1
|
Travagliante G, Gaeta M, Purrello R, D’Urso A. Porphyrins as Chiroptical Conformational Probes for Biomolecules. Molecules 2025; 30:1512. [PMID: 40286092 PMCID: PMC11990877 DOI: 10.3390/molecules30071512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Porphyrins are highly conjugated macrocyclic compounds that possess exceptional photophysical and chemical properties, progressively establishing themselves as versatile tools in the structural investigation of biomolecules. This review explores their role as chiroptical conformational probes, focusing on their interactions with DNA and RNA. The planar electron rich structure of porphyrin macrocycle that promote π-π interactions, their easy functionalization at the meso positions, and their capacity to coordinate metal ions enable their use in probing nucleic acid structures with high sensitivity. Emphasis is placed on their induced circular dichroism (ICD) signals in the Soret region, which provide precise diagnostic insights into binding mechanisms and molecular interactions. The review examines the interactions of porphyrins with various DNA structures, including B-, Z-, and A-DNA, single-stranded DNA, and G-quadruplex DNA, as well as less common structures like I-motif and E-motif DNA. The last part highlights recent advancements in the use of porphyrins to probe RNA structures, emphasizing binding behaviors and chiroptical signals observed with RNA G-quadruplexes, as well as the challenges in interpreting ICD signals with other RNA motifs due to their inherent structural complexity.
Collapse
Affiliation(s)
| | | | | | - Alessandro D’Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria, 6, 95125 Catania, Italy; (G.T.); (M.G.); (R.P.)
| |
Collapse
|
2
|
Beloglazkina EK, Moiseeva AA, Tsymbal SA, Guk DA, Kuzmin MA, Krasnovskaya OO, Borisov RS, Barskaya ES, Tafeenko VA, Alpatova VM, Zaitsev AV, Finko AV, Ol'shevskaya VA, Shtil AA. The Copper Reduction Potential Determines the Reductive Cytotoxicity: Relevance to the Design of Metal-Organic Antitumor Drugs. Molecules 2024; 29:1032. [PMID: 38474543 DOI: 10.3390/molecules29051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Copper-organic compounds have gained momentum as potent antitumor drug candidates largely due to their ability to generate an oxidative burst upon the transition of Cu2+ to Cu1+ triggered by the exogenous-reducing agents. We have reported the differential potencies of a series of Cu(II)-organic complexes that produce reactive oxygen species (ROS) and cell death after incubation with N-acetylcysteine (NAC). To get insight into the structural prerequisites for optimization of the organic ligands, we herein investigated the electrochemical properties and the cytotoxicity of Cu(II) complexes with pyridylmethylenethiohydantoins, pyridylbenzothiazole, pyridylbenzimidazole, thiosemicarbazones and porphyrins. We demonstrate that the ability of the complexes to kill cells in combination with NAC is determined by the potential of the Cu+2 → Cu+1 redox transition rather than by the spatial structure of the organic ligand. For cell sensitization to the copper-organic complex, the electrochemical potential of the metal reduction should be lower than the oxidation potential of the reducing agent. Generally, the structural optimization of copper-organic complexes for combinations with the reducing agents should include uncharged organic ligands that carry hard electronegative inorganic moieties.
Collapse
Affiliation(s)
- Elena K Beloglazkina
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Anna A Moiseeva
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Sergey A Tsymbal
- International Institute of Solution Chemistry and Advanced Materials and Technologies, ITMO University, 9 Lomonosov Street, Saint-Petersburg 197101, Russia
| | - Dmitry A Guk
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Mikhail A Kuzmin
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Olga O Krasnovskaya
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Roman S Borisov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Avenue, Moscow 119991, Russia
| | - Elena S Barskaya
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Victor A Tafeenko
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Victoria M Alpatova
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Bld. 1, 28 Vavilov Street, Moscow 119334, Russia
| | - Andrei V Zaitsev
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Bld. 1, 28 Vavilov Street, Moscow 119334, Russia
| | - Alexander V Finko
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow 119991, Russia
| | - Valentina A Ol'shevskaya
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Bld. 1, 28 Vavilov Street, Moscow 119334, Russia
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115522, Russia
| |
Collapse
|
3
|
Hou B, Zhang Y, Li C, Sun X, Feng X, Liu J. Synthesis and in vitro biological evaluation of novel water‐soluble porphyrin complexes for cancer photodynamic therapy. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bingjie Hou
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| | - Yuanwen Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| | - Cuili Li
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| | - Xueqin Sun
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| | - Xiaoxia Feng
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| | - Jiacheng Liu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| |
Collapse
|
4
|
Zhang Q, Li Z, Liu J. Applying Cu(II) complexes assisted by water‐soluble porphyrin to DNA binding and selective anticancer activities. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Zhenzhen Li
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
- Shaanxi Normal University Pingliang Experimental Middle School Pingliang 744000 China
| | - Jiacheng Liu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
5
|
Hou B, Li Z, Zhang Q, Chen P, Liu J. Novel water-soluble Cu( ii) complexes based on acylhydrazone porphyrin ligands for DNA binding and in vitro anticancer activity as potential therapeutic targeting candidates. NEW J CHEM 2020. [DOI: 10.1039/d0nj02842h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three novel water-soluble Cu(ii) complexes featuring miscellaneous acylhydrazone tricationic porphyrin ligands (named Cu-Por1, Cu-Por2 and Cu-Por3) were successfully prepared and isolated.
Collapse
Affiliation(s)
- Bingjie Hou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Zhenzhen Li
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qian Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Peiyu Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jiacheng Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
6
|
Makarska-Bialokoz M. Comparative study of binding interactions between porphyrin systems and aromatic compounds of biological importance by multiple spectroscopic techniques: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:263-274. [PMID: 29694930 DOI: 10.1016/j.saa.2018.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The specific spectroscopic and redox properties of porphyrins predestine them to fulfill the role of sensors during interacting with different biologically active substances. Monitoring of binding interactions in the systems porphyrin-biologically active compound is a key question not only in the field of physiological functions of living organisms, but also in environmental protection, notably in the light of the rapidly growing drug consumption and concurrently the production of drug effluents. Not always beneficial action of drugs on natural porphyrin systems induces to further studies, with commercially available porphyrins as the model systems. Therefore the binding process between several water-soluble porphyrins and a series of biologically active compounds (e.g. caffeine, guanine, theophylline, theobromine, xanthine, uric acid) has been studied in different aqueous solutions analyzing their absorption and steady-state fluorescence spectra, the porphyrin fluorescence lifetimes and their quantum yields. The magnitude of the binding and fluorescence quenching constants values for particular quenchers decreases in a series: uric acid > guanine > caffeine > theophylline > theobromine > xanthine. In all the systems studied there are characters of static quenching, as a consequence of the π-π-stacked non-covalent and non-fluorescent complexes formation between porphyrins and interacting compounds, accompanied simultaneously by the additional specific binding interactions. The porphyrin fluorescence quenching can be explain by the photoinduced intermolecular electron transfer from aromatic compound to the center of the porphyrin molecule, playing the role of the binding site. Presented results can be valuable for designing of new fluorescent porphyrin chemosensors or monitoring of drug traces in aqueous solutions. The obtained outcomes have also the toxicological and medical importance, providing insight into the interactions of the water-soluble porphyrins with biologically active substances.
Collapse
Affiliation(s)
- Magdalena Makarska-Bialokoz
- Department of Inorganic Chemistry, Maria Curie-Sklodowska University, M. C. Sklodowska Sq. 2, 20-031 Lublin, Poland.
| |
Collapse
|
7
|
Sun XY, Zhao P, Jin SF, Liu MC, Wang XH, Huang YM, Cheng ZF, Yan SQ, Li YY, Chen YQ, Zhong YM. Shedding lights on the flexible-armed porphyrins: Human telomeric G4 DNA interaction and cell photocytotoxicity research. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:606-617. [DOI: 10.1016/j.jphotobiol.2017.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 01/21/2023]
|
8
|
Ghimire S, Bork MA, Zhang H, Fanwick PE, Zeller M, Choi JH, McMillin DR. DNA binding of Pd(TC3), a conformable cationic porphyrin with a long-lived triplet state. Dalton Trans 2016; 45:14277-84. [PMID: 27534907 DOI: 10.1039/c6dt01918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The goal of this work has been to synthesize and investigate Pd(TC3), an intercalating porphyrin that has conformable substituents capable of groove binding to B-form DNA. (TC3 denotes the doubly deprotonated form of 5,10,15,20-tetra[3-(3'-methylimidazolium-1'-yl)prop-1-yl]porphyrin.) Palladium(ii) is an apt choice for the central metal ion because it remains strictly four-coordinate and provides for a luminescent triplet excited state with a long lifetime. The DNA hosts are hairpin-forming sequences programmed to differ in base composition. Luminescence, absorbance, and circular dichroism results are consistent with the idea that congruent structural reorganization takes place at the host and ligand during uptake. Photoexcitation of DNA-bound Pd(TC3) generates a comparatively modest steady state concentration of singlet oxygen, due to a relatively slow reaction with molecular oxygen in solution. The sheer size of the substituent groups disfavors quenching, but groove-binding interactions compound the problem by inhibiting mobility. The results show how ligand design affects adduct structure as well as function.
Collapse
Affiliation(s)
- Srijana Ghimire
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Synthesis, G-quadruplexes DNA binding, and photocytotoxicity of novel cationic expanded porphyrins. Bioorg Chem 2015; 60:110-7. [DOI: 10.1016/j.bioorg.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 11/23/2022]
|
10
|
Gaier AJ, McMillin DR. Binding Studies of G-Quadruplex DNA and Porphyrins: Cu(T4) vs Sterically Friendly Cu(tD4). Inorg Chem 2015; 54:4504-11. [PMID: 25885060 DOI: 10.1021/acs.inorgchem.5b00340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Abby J. Gaier
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - David R. McMillin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|