across two WC bonds to give trimetallic bow-tie complexes, [W2M{μ-CC(C6H4)2CBr}2(CO)4(L)2] (M = Pd, Pt; L = Tp, Tm).
Collapse
Affiliation(s)
- Benjamin J Frogley
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| | - Anthony F Hill
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| | - Steven S Welsh
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| |
Collapse
|
3
|
Li K, Chen Y, Wang J, Yang C. Diverse emission properties of transition metal complexes beyond exclusive single phosphorescence and their wide applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Maier J, Deutsch M, Merz J, Ye Q, Diamond O, Schilling M, Friedrich A, Engels B, Marder TB. Highly Conjugated π-Systems Arising from Cannibalistic Hexadehydro-Diels-Alder Couplings: Cleavage of C-C Single and Triple Bonds. Chemistry 2020; 26:15989-16000. [PMID: 32619049 PMCID: PMC7756338 DOI: 10.1002/chem.202002511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 11/30/2022]
Abstract
We have investigated the cannibalistic self-trapping reaction of an ortho-benzyne derivative generated from 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne in an HDDA reaction. Without adding any specific trapping agent, the highly reactive benzyne is trapped by another bisdiyne molecule in at least three different modes. We have isolated and characterized the resulting products and performed high-level calculations concerning the reaction mechanism. During the cannibalistic self-trapping process, either a C≡C triple bond or an sp-sp3 C-C single bond is cleaved. Up to seven rings and nine C-C bonds are formed starting from two 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne molecules. Our experiments and calculations provide considerable insight into the variety of reaction pathways which the ortho-benzyne derivative, generated from a bisdiyne, can take when reacting with another bisdiyne molecule.
Collapse
Affiliation(s)
- Jan Maier
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Marian Deutsch
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität WürzburgEmil-Fischer-Straße 4297074WürzburgGermany
| | - Julia Merz
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Qing Ye
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Southern University of Science and TechnologyNo 1088, Xueyuan Rd.Xili, Nanshan DistrictShenzhen, GuangdongP. R. China
| | - Oliver Diamond
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maja‐Tessa Schilling
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität WürzburgEmil-Fischer-Straße 4297074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
5
|
Kiel GR, Bergman HM, Tilley TD. Site-selective [2 + 2 + n] cycloadditions for rapid, scalable access to alkynylated polycyclic aromatic hydrocarbons. Chem Sci 2020; 11:3028-3035. [PMID: 34122806 PMCID: PMC8157499 DOI: 10.1039/c9sc06102a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are attractive synthetic building blocks for more complex conjugated nanocarbons, but their use for this purpose requires appreciable quantities of a PAH with reactive functional groups. Despite tremendous recent advances, most synthetic methods cannot satisfy these demands. Here we present a general and scalable [2 + 2 + n] (n = 1 or 2) cycloaddition strategy to access PAHs that are decorated with synthetically versatile alkynyl groups and its application to seven structurally diverse PAH ring systems (thirteen new alkynylated PAHs in total). The critical discovery is the site-selectivity of an Ir-catalyzed [2 + 2 + 2] cycloaddition, which preferentially cyclizes tethered diyne units with preservation of other (peripheral) alkynyl groups. The potential for generalization of the site-selectivity to other [2 + 2 + n] reactions is demonstrated by identification of a Cp2Zr-mediated [2 + 2 + 1]/metallacycle transfer sequence for synthesis of an alkynylated, selenophene-annulated PAH. The new PAHs are excellent synthons for macrocyclic conjugated nanocarbons. As a proof of concept, four were subjected to alkyne metathesis catalysis to afford large, PAH-containing arylene ethylene macrocycles, which possess a range of cavity sizes reaching well into the nanometer regime. Notably, these high-yielding macrocyclizations establish that synthetically convenient pentynyl groups can be effective for metathesis since the 4-octyne byproduct is sequestered by 5 Å MS. Most importantly, this work is a demonstration of how site-selective reactions can be harnessed to rapidly build up structural complexity in a practical, scalable fashion. An orthogonal [2 + 2 + n] cycloaddition/alkyne metathesis reaction sequence enables streamlined access to conjugated macrocyclic nanocarbons.![]()
Collapse
Affiliation(s)
- Gavin R Kiel
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - Harrison M Bergman
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| |
Collapse
|
6
|
Lemes MA, do Nascimento Neto JA, Fernandes Guimarães F, Maia LJQ, de Santana RC, Terra Martins F. Secondary ligands and the intramolecular hydrogen bonds drive photoluminescence quantum yields from aminopyrazine coordination polymers. NEW J CHEM 2020. [DOI: 10.1039/d0nj04558f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here the role of secondary ligands and their hydrogen bonding patterns in determining the photoluminescence quantum yields of aminopyrazine (ampyz) coordination polymers was probed.
Collapse
Affiliation(s)
- Maykon Alves Lemes
- Instituto de Química
- Universidade Federal de Goiás
- 74001-970, Goiânia
- Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Cardozo C, Mendoza A, Farías G, Formiga ALB, Peña D, Fuentes F, Arce A, Otero Y. Synthesis of rhenacyclopentadienes and η2:η2-diyne complexes from a labile dirhenium carbonyl and π-conjugated 1,7-octadiynes: Structural and photophysical characterization. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Yao Y, Yin HY, Ning Y, Wang J, Meng YS, Huang X, Zhang W, Kang L, Zhang JL. Strong Fluorescent Lanthanide Salen Complexes: Photophysical Properties, Excited-State Dynamics, and Bioimaging. Inorg Chem 2018; 58:1806-1814. [PMID: 30576111 DOI: 10.1021/acs.inorgchem.8b02376] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, excited-state dynamics, and biological application of luminescent lanthanide salen complexes (Ln = Lu, Gd, Eu, Yb, salen = N, N'-bis(salicylidene)ethylenediamine-based ligands) with sandwich structures are described. Among them, Lu(III) complexes show unusually strong ligand-centered fluorescence with quantum yields up to 62%, although the metal center is close to a chromophore ligand. The excited-state dynamic studies including ultrafast spectroscopy for Ln-salen complexes revealed that their excited states are solely dependent on the salen ligands and the ISC rates are slow (108-109 s-1). Importantly, time-dependent density functional theory calculations attribute the low energy transfer efficiency to the weak spin-orbital coupling (SOC) between the singlet and triplet excited states. More importantly, Lu-salen has been applied as a molecular platform to construct fluorescence probes with organelle specificity in living cell imaging, which demonstrates the advantages of the sandwich structures as being capable of preventing intramolecular metal-ligand interactions and behaviors different from those of the previously reported Zn-salens. Most importantly, the preliminary study for in vivo imaging using a mouse model demonstrated the potential application of Ln coordination complexes in therapeutic and diagnostic bioimaging beyond living cells or in vitro.
Collapse
Affiliation(s)
- Yuhang Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Hao-Yan Yin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Jian Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Yin-Shan Meng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Xinyue Huang
- Center for Advanced Quantum Studies, Department of Physics and Applied Optics Beijing Area Major Laboratory , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies, Department of Physics and Applied Optics Beijing Area Major Laboratory , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Lei Kang
- Department of Nuclear Medicine , Peking University First Hospital , Beijing 100034 , People's Republic of China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| |
Collapse
|
9
|
Tian YM, Guo XN, Kuntze-Fechner MW, Krummenacher I, Braunschweig H, Radius U, Steffen A, Marder TB. Selective Photocatalytic C-F Borylation of Polyfluoroarenes by Rh/Ni Dual Catalysis Providing Valuable Fluorinated Arylboronate Esters. J Am Chem Soc 2018; 140:17612-17623. [PMID: 30474979 DOI: 10.1021/jacs.8b09790] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly selective and general photocatalytic C-F borylation protocol that employs a rhodium biphenyl complex as a triplet sensitizer and the nickel catalyst [Ni(IMes)2] (IMes = 1,3-dimesitylimidazoline-2-ylidene) for the C-F bond activation and defluoroborylation process is reported. This tandem catalyst system operates with visible (blue, 400 nm) light and achieves borylation of a wide range of fluoroarenes with B2pin2 at room temperature in excellent yields and with high selectivity. Direct irradiation of the intermediary C-F bond oxidative addition product trans-[NiF(ArF)(IMes)2] leads to very fast decomposition when B2pin2 is present. This destructive pathway can be bypassed by indirect excitation of the triplet states of the nickel(II) complex via the photoexcited rhodium biphenyl complex. Mechanistic studies suggest that the exceptionally long-lived triplet excited state of the Rh biphenyl complex used as the photosensitizer allows for efficient triplet energy transfer to trans-[NiF(ArF)(IMes)2], which leads to dissociation of one of the NHC ligands. This contrasts with the majority of current photocatalytic transformations, which employ transition metals as excited state single electron transfer agents. We have previously reported that C(arene)-F bond activation with [Ni(IMes)2] is facile at room temperature, but that the transmetalation step with B2pin2 is associated with a high energy barrier. Thus, this triplet energy transfer ultimately leads to a greatly enhanced rate constant for the transmetalation step and thus for the whole borylation process. While addition of a fluoride source such as CsF enhances the yield, it is not absolutely required. We attribute this yield-enhancing effect to (i) formation of an anionic adduct of B2pin2, i.e., FB2pin2-, as an efficient, much more nucleophilic {Bpin-} transfer reagent for the borylation/transmetalation process, and/or (ii) trapping of the Lewis acidic side product FBpin by formation of [F2Bpin]- to avoid the formation of a significant amount of NHC-FBpin and consequently decomposition of {Ni(NHC)2} species in the reaction mixture.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Xiao-Ning Guo
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Maximilian W Kuntze-Fechner
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Udo Radius
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Andreas Steffen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| |
Collapse
|
10
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
11
|
Huang ZA, Lan Q, Hua Y, Chen Z, Zhang H, Lin Z, Xia H. Color-Tuning Strategy for Iridapolycycles [(N∧N)Ir(C∧C)ClPPh3]+ by the Synergistic Modifications on Both the C∧C and N∧N Units. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zi-Ao Huang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Lan
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuhui Hua
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhixin Chen
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhenyang Lin
- Department
of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Haiping Xia
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative
Innovation Center of Chemistry for Energy Materials (iChEM), College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Convenient synthetic access to fluorescent rhodacyclopentadienes via ligand exchange reactions. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Abstract
Phosphorescence is a phenomenon of delayed luminescence that corresponds to the radiative decay of the molecular triplet state. As a general property of molecules, phosphorescence represents a cornerstone problem of chemical physics due to the spin prohibition of the underlying triplet-singlet emission and because its analysis embraces a deep knowledge of electronic molecular structure. Phosphorescence is the simplest physical process which provides an example of spin-forbidden transformation with a characteristic spin selectivity and magnetic field dependence, being the model also for more complicated chemical reactions and for spin catalysis applications. The bridging of the spin prohibition in phosphorescence is commonly analyzed by perturbation theory, which considers the intensity borrowing from spin-allowed electronic transitions. In this review, we highlight the basic theoretical principles and computational aspects for the estimation of various phosphorescence parameters, like intensity, radiative rate constant, lifetime, polarization, zero-field splitting, and spin sublevel population. Qualitative aspects of the phosphorescence phenomenon are discussed in terms of concepts like structure-activity relationships, donor-acceptor interactions, vibronic activity, and the role of spin-orbit coupling under charge-transfer perturbations. We illustrate the theory and principles of computational phosphorescence by highlighting studies of classical examples like molecular nitrogen and oxygen, benzene, naphthalene and their azaderivatives, porphyrins, as well as by reviewing current research on systems like electrophosphorescent transition metal complexes, nucleobases, and amino acids. We furthermore discuss modern studies of phosphorescence that cover topics of applied relevance, like the design of novel photofunctional materials for organic light-emitting diodes (OLEDs), photovoltaic cells, chemical sensors, and bioimaging.
Collapse
Affiliation(s)
- Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Bohdan Khmelnytsky National University , 18031 Cherkasy, Ukraine
| | - Boris Minaev
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Bohdan Khmelnytsky National University , 18031 Cherkasy, Ukraine
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University , Svobodny pr. 79, 660041 Krasnoyarsk, Russia
| |
Collapse
|
14
|
Seth SK, Mandal S, Srikanth K, Purkayastha P, Gupta P. Electronic Description of the Photophysics of Homo- and Heterodinuclear Cyclometallated Iridium and Rhodium Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sourav Kanti Seth
- Department of Chemical Science; Indian Institute of Science Education and Research (IISER) Kolkata; 741246, WB Mohanpur India
| | - Soumik Mandal
- Department of Chemical Science; Indian Institute of Science Education and Research (IISER) Kolkata; 741246, WB Mohanpur India
| | - K. Srikanth
- Department of Chemical Science; Indian Institute of Science Education and Research (IISER) Kolkata; 741246, WB Mohanpur India
| | - Pradipta Purkayastha
- Department of Chemical Science; Indian Institute of Science Education and Research (IISER) Kolkata; 741246, WB Mohanpur India
| | - Parna Gupta
- Department of Chemical Science; Indian Institute of Science Education and Research (IISER) Kolkata; 741246, WB Mohanpur India
| |
Collapse
|
15
|
Zhang C, Zou LY, Wang D, Zhang L, Ren AM. A theoretical investigation and design of fluorescent probes with large two-photon absorption cross-sections and dual signaling behavior for mercury ions in biological system. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Chan KT, Tong GSM, To WP, Yang C, Du L, Phillips DL, Che CM. The interplay between fluorescence and phosphorescence with luminescent gold(i) and gold(iii) complexes bearing heterocyclic arylacetylide ligands. Chem Sci 2016; 8:2352-2364. [PMID: 28451340 PMCID: PMC5365001 DOI: 10.1039/c6sc03775e] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/03/2016] [Indexed: 01/02/2023] Open
Abstract
The photophysical properties of a series of gold(i) [LAu(C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CR)] (L = PCy3 (1a-4a), RNC (5a), NHC (6a)) and gold(iii) complexes [Au(C^N^C)(CCR)] (1b-4b) bearing heterocyclic arylacetylide ligands with narrow band-gap are compared. The luminescence of both series are derived from an intraligand transition localized on the arylacetylide ligand (ππ*(CCR)) but 1a-3a displayed prompt fluorescence (τPF = 2.7-12.0 ns) while 1b-3b showed mainly phosphorescence (τPh = 104-205 μs). The experimentally determined intersystem crossing (ISC) rate constants (kISC) are on the order of 106 to 108 s-1 for the gold(i) series (1a-3a) but 1010 to 1011 s-1 for the gold(iii) analogues (1b-3b). DFT/TDDFT calculations have been performed to help understand the difference in the kISC between the two series of complexes. Owing to the different oxidation states of the gold ion, the Au(i) complexes have linear coordination geometry while the Au(iii) complexes are square planar. It was found from DFT/TDDFT calculations that due to this difference in coordination geometries, the energy gap between the singlet and triplet excited states (ΔEST) with effective spin-orbit coupling (SOC) for Au(i) systems is much larger than that for the Au(iii) counterparts, thus resulting in the poor ISC efficiency for the former. Time-resolved spectroscopies revealed a minor contribution (<2.9%) of a long-lived delayed fluorescence (DF) (τDF = 4.6-12.5 μs) to the total fluorescence in 1a-3a. Attempts have been made to elucidate the mechanism for the origins of the DF: the dependence of the DF intensity with the power of excitation light reveals that triplet-triplet annihilation (TTA) is the most probable mechanism for the DF of 1a while germinate electron-hole pair (GP) recombination accounts for the DF of 2a in 77 K glassy solution (MeOH/EtOH = 4 : 1). Both 4a and 4b contain a BODIPY moiety at the acetylide ligand and display only 1IL(ππ*) fluorescence with negligible phosphorescence being observed. Computational analyses attributed this observation to the lack of low-lying triplet excited states that could have effective SOC with the S1 excited state.
Collapse
Affiliation(s)
- Kaai Tung Chan
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China . ;
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China . ;
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China . ;
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China . ;
| | - Lili Du
- Department of Chemistry , The University of Hong Kong , Hong Kong , China
| | - David Lee Phillips
- Department of Chemistry , The University of Hong Kong , Hong Kong , China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China . ; .,Department of Chemistry , HKU Shenzhen Institute of Research and Innovation , Shenzhen 518053 , China
| |
Collapse
|
17
|
Vibronic coupling to simulate the phosphorescence spectra of Ir(III)-based OLED systems: TD-DFT results meet experimental data. J Mol Model 2016; 22:265. [DOI: 10.1007/s00894-016-3132-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
18
|
Zhou J, Gai L, Zhou Z, Yang W, Mack J, Xu K, Zhao J, Zhao Y, Qiu H, Chan KS, Shen Z. Rational Design of Emissive NIR-Absorbing Chromophores: Rh(III) Porphyrin-Aza-BODIPY Conjugates with Orthogonal Metal-Carbon Bonds. Chemistry 2016; 22:13201-9. [PMID: 27516405 DOI: 10.1002/chem.201602670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 11/08/2022]
Abstract
The facile synthesis of Group 9 Rh(III) porphyrin-aza-BODIPY conjugates that are linked through an orthogonal Rh-C(aryl) bond is reported. The conjugates combine the advantages of the near-IR (NIR) absorption and intense fluorescence of aza-BODIPY dyes with the long-lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge-transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the Rh(III) conjugates exhibit strong aza-BODIPY-centered fluorescence at around 720 nm (ΦF =17-34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet-oxygen quantum yield (ΦΔ =19-27 %, λex =690 nm) have been observed. Nanosecond pulsed time-resolved absorption spectroscopy confirms that relatively long-lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.
Collapse
Affiliation(s)
- Jinfeng Zhou
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Lizhi Gai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - Zhikuan Zhou
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Wu Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - John Mack
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.
| | - Kejing Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116000, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116000, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Hailin Qiu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Kin Shing Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China.
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
19
|
Shafikov MZ, Kozhevnikov DN, Bodensteiner M, Brandl F, Czerwieniec R. Modulation of Intersystem Crossing Rate by Minor Ligand Modifications in Cyclometalated Platinum(II) Complexes. Inorg Chem 2016; 55:7457-66. [PMID: 27388146 DOI: 10.1021/acs.inorgchem.6b00704] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Photophysical properties of four new platinum(II) complexes comprising extended ppy (Hppy = 2-phenylpyridine) and thpy (Hthpy = 2-(2'-thienyl)pyridine) cyclometalated ligands and acetylacetonate (acac) are reported. Substitution of the benzene ring of Pt-ppy complexes 1 and 2 with a more electron-rich thiophene of Pt-thpy complexes 3 and 4 leads to narrowing of the HOMO-LUMO gap and thus to a red shift of the lowest energy absorption band and phosphorescence band, as expected for low-energy excited states of the intraligand/metal-to-ligand charge transfer character. However, in addition to these conventional spectral shifts, another, at first unexpected, substitution effect occurs. Pt-thpy complexes 3 and 4 are dual emissive showing fluorescence about 6000 cm(-1) (∼0.75 eV) higher in energy relative to the phosphorescence band, while for Pt-ppy complexes 1 and 2 only phosphorescence is observed. For dual-emissive complexes 3 and 4, ISC rates kISC are estimated to be in order of 10(9)-10(10) s(-1), while kISC of Pt-ppy complexes 1 and 2 is much faster amounting to 10(12) s(-1) or more. The relative intensities of the fluorescence and phosphorescence signals of Pt-thpy complexes 3 and 4 depend on the excitation wavelength, showing that hyper-intersystem crossing (HISC) in these complexes is observably significant.
Collapse
Affiliation(s)
- Marsel Z Shafikov
- Ural Federal University , Mira 19, Ekaterinburg, 620002, Russia.,I. Postovsky Institute of Organic Synthesis , Ekaterinburg, 620041, Russia
| | | | | | | | | |
Collapse
|
20
|
Sieck C, Tay MG, Thibault MH, Edkins RM, Costuas K, Halet JF, Batsanov AS, Haehnel M, Edkins K, Lorbach A, Steffen A, Marder TB. Reductive Coupling of Diynes at Rhodium Gives Fluorescent Rhodacyclopentadienes or Phosphorescent Rhodium 2,2'-Biphenyl Complexes. Chemistry 2016; 22:10523-32. [PMID: 27355689 DOI: 10.1002/chem.201601912] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Indexed: 01/08/2023]
Abstract
Reactions of [Rh(κ(2) -O,O-acac)(PMe3 )2 ] (acac=acetylacetonato) and α,ω-bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence (Φ=0.07-0.54, τ=0.2-2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes (B), which show exceptionally long-lived (hundreds of μs) phosphorescence (Φ=0.01-0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent β-H-shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B, allowing for more efficient intersystem crossing S1 →Tn and T1 →S0 . Control of the isomer distribution is achieved by modification of the bis- (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds.
Collapse
Affiliation(s)
- Carolin Sieck
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Meng Guan Tay
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.,Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia
| | | | - Robert M Edkins
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Karine Costuas
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, 35042, Rennes Cedex, France
| | - Jean-François Halet
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, 35042, Rennes Cedex, France
| | - Andrei S Batsanov
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Martin Haehnel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Katharina Edkins
- School of Medicine, Pharmacy and Health, Durham University, University Boulevard, Stockton-on-Tees, TS17 6BH, UK
| | - Andreas Lorbach
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Steffen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Todd B Marder
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
21
|
Latouche C, Skouteris D, Palazzetti F, Barone V. TD-DFT Benchmark on Inorganic Pt(II) and Ir(III) Complexes. J Chem Theory Comput 2016; 11:3281-9. [PMID: 26575764 DOI: 10.1021/acs.jctc.5b00257] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report in the present paper a comprehensive investigation of representative Pt(II) and Ir(III) complexes with special reference to their one-photon absorption spectra employing methods rooted in density functional theory and its time dependent extension. We have compared nine different functionals ranging from generalized gradient approximation (GGA) to global or range-separated hybrids, and two different basis sets, including pseudopotentials for 4 iridium and 7 platinum complexes. It turns out that hybrid functionals with the same exchange part give comparable results irrespective of the specific correlation functional (i.e., B3LYP is very close to B3PW91 and PBE0 is very close to MPW1PW91). More recent functionals, such as CAM-B3LYP and M06-2X, overestimate excitation energies, whereas local functionals (BP86 -GGA-, M06-L -Meta GGA-) strongly underestimate transition energies with respect to experimental results. As expected, basis set effects are weak, and the use of a triple-ζ polarized (def2-TZVP) basis set does not significantly improve the computed excitation energies with respect to a classical double-ζ basis set (LANL2DZ) augmented by polarization functions, but it significantly raises the computational effort.
Collapse
Affiliation(s)
- Camille Latouche
- Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | | | | - Vincenzo Barone
- Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
22
|
Santoro F, Jacquemin D. Going beyond the vertical approximation with time-dependent density functional theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1260] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR); Pisa Italy
| | - Denis Jacquemin
- CEISAM, UMR CNRS 6230; Université de Nantes; Nantes France
- Institut Universitaire de France; Paris France
| |
Collapse
|
23
|
Ye C, Zhou L, Wang X, Liang Z. Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA). Phys Chem Chem Phys 2016; 18:10818-35. [DOI: 10.1039/c5cp07296d] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent advances and remaining challenges are presented in the areas of TPA/TTA-UC, with particular emphasis on molecular engineering of these two upconversion materials.
Collapse
Affiliation(s)
- Changqing Ye
- Jiangsu Key Laboratory for Environmental Functional Materials
- Research Center for Green Printing Nanophotonic Materials
- Institute of Chemistry
- Biology and Materials Engineering
- Suzhou University of Science and Technology
| | - Liwei Zhou
- Jiangsu Key Laboratory for Environmental Functional Materials
- Research Center for Green Printing Nanophotonic Materials
- Institute of Chemistry
- Biology and Materials Engineering
- Suzhou University of Science and Technology
| | - Xiaomei Wang
- Jiangsu Key Laboratory for Environmental Functional Materials
- Research Center for Green Printing Nanophotonic Materials
- Institute of Chemistry
- Biology and Materials Engineering
- Suzhou University of Science and Technology
| | - Zuoqin Liang
- Jiangsu Key Laboratory for Environmental Functional Materials
- Research Center for Green Printing Nanophotonic Materials
- Institute of Chemistry
- Biology and Materials Engineering
- Suzhou University of Science and Technology
| |
Collapse
|
24
|
Zhang C, Zhao J, Cui X, Wu X. Thiol-Activated Triplet–Triplet Annihilation Upconversion: Study of the Different Quenching Effect of Electron Acceptor on the Singlet and Triplet Excited States of Bodipy. J Org Chem 2015; 80:5674-86. [PMID: 25941747 DOI: 10.1021/acs.joc.5b00557] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Caishun Zhang
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P.R. China
| | - Xiaoneng Cui
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P.R. China
| | - Xueyan Wu
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P.R. China
| |
Collapse
|
25
|
Costuas K, Garreau A, Bulou A, Fontaine B, Cuny J, Gautier R, Mortier M, Molard Y, Duvail JL, Faulques E, Cordier S. Combined theoretical and time-resolved photoluminescence investigations of [Mo6Bri8Bra6]2− metal cluster units: evidence of dual emission. Phys Chem Chem Phys 2015; 17:28574-85. [DOI: 10.1039/c5cp03960f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Distinct emissive species have been identified in [Mo6Bri8Bra6]2− containing systems. Strong geometrical relaxations of the triplet excited states are responsible for the huge energy shift leading to intense red-NIR emission.
Collapse
Affiliation(s)
- K. Costuas
- Institut des Sciences Chimiques de Rennes
- CNRS - ENSC Rennes - Université de Rennes
- France
| | - A. Garreau
- Institut des Matériaux Jean Rouxel
- Université de Nantes
- CNRS
- France
| | - A. Bulou
- Institut des Molécules et Matériaux du Mans/PEC
- Université du Maine
- CNRS
- France
| | - B. Fontaine
- Institut des Sciences Chimiques de Rennes
- CNRS - ENSC Rennes - Université de Rennes
- France
| | - J. Cuny
- Institut des Sciences Chimiques de Rennes
- CNRS - ENSC Rennes - Université de Rennes
- France
- Laboratoire de Chimie et Physique Quantiques
- LCPQ/IRSAMC
| | - R. Gautier
- Institut des Sciences Chimiques de Rennes
- CNRS - ENSC Rennes - Université de Rennes
- France
| | - M. Mortier
- Institut de Recherche de Chimie Paris
- Chimie ParisTech
- CNRS
- PSL Research University
- France
| | - Y. Molard
- Institut des Sciences Chimiques de Rennes
- CNRS - ENSC Rennes - Université de Rennes
- France
| | - J.-L. Duvail
- Institut des Matériaux Jean Rouxel
- Université de Nantes
- CNRS
- France
| | - E. Faulques
- Institut des Matériaux Jean Rouxel
- Université de Nantes
- CNRS
- France
| | - S. Cordier
- Institut des Sciences Chimiques de Rennes
- CNRS - ENSC Rennes - Université de Rennes
- France
| |
Collapse
|
26
|
Jacquemin D, Adamo C. Computational Molecular Electronic Spectroscopy with TD-DFT. DENSITY-FUNCTIONAL METHODS FOR EXCITED STATES 2015; 368:347-75. [DOI: 10.1007/128_2015_638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|