1
|
Dinda R, Garribba E, Sanna D, Crans DC, Costa Pessoa J. Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications. Chem Rev 2025; 125:1468-1603. [PMID: 39818783 DOI: 10.1021/acs.chemrev.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.
Collapse
Affiliation(s)
- Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Debbie C Crans
- Department Chemistry and Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Aureliano M, Fraqueza G, Berrocal M, Cordoba-Granados JJ, Gumerova NI, Rompel A, Gutierrez-Merino C, Mata AM. Inhibition of SERCA and PMCA Ca 2+-ATPase activities by polyoxotungstates. J Inorg Biochem 2022; 236:111952. [PMID: 36049257 DOI: 10.1016/j.jinorgbio.2022.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Plasma membrane calcium ATPases (PMCA) and sarco(endo) reticulum calcium ATPases (SERCA) are key proteins in the maintenance of calcium homeostasis. Herein, we compare for the first time the inhibition of SERCA and PMCA calcium pumps by several polyoxotungstates (POTs), namely by Wells-Dawson phosphotungstate anions [P2W18O62]6- (intact, {P2W18}), [P2W17O61]10- (monolacunary, {P2W17}), [P2W15O56]12- (trilacunary, {P2W15}), [H2P2W12O48]12- (hexalacunary, {P2W12}), [H3P2W15V3O62]6- (trivanadium-substituted, {P2W15V3}) and by Preyssler-type anion [NaP5W30O110]14- ({P5W30}). The speciation in the solutions of tested POTs was investigated by 31P and 51V NMR spectroscopy. The tested POTs inhibited SERCA Ca2+-ATPase activity, whereby the Preyssler POT showed the strongest effect, with an IC50 value of 0.37 μM. For {P2W17} and {P2W15V3} higher IC50 values were determined: 0.72 and 0.95 μM, respectively. The studied POTs showed to be more potent inhibitors of PMCA Ca2+-ATPase activity, with lower IC50 values for {P2W17}, {P5W30} and {P2W15V3}.
Collapse
Affiliation(s)
- Manuel Aureliano
- FCT, Universidade do Algarve, 8005-139 Faro, Portugal; CCMar, Universidade do Algarve, 8005-139 Faro, Portugal.
| | - Gil Fraqueza
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal; ISE, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Maria Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura,06006 Badajoz, Spain
| | - Juan J Cordoba-Granados
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Nadiia I Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria.
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura,06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura,06006 Badajoz, Spain.
| |
Collapse
|
3
|
De Sousa-Coelho AL, Aureliano M, Fraqueza G, Serrão G, Gonçalves J, Sánchez-Lombardo I, Link W, Ferreira BI. Decavanadate and metformin-decavanadate effects in human melanoma cells. J Inorg Biochem 2022; 235:111915. [PMID: 35834898 DOI: 10.1016/j.jinorgbio.2022.111915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Decavanadate is a polyoxometalate (POMs) that has shown extensive biological activities, including antidiabetic and anticancer activity. Importantly, vanadium-based compounds as well as antidiabetic biguanide drugs, such as metformin, have shown to exert therapeutic effects in melanoma. A combination of these agents, the metformin-decavanadate complex, was also recognized for its antidiabetic effects and recently described as a better treatment than the monotherapy with metformin enabling lower dosage in rodent models of diabetes. Herein, we compare the effects of decavanadate and metformin-decavanadate on Ca2+-ATPase activity in sarcoplasmic reticulum vesicles from rabbit skeletal muscles and on cell signaling events and viability in human melanoma cells. We show that unlike the decavanadate-mediated non-competitive mechanism, metformin-decavanadate inhibits Ca2+-ATPase by a mixed-type competitive-non-competitive inhibition with an IC50 value about 6 times higher (87 μM) than the previously described for decavanadate (15 μM). We also found that both decavanadate and metformin-decavanadate exert antiproliferative effects on melanoma cells at 10 times lower concentrations than monomeric vanadate. Western blot analysis revealed that both, decavanadate and metformin-decavanadate increased phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine protein kinase AKT signaling proteins upon 24 h drug exposure, suggesting that the anti-proliferative activities of these compounds act independent of growth-factor signaling pathways.
Collapse
Affiliation(s)
- Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Escola Superior de Saúde (ESS), Universidade do Algarve, Faro, Portugal.
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, Faro, Portugal; Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal.
| | - Gil Fraqueza
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal; Instituto Superior de Engenharia (ISE), Universidade do Algarve, Faro, Portugal
| | - Gisela Serrão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal
| | - João Gonçalves
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Irma Sánchez-Lombardo
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Mexico
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Madrid, Spain
| | - Bibiana I Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
4
|
Berrocal M, Cordoba-Granados JJ, Carabineiro SAC, Gutierrez-Merino C, Aureliano M, Mata AM. Gold Compounds Inhibit the Ca2+-ATPase Activity of Brain PMCA and Human Neuroblastoma SH-SY5Y Cells and Decrease Cell Viability. METALS 2021; 11:1934. [DOI: 10.3390/met11121934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plasma membrane calcium ATPases (PMCA) are key proteins in the maintenance of calcium (Ca2+) homeostasis. Dysregulation of PMCA function is associated with several human pathologies, including neurodegenerative diseases, and, therefore, these proteins are potential drug targets to counteract those diseases. Gold compounds, namely of Au(I), are well-known for their therapeutic use in rheumatoid arthritis and other diseases for centuries. Herein, we report the ability of dichloro(2-pyridinecarboxylate)gold(III) (1), chlorotrimethylphosphinegold(I) (2), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidenegold(I) chloride (3), and chlorotriphenylphosphinegold(I) (4) compounds to interfere with the Ca2+-ATPase activity of pig brain purified PMCA and with membranes from SH-SY5Y neuroblastoma cell cultures. The Au(III) compound (1) inhibits PMCA activity with the IC50 value of 4.9 µM, while Au(I) compounds (2, 3, and 4) inhibit the protein activity with IC50 values of 2.8, 21, and 0.9 µM, respectively. Regarding the native substrate MgATP, gold compounds 1 and 4 showed a non-competitive type of inhibition, whereas compounds 2 and 3 showed a mixed type of inhibition. All gold complexes showed cytotoxic effects on human neuroblastoma SH-SY5Y cells, although compounds 1 and 3 were more cytotoxic than compounds 2 and 4. In summary, this work shows that both Au (I and III) compounds are high-affinity inhibitors of the Ca2+-ATPase activity in purified PMCA fractions and in membranes from SH-SY5Y human neuroblastoma cells. Additionally, they exert strong cytotoxic effects.
Collapse
Affiliation(s)
- Maria Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Juan J. Cordoba-Granados
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMar), FCT, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana M. Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
5
|
Gupta P, De B. Influence of calcium channel modulators on the production of serotonin, gentisic acid, and a few other biosynthetically related phenolic metabolites in seedling leaves of salt tolerant rice variety Nonabokra. PLANT SIGNALING & BEHAVIOR 2021; 16:1929732. [PMID: 34024248 PMCID: PMC8331021 DOI: 10.1080/15592324.2021.1929732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Rice, a most salt-sensitive cereal plant, adopts diverse pathways to withstand sodium chloride-induced salinity-related adversities. During the present study, attempt was made to understand the role of calcium on metabolite profile of the leaves of salt tolerant rice seedlings of variety of Nonabokra under sodium chloride induced salinity, by Gas Chromatography-Mass Spectrometry-based metabolomics approach. Calcium availability in the seedlings was reduced or enhanced applying inhibitors (vanadyl sulfate, lanthanum chloride, and verapamil) or promoters of calcium influx (calcimycin also known as calcium ionophore A23187) in the sodium chloride (100 mM) supplemented growth medium. Growth medium of ten-day-old seedlings was replaced by sodium chloride supplemented hydroponic solution with promotor or inhibitors of calcium channel. Fifteen days old seedlings were harvested. It was observed that depletion of calcium availability increased the level of serotonin and gentisic acid whereas increased calcium level decreased these metabolites. It was concluded from the results that production of the signaling molecules serotonin and gentisic acids was elevated in calcium-deficient seedlings under salt stress the condition that was considered as control during the experiment. The two signaling molecules probably help this tolerant rice variety Nonabokra to withstand the salt-induced adversities.
Collapse
Affiliation(s)
- Poulami Gupta
- Department of Botany, University of Calcutta, Kolkata, India
| | - Bratati De
- Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
6
|
Fonseca C, Fraqueza G, Carabineiro SAC, Aureliano M. The Ca2+-ATPase Inhibition Potential of Gold(I, III) Compounds. INORGANICS 2020; 8:49. [DOI: 10.3390/inorganics8090049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The therapeutic applications of gold are well-known for many centuries. The most used gold compounds contain Au(I). Herein, we report, for the first time, the ability of four Au(I) and Au(III) complexes, namely dichloro (2-pyridinecarboxylate) Au(III) (abbreviated as 1), chlorotrimethylphosphine Au(I) (2), 1,3-bis(2,6-diisopropylphenyl) imidazole-2-ylidene Au(I) chloride (3), and chlorotriphenylphosphine Au(I) (4), to affect the sarcoplasmic reticulum (SR) Ca2+-ATPase activity. The tested gold compounds strongly inhibit the Ca2+-ATPase activity with different effects, being Au(I) compounds 2 and 4 the strongest, with half maximal inhibitory concentration (IC50) values of 0.8 and 0.9 µM, respectively. For Au(III) compound 1 and Au(I) compound 3, higher IC50 values are found (4.5 µM and 16.3 µM, respectively). The type of enzymatic inhibition is also different, with gold compounds 1 and 2 showing a non-competitive inhibition regarding the native substrate MgATP, whereas for Au compounds 3 and 4, a mixed type of inhibition is observed. Our data reveal, for the first time, Au(I) compounds with powerful inhibitory capacity towards SR Ca2+ATPase function. These results also show, unprecedently, that Au (III) and Au(I) compounds can act as P-type ATPase inhibitors, unveiling a potential application of these complexes.
Collapse
Affiliation(s)
| | - Gil Fraqueza
- CCMar, ISE, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | | |
Collapse
|
7
|
He Z, Wang M, Zhao Q, Li X, Liu P, Ren B, Wu C, Du X, Li N, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) mitigates neuronal apoptosis resulted from amyloid-beta induced endoplasmic reticulum stress through activating peroxisome proliferator-activated receptor γ. J Inorg Biochem 2020; 208:111073. [PMID: 32466853 DOI: 10.1016/j.jinorgbio.2020.111073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023]
Abstract
Neuronal apoptosis caused by amyloid-beta (Aβ) overproduction is one of the most important pathological features in Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress induced by Aβ overload plays a critical role in this process. Bis(ethylmaltolato)oxidovanadium (IV) (BEOV), a vanadium compound which had been regarded as peroxisome proliferator-activated receptor γ (PPARγ) agonist, was reported to exert an antagonistic effect on ER stress. In this study, we tested whether BEOV could ameliorate the Aβ-induced neuronal apoptosis by inhibiting ER stress. It was observed that BEOV treatment ameliorated both tunicamycin-induced and/or Aβ-induced ER stress and neurotoxicity in a dose-dependent manner through downgrading ER stress-associated and apoptosis-associated proteins in primary hippocampal neurons. Consistent with in vitro results, BEOV also reduced ER stress and inhibited neuronal apoptosis in hippocampi and cortexes of transgenic AD model mice. Moreover, by adopting GW9662 and salubrinal, the inhibitor of PPARγ and hyperphosphorylated eukaryotic translation initiation factor 2α, respectively, we further confirmed that BEOV alleviated Aβ-induced ER stress and neuronal apoptosis in primary hippocampal neurons by activating PPARγ. Taken together, these results provided scientific evidences to support the concept that BEOV ameliorates Aβ-induced ER stress and neuronal apoptosis through activating PPARγ.
Collapse
Affiliation(s)
- Zhijun He
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; College of optoelectronic engineering, Shenzhen university, Shenzhen, Guangdong 518060, China
| | - Menghuan Wang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Qionghui Zhao
- Shenzhen Food Inspection Center of CIQ, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Pengan Liu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Bingyu Ren
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Chong Wu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Nan Li
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Qiong Liu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, China.
| |
Collapse
|
8
|
Meléndez-García N, García-Ibarra F, Bizarro-Nevares P, Rojas-Lemus M, López-Valdez N, González-Villalva A, Ayala-Escobar ME, García-Vázquez F, Fortoul TI. Changes in Ovarian and Uterine Morphology and Estrous Cycle in CD-1 Mice After Vanadium Inhalation. Int J Toxicol 2019; 39:20-29. [PMID: 31884850 DOI: 10.1177/1091581819894529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vanadium is a metal present in particulate matter and its reprotoxic effects have been demonstrated in males and pregnant females in animal models. However, the effects of this metal on the reproductive organs of nonpregnant females have not been sufficiently studied. In a vanadium inhalation model in nonpregnant female mice, we found anestrous and estrous cycle irregularity, as well as low serum concentrations of 17β-estradiol and progesterone. A decrease in the diameter of secondary and preovulatory follicles, as well as a thickening of the myometrium and endometrial stroma, was observed in the vanadium-treated mice. There was no difference against the control group with respect to the presence of the estrogen receptor α in the uterus of the animals during the estrous stage. Our results indicate that when vanadium is administered by inhalation, effects are observed on the female reproductive organs and the production of female sex hormones.
Collapse
Affiliation(s)
- Nayeli Meléndez-García
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fátima García-Ibarra
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Bizarro-Nevares
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela Rojas-Lemus
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nelly López-Valdez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana González-Villalva
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Elena Ayala-Escobar
- Laboratorio 5 Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco García-Vázquez
- Laboratorio de Inmunogenética Molecular, Departamento de Análisis Clínicos y Estudios Especiales, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Teresa I Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Sang YL, Zhang XH, Lin XS, Liu YH, Liu XY. Syntheses, crystal structures and biological activity of oxidovanadium(V) complexes with tridentate aroylhydrazone ligands. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1674292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ya-Li Sang
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Xin-Hao Zhang
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Xue-Song Lin
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Yan-Hua Liu
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Xiao-Yin Liu
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| |
Collapse
|
10
|
Nagaraja S, Ankri S. Target identification and intervention strategies against amebiasis. Drug Resist Updat 2019; 44:1-14. [PMID: 31112766 DOI: 10.1016/j.drup.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis, which is an endemic parasitic disease in developing countries and is the cause of approximately 70,000 deaths annually. E. histolytica trophozoites usually reside in the colon as a non-pathogenic commensal in most infected individuals (90% of infected individuals are asymptomatic). For unknown reasons, these trophozoites can become virulent and invasive, cause amebic dysentery, and migrate to the liver where they cause hepatocellular damage. Amebiasis is usually treated either by amebicides which are classified as (a) luminal and are active against the luminal forms of the parasite, (b) tissue and are effective against those parasites that have invaded tissues, and (c) mixed and are effective against the luminal forms of the parasite and those forms which invaded the host's tissues. Of the amebicides, the luminal amebicide, metronidazole (MTZ), is the most widely used drug to treat amebiasis. Although well tolerated, concerns about its adverse effects and the possible emergence of MTZ-resistant strains of E. histolytica have led to the development of new therapeutic strategies against amebiasis. These strategies include improving the potency of existing amebicides, discovering new uses for approved drugs (repurposing of existing drugs), drug rediscovery, vaccination, drug targeting of essential E. histolytica components, and the use of probiotics and bioactive natural products. This review examines each of these strategies in the light of the current knowledge on the gut microbiota of patients with amebiasis.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
11
|
Crans DC, Barkley NE, Montezinho L, Castro MM. Vanadium Compounds as Enzyme Inhibitors with a Focus on Anticancer Effects. METAL-BASED ANTICANCER AGENTS 2019. [DOI: 10.1039/9781788016452-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vanadium salts and coordination compounds have desirable cellular anticancer effects, and although they have been investigated in detail as a potential treatment for diabetes, less attention has been given to the anticancer effects. The inhibition of some signal transduction enzymes is known, and studies of the metabolism and activation pathways both in vitro and in vivo are important for future investigations and development of vanadium's role as a new potential drug. In addition, a new approach has demonstrated that the enhancement of oncolytic viruses using vanadium salts and coordination complexes for immunotherapy is very promising. Some differences exist between this approach and current antidiabetic and anticancer studies because vanadium(iv) complexes have been found to be most potent in the latter approach, but the few compounds investigated with oncolytic viruses show that vanadium(v) systems are more effective. We conclude that recent studies demonstrate effects on signal transduction enzymes and anticancer pathways, thus suggesting potential applications of vanadium as anticancer agents in the future both as standalone treatments as well as combination therapies.
Collapse
Affiliation(s)
- Debbie C. Crans
- Colorado State University, Department of Chemistry Fort Collins CO 80525 USA
- Colorado State University, Cell and Molecular Biology Fort Collins CO 80525 USA
| | - Noah E. Barkley
- Colorado State University, Molecular and Cellular Integrative Neuroscience Program Fort Collins CO 80525 USA
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Medicine, Escola Universitária Vasco da Gama Coimbra Portugal
| | - M. Margarida Castro
- University of Coimbra, Department of Life Sciences, Faculty of Science and Technology 3000-456 Coimbra Portugal
- University of Coimbra, Coimbra Chemistry Center 3000-456 Coimbra Portugal
| |
Collapse
|
12
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
13
|
Nitsche S, Schmitz S, Stirnat K, Sandleben A, Klein A. Controlling Nuclearity and Stereochemistry in Vanadyl(V) and Mixed Valent VIV/VVComplexes of Oxido-Pincer Pyridine-2,6-dimethanol Ligands. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Nitsche
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Simon Schmitz
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Kathrin Stirnat
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Aaron Sandleben
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| | - Axel Klein
- Institut für Anorganische Chemie; Universität zu Köln; Greinstraße 6 50939 Köln Germany
| |
Collapse
|
14
|
Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. PLoS One 2018; 13:e0201908. [PMID: 30092079 PMCID: PMC6085002 DOI: 10.1371/journal.pone.0201908] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/24/2018] [Indexed: 12/03/2022] Open
Abstract
Vanadium (V) can be absorbed by plants and regulate their growth and development, although contrasting effects have been reported among species and handling conditions. The objective of this work was to evaluate the beneficial effect of V on pepper plants (Capsicum annuum L.). The plants were grown in a hydroponic system with the application of four V concentrations (0, 5, 10, and 15 μM NH₄VO₃). Four weeks after the beginning of the treatments, growth, flowering, biomass, chlorophyll concentration, total amino acids, total soluble sugars, and nutrients were determined in leaves, stems, and roots. The application of 5 μM V increased plant growth, induced floral bud development, and accelerated flowering. The chlorophyll concentration varied according to the type of plant part analyzed. The concentrations of amino acids and sugars in leaves and roots were higher with 5 μM. With 10 and 15 μM V, the plants were smaller and showed toxicity symptoms. The K concentration in leaves decreased as the V dose increased (0 to 15 μM). However, 5 μM V increased the concentrations of N, P, K, Ca, Mg, Cu, Mn, and B, exclusively in stems. The application of 15 μM V decreased the concentrations of Mg and Mn in leaves, but increased those of P, Ca, Mg, Cu, and B in roots. We conclude that V has positive effects on pepper growth and development, as well as on the concentrations of amino acids and total sugars. V was antagonistic with K, Mg, and Mn in leaves, while in stems and roots, there was synergism with macro and micronutrients. Vanadium is a beneficial element with the potential to be used in biostimulation approaches of crops like pepper.
Collapse
|
15
|
Gumerova N, Krivosudský L, Fraqueza G, Breibeck J, Al-Sayed E, Tanuhadi E, Bijelic A, Fuentes J, Aureliano M, Rompel A. The P-type ATPase inhibiting potential of polyoxotungstates. Metallomics 2018; 10:287-295. [PMID: 29313547 PMCID: PMC5824666 DOI: 10.1039/c7mt00279c] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023]
Abstract
Polyoxometalates (POMs) are transition metal complexes that exhibit a broad diversity of structures and properties rendering them promising for biological purposes. POMs are able to inhibit a series of biologically important enzymes, including phosphatases, and thus are able to affect many biochemical processes. In the present study, we analyzed and compared the inhibitory effects of nine different polyoxotungstates (POTs) on two P-type ATPases, Ca2+-ATPase from skeletal muscle and Na+/K+-ATPase from basal membrane of skin epithelia. For Ca2+-ATPase inhibition, an in vitro study was performed and the strongest inhibitors were determined to be the large heteropolytungstate K9(C2H8N)5[H10Se2W29O103] (Se2W29) and the Dawson-type POT K6[α-P2W18O62] (P2W18) exhibiting IC50 values of 0.3 and 0.6 μM, respectively. Promising results were also shown for the Keggin-based POTs K6H2[CoW11TiO40] (CoW11Ti, IC50 = 4 μM) and Na10[α-SiW9O34] (SiW9, IC50 = 16 μM), K14[As2W19O67(H2O)] (As2W19, IC50 = 28 μM) and the lacunary Dawson K12[α-H2P2W12O48] (P2W12, IC50 = 11 μM), whereas low inhibitory potencies were observed for the isopolytungstate Na12[H4W22O74] (W22, IC50 = 68 μM) and the Anderson-type Na6[TeW6O24] (TeW6, IC50 = 200 μM). Regarding the inhibition of Na+/K+-ATPase activity, for the first time an ex vivo study was conducted using the opercular epithelium of killifish in order to investigate the effects of POTs on the epithelial chloride secretion. Interestingly, 1 μM of the most potent Ca2+-ATPase inhibitor, Se2W29, showed only a minor inhibitory effect (14% inhibition) on Na+/K+-ATPase activity, whereas almost total inhibition (99% inhibition) was achieved using P2W18. The remaining POTs exhibited similar inhibition rates on both ATPases. These results reveal the high potential of some POTs to act as P-type ATPase inhibitors, with Se2W29 showing high selectivity towards Ca2+-ATPase.
Collapse
Affiliation(s)
- Nadiia Gumerova
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Lukáš Krivosudský
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Gil Fraqueza
- Centre of Marine Sciences , University of Algarve , 8005-139 Faro , Portugal
- Institute of Engineering , University of Algarve , 8005-139 Faro , Portugal
| | - Joscha Breibeck
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Emir Al-Sayed
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Elias Tanuhadi
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Aleksandar Bijelic
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| | - Juan Fuentes
- Centre of Marine Sciences , University of Algarve , 8005-139 Faro , Portugal
| | - Manuel Aureliano
- Centre of Marine Sciences , University of Algarve , 8005-139 Faro , Portugal
- Faculty of Sciences and Technology , University of Algarve , 8005-139 Faro , Portugal .
| | - Annette Rompel
- Universität Wien , Fakultät für Chemie , Institut für Biophysikalische Chemie , Althanstraße. 14 , 1090 Wien , Austria . ; www.bpc.univie.ac.at
| |
Collapse
|
16
|
Das U, Pattanayak P, Santra MK, Chattopadhyay S. Synthesis of New Oxido-Vanadium Complexes: Catalytic Properties and Cytotoxicity. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15168821806597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reaction of 2,3-dihydroxy benzaldehyde with 2-({2-amino phenyl}diazenyl)phenol afforded the ligand 3-(2-(2-hydroxyphenyl)diazenyl)-4-alkylphenyliminomethyl)benzene-1,2-diol. Reaction of H2L with VOSO4. 5H2O gave the oxido-vanadium(IV) complexes [(L)VO], which exhibited a quasi-reversible oxidative cyclic voltammetric response in a V(IV)/V(V) oxidative process. The complexes act as catalysts in the oxidation of organic thioethers and bromination of phenol. Their cytotoxic properties were examined for three cancer cell lines.
Collapse
Affiliation(s)
- Uttam Das
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
- Department of Chemistry, Kalyani Government Engineering College, Kalyani 741235, India
| | | | - Manas Kumar Santra
- Cancer Biology and Epigenetics Lab, National Center for Cell Science, Ganeshkhind, Pune 411007, India
| | | |
Collapse
|
17
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
18
|
Fonseca TG, Morais MB, Rocha T, Abessa DMS, Aureliano M, Bebianno MJ. Ecotoxicological assessment of the anticancer drug cisplatin in the polychaete Nereis diversicolor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:162-172. [PMID: 27744150 DOI: 10.1016/j.scitotenv.2016.09.185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Anticancer drugs are designed to inhibit tumor cell proliferation by interacting with DNA and altering cellular growth factors. When released into the waterbodies of municipal and hospital effluents these pharmaceutical compounds may pose a risk to non-target aquatic organisms, due to their mode of action (cytotoxic, genotoxic, mutagenic and teratogenic). The present study aimed to assess the ecotoxicological potential of the alkylating agent cisplatin (CisPt) to the polychaete Nereis diversicolor, at a range of relevant environmental concentrations (i.e. 0.1, 10 and 100ngPtL-1). Behavioural impairment (burrowing kinetic impairment), ion pump effects (SR Ca2+-ATPase), neurotoxicity (AChE activity), oxidative stress (SOD, CAT and GPXs activities), metal exposure (metallothionein-like proteins - MTLP), biotransformation (GST), oxidative damage (LPO) and genotoxicity (DNA damage), were selected as endpoints to evaluate the sublethal responses of the ragworms after 14-days of exposure in a water-sediment system. Significant burrowing impairment occurred in worms exposed to the highest CisPt concentration (100ngPtL-1) along with neurotoxic effects. The activity of antioxidant enzymes (SOD, CAT) and second phase biotransformation enzyme (GST) was inhibited but such effects were compensated by MTLP induction. Furthermore, LPO levels also increased. Results showed that the mode of action of cisplatin may pose a risk to this aquatic species even at the range of ngL-1.
Collapse
Affiliation(s)
- T G Fonseca
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, São Paulo State University - UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900, São Vicente, SP, Brazil
| | - M B Morais
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - T Rocha
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - D M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, São Paulo State University - UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900, São Vicente, SP, Brazil
| | - M Aureliano
- CCMar, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal
| | - M J Bebianno
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
19
|
Mateos-Nava RA, Rodríguez-Mercado JJ, Altamirano-Lozano MA. Premature chromatid separation and altered proliferation of human leukocytes treated with vanadium (III) oxide. Drug Chem Toxicol 2016; 40:457-462. [DOI: 10.1080/01480545.2016.1260582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rodrigo Anibal Mateos-Nava
- Facultad de Estudios Superiores-Zaragoza, UNAM, Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN) Laboratorio 5-PA Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Ciudad de México, México and
- Posgrado en Ciencias Biológicas, UNAM, Edificio E, Primer Piso, Circuito de Posgrados, Ciudad Universitaria Del. Coyoacán, Ciudad de México, México
| | - Juan José Rodríguez-Mercado
- Facultad de Estudios Superiores-Zaragoza, UNAM, Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN) Laboratorio 5-PA Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Ciudad de México, México and
| | - Mario Agustín Altamirano-Lozano
- Facultad de Estudios Superiores-Zaragoza, UNAM, Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN) Laboratorio 5-PA Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Ciudad de México, México and
| |
Collapse
|
20
|
Vargas-Medrano J, Sierra-Fonseca JA, Plenge-Tellechea LF. 1,2-Dichlorobenzene affects the formation of the phosphoenzyme stage during the catalytic cycle of the Ca(2+)-ATPase from sarcoplasmic reticulum. BMC BIOCHEMISTRY 2016; 17:5. [PMID: 26968444 PMCID: PMC4788898 DOI: 10.1186/s12858-016-0061-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND 1,2-Dichlorobenzene (1,2-DCB) is a benzene-derived molecule with two Cl atoms that is commonly utilized in the synthesis of pesticides. 1,2-DCB can be absorbed by living creatures and its effects on naturally-occurring enzymatic systems, including the effects on Ca(2+)-ATPases, have been poorly studied. Therefore, we aimed to study the effect of 1,2-DCB on the Ca(2+)-ATPase from sarcoplasmic reticulum (SERCA), a critical regulator of intracellular Ca(2+) concentration. RESULTS Concentrations of 0.05-0.2 mM of 1,2-DCB were able to stimulate the hydrolytic activity of SERCA in a medium-containing Ca(2+)-ionophore. At higher concentrations (0.25-0.75 mM), 1,2-DCB inhibited the ATP hydrolysis to ~80 %. Moreover, ATP hydrolysis and Ca(2+) uptake in a medium supported by K-oxalate showed that starting at 0.05 mM,1,2-DCB was able to uncouple the ratio of hydrolysis/Ca(2+) transported. The effect of this compound on the integrity of the SR membrane loaded with Ca(2+) remained unaffected. Finally, the analysis of phosphorylation of SERCA by [γ-(32)P]ATP, starting under different conditions at 0° or 25 °C showed a reduction in the phosphoenzyme levels by 1,2-DCB, mostly at 0 °C. CONCLUSIONS The temperature-dependent decreased levels of phosphoenzyme by 1,2-DCB could be due to the acceleration of the dephosphorylation mechanism - E2P · Ca2 state to E2 and Pi, which explains the uncoupling of the ATP hydrolysis from the Ca(2+) transport.
Collapse
Affiliation(s)
- Javier Vargas-Medrano
- Present address: Department of Biomedical Sciences, Center of Emphasis for Neurosciences, Texas Tech University Health Science Center, El Paso, TX, 79905, USA
| | - Jorge A Sierra-Fonseca
- Present address: Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Luis F Plenge-Tellechea
- Departamento de Ciencias Químico Biológicas, Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Plutarco Elías Calles #1210 Fovissste Chamizal, Ciudad Juárez, Chihuahua, C.P. 32310, Mexico.
| |
Collapse
|
21
|
Scior T, Guevara-Garcia JA, Do QT, Bernard P, Laufer S. Why Antidiabetic Vanadium Complexes are Not in the Pipeline of "Big Pharma" Drug Research? A Critical Review. Curr Med Chem 2016; 23:2874-2891. [PMID: 26997154 PMCID: PMC5068500 DOI: 10.2174/0929867323666160321121138] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Public academic research sites, private institutions as well as small companies have made substantial contributions to the ongoing development of antidiabetic vanadium compounds. But why is this endeavor not echoed by the globally operating pharmaceutical companies, also known as "Big Pharma"? Intriguingly, today's clinical practice is in great need to improve or replace insulin treatment against Diabetes Mellitus (DM). Insulin is the mainstay therapeutically and economically. So, why do those companies develop potential antidiabetic drug candidates without vanadium (vanadium- free)? We gathered information about physicochemical and pharmacological properties of known vanadium-containing antidiabetic compounds from the specialized literature, and converted the data into explanations (arguments, the "pros and cons") about the underpinnings of antidiabetic vanadium. Some discoveries were embedded in chronological order while seminal reviews of the last decade about the Medicinal chemistry of vanadium and its history were also listed for further understanding. In particular, the concepts of so-called "noncomplexed or free" vanadium species (i.e. inorganic oxido-coordinated species) and "biogenic speciation" of antidiabetic vanadium complexes were found critical and subsequently documented in more details to answer the question.
Collapse
Affiliation(s)
- Thomas Scior
- Department of Pharmacy, Faculty of Chemical Sciences, University Benemerita Universidad Autonoma de Puebla, P.O. Box: 72570, City of Puebla, Country Mexico.
| | | | | | | | | |
Collapse
|
22
|
Crans DC. Antidiabetic, Chemical, and Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases. J Org Chem 2015; 80:11899-915. [PMID: 26544762 DOI: 10.1021/acs.joc.5b02229] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies of antidiabetic vanadium compounds, specifically the organic vanadate esters, are reviewed with regard to their chemistry and biological properties. The compounds are described from the perspective of how the fundamental chemistry and properties of organic vanadate esters impact their effects as inhibitors for phosphatases based on the structural information obtained from vanadium-phosphatase complexes. Vanadium compounds have been reported to have antidiabetic properties for more than a century. The structures and properties of organic vanadate complexes are reviewed, and the potency of such vanadium coordination complexes as antidiabetic agents is described. Because such compounds form spontaneously in aqueous environments, the reactions with most components in any assay or cellular environment has potential to be important and should be considered. Generally, the active form of vanadium remains elusive, although studies have been reported of a number of promising vanadium compounds. The description of the antidiabetic properties of vanadium compounds is described here in the context of recent characterization of vanadate-phosphatase protein structures by data mining. Organic vanadate ester compounds are generally four coordinate or five coordinate with the former being substrate analogues and the latter being transition-state analogue inhibitors. These studies demonstrated a framework for characterization of five-coordinate trigonal bipyramidal vanadium inhibitors by comparison with the reported vanadium-protein phosphatase complexes. The binding of the vanadium to the phosphatases is either as a five-coordinate exploded transition-state analogue or as a high energy intermediate, respectively. Even if potency as an inhibitor requires trigonal bipyramidal geometry of the vanadium when bound to the protein, such geometry can be achieved upon binding from compounds with other geometries. Desirable properties of ligands are identified and analyzed. Ligand interactions, as reported in one peptidic substrate, are favorable so that complementarity between phosphatase and coordinating ligand to the vanadium can be established resulting in a dramatic enhancement of the inhibitory potency. These considerations point to a frameshift in ligand design for vanadium complexes as phosphatase inhibitors and are consistent with other small molecule having much lower affinities. Combined, these studies do suggest that if effective delivery of potentially active antidiabetic compound such a the organic vanadate peptidic substrate was possible the toxicity problems currently reported for the salts and some of the complexes may be alleviated and dramatic enhancement of antidiabetic vanadium compounds may result.
Collapse
Affiliation(s)
- Debbie C Crans
- Department of Chemistry and Cell and Molecular Biology Program, Colorado State University , 1301 Center Avenue, Fort Collins, Colorado 80523, United States
| |
Collapse
|
23
|
Theoretical study of the structure, IR and NMR of the bis-peroxo-oxovanadate species containing-histidine peptides. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Yoshikawa Y, Sakurai H, Crans DC, Micera G, Garribba E. Structural and redox requirements for the action of anti-diabetic vanadium compounds. Dalton Trans 2014; 43:6965-72. [PMID: 24668346 DOI: 10.1039/c3dt52895b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents the first systematic investigation of the anti-diabetic properties of non-oxido V(IV) complexes. In particular, the insulin-mimetic activity of [V(IV)(taci)2](4+), [V(IV)(inoH-3)2](2-), [V(IV)(dhab)2], [V(IV)(hyph(Ph))2], [V(IV)(cat)3](2-) and [V(IV)(pdbh)2]--where taci is 1,3,5-triamino-1,3,5-trideoxy-cis-inositol, ino is cis-inositol, H2dhab is 2,2'-dihydroxyazobenzene, H2hyph(Ph) is 3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazole, H2cat is catechol and H2pdbh is pentan-2,4-dione benzoylhydrazone--was evaluated in terms of free fatty acid (FFA) release. Among the six compounds examined, only [V(IV)(pdbh)2], [V(IV)(cat)3](2-) and [V(IV)(hyph(Ph))2], which at the physiological pH convert to the corresponding V(IV)O complexes, were found to exhibit a significant insulin-mimetic activity compared to VOSO4. In contrast, [V(taci)2](4+), [V(inoH-3)2](2-) and [V(dhab)2], which at pH 7.4 keep their 'bare' non-oxido structure, did not cause any inhibition of FFA. The results, therefore, suggest that a V(IV)O functionality is necessary for vanadium complexes to exhibit anti-diabetic effects. This agrees with the notion that the biotransformations of V compounds in the organism are more important than the nature of the species.
Collapse
Affiliation(s)
- Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition, Faculty of Health Welfare, Kobe Woman's University, Kobe, Japan
| | | | | | | | | |
Collapse
|
25
|
Liu JC, Yu Y, Wang G, Wang K, Yang XG. Bis(acetylacetonato)-oxovanadium(iv), bis(maltolato)-oxovanadium(iv) and sodium metavanadate induce antilipolytic effects by regulating hormone-sensitive lipase and perilipin via activation of Akt. Metallomics 2014; 5:813-20. [PMID: 23576171 DOI: 10.1039/c3mt00001j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increased plasma free fatty acid levels due to the deregulated lipolysis in adipocytes are considered as one of the major risk factors for developing type II diabetes. Vanadium compounds are well-known for their antidiabetic effects both on glucose and lipid metabolism, but the mechanisms are still not completely understood. The present study suggests a mechanism for how vanadium compounds exert antilipolytic effects. It demonstrates that all the three vanadium compounds, bis(acetylacetonato)-oxovanadium(iv) (VO(acac)2), bis(maltolato)-oxovanadium(iv) (VO(ma)2) and sodium metavanadate (NaVO3), attenuated basal lipolysis in 3T3L1 adipocytes in a dose- (from 100 to 400 μM for VO(acac)2 and VO(ma)2, 1.0 to 4.0 mM for vanadate) and time-dependent (from 0.5 to 4 h) manner using the glycerol release as a marker of lipolysis. In addition, the three compounds inhibited lipolysis to a different extent. Among them, VO(acac)2 (from 100 to 400 μM) exerted the most potent effect and reduced the lipolysis to ∼60-20% of control after 4 h treatment. The antilipolytic effects of vanadium compounds were further evidenced by a decrease of the levels of phosphorylated HSL at Ser660 and phosphorylated perilipin, which were counteracted by inhibitors of PI3K or Akt but not by an MEK inhibitor. This indicates that though both Akt and ERK pathways are activated by the vanadium compounds, only Akt activation contributes to the antilipolytic effect of the vanadium compounds, without the involvement of ERK activation. We previously demonstrated that VO(acac)2 can block cell cycle progression at the G1/S phase via a highly activated ERK signal in human hepatoma HepG2 cells. Together with this study, we show that similar activated pathways may lead to differential biological consequences for cancer cells and adipocytes, indicating that vanadium compounds may be used in the prevention and treatment of both diabetes and cancer.
Collapse
Affiliation(s)
- Jing-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Abstract
The putative applications of poly-, oligo- and mono-oxometalates in biochemistry, biology, pharmacology and medicine are rapidly attracting interest. In particular, these compounds may act as potent ion pump inhibitors and have the potential to play a role in the treatment of e.g. ulcers, cancer and ischemic heart disease. However, the mechanism of action is not completely understood in most cases, and even remains largely unknown in other cases. In the present review we discuss the most recent insights into the interaction between mono- and polyoxometalate ions with ion pumps, with particular focus on the interaction of decavanadate with Ca(2+)-ATPase. We also compare the proposed mode of action with those of established ion pump inhibitors which are currently in therapeutic use. Of the 18 classes of compounds which are known to act as ion pump inhibitors, the complete mechanism of inhibition is only known for a handful. It has, however, been established that most ion pump inhibitors bind mainly to the E2 ion pump conformation within the membrane domain from the extracellular side and block the cation release. Polyoxometalates such as decavanadate, in contrast, interact with Ca(2+)-ATPase near the nucleotide binding site domain or at a pocket involving several cytoplasmic domains, and therefore need to cross through the membrane bilayer. In contrast to monomeric vanadate, which only binds to the E2 conformation, decavanadate binds to all protein conformations, i.e. E1, E1P, E2 and E2P. Moreover, the specific interaction of decavanadate with sarcoplasmic reticulum Ca(2+)-ATPase has been shown to be non-competitive with respect to ATP and induces protein cysteine oxidation with concomitant vanadium reduction which might explain the high inhibitory capacity of V10 (IC50 = 15 μM) which is quite similar to the majority of the established therapeutic drugs.
Collapse
|
27
|
Gyepes R, Pacigová S, Tatiersky J, Sivák M. Anion–π, lone pair–π and π–π interactions in VO(O2)+ complexes with one dipicolinato(2-)-N,O,O ligand and bearing picolinamidium, nicotinamidium or phenanthrolinium as counterions. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Dinuclear oxidovanadium(V) complexes incorporating N, N, O, O coordinating ligands: Synthesis, structure, spectral, DFT and TDDFT study. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.02.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Fraqueza G, Batista de Carvalho LAE, Marques MPM, Maia L, Ohlin CA, Casey WH, Aureliano M. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition. Dalton Trans 2012; 41:12749-12758. [PMID: 22968713 DOI: 10.1039/c2dt31688a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently we demonstrated that the decavanadate (V(10)) ion is a stronger Ca(2+)-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V(10) interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb(10) = Nb(10)O(28)](6-), is a useful tool in deducing the interaction and the non-competitive Ca(2+)-ATPase inhibition by the decavanadate ion [V(10) = V(10)O(28)](6-). Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca(2+)-ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V(10), Nb(10) and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V(10) and Nb(10) decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V(10) to inhibit the Ca(2+)-ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These results contribute to the understanding and application of these families of mono- and polyoxometalates as effective modulators of many biological processes, particularly those associated with calcium homeostasis.
Collapse
Affiliation(s)
- Gil Fraqueza
- ISE and CCmar, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
30
|
Synthesis of a mononuclear oxidovanadium(V) complex by bridge-splitting of the corresponding binuclear precursor. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Fraqueza G, Ohlin CA, Casey WH, Aureliano M. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate. J Inorg Biochem 2012; 107:82-89. [PMID: 22178669 DOI: 10.1016/j.jinorgbio.2011.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/08/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca(2+)-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca(2+)-ATPase, with the following IC(50) values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb(10)), is the strongest P-type enzyme inhibitor, after decavanadate (V(10)). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca(2+)-ATPase stoichiometry. Furthermore, V(10) binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H(2)VO(4)(2-); V(1)) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca(2+)-ATPase, with a dissociation constant, k(d) of 1 μM(-1). The interaction of decavanadate V(10)O(28)(6-) (V(10)) with Ca(2+)-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb(10)O(28)(6-) (Nb(10)), whereas no significant effects were detected with ATP or with heparin, a known competitive ATP binding molecule, suggesting that V(10) binds non-competitively, with respect to ATP, to the protein. Finally, it was shown that decaniobate inhibits SR Ca(2+)-ATPase activity in a non competitive type of inhibition, with respect to ATP. Taken together, these data demonstrate that decameric niobate and vanadate species are stronger inhibitors of the SR calcium ATPase than simple monomeric vanadate, tungstate and molybdate oxometalates, thus affecting calcium homeostasis, cell signalling and cell bioenergetics, as well many other cellular processes. The ability of these oxometalates to act either as phosphate analogues, as a transition-state analogue in enzyme-catalysed phosphoryl group transfer processes and as potentially nucleotide-dependent enzymes modulators or inhibitors, suggests that different oxometalates may reveal different mechanistic preferences in these classes of enzymes.
Collapse
Affiliation(s)
- Gil Fraqueza
- Department of Food Engineering, ISE, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
32
|
Winter PW, Al-Qatati A, Wolf-Ringwall AL, Schoeberl S, Chatterjee PB, Barisas BG, Roess DA, Crans DC. The anti-diabetic bis(maltolato)oxovanadium(iv) decreases lipid order while increasing insulin receptor localization in membrane microdomains. Dalton Trans 2012; 41:6419-30. [DOI: 10.1039/c2dt30521f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Ramos S, Moura JJG, Aureliano M. Recent advances into vanadyl, vanadate and decavanadate interactions with actin. Metallomics 2012; 4:16-22. [PMID: 22012168 DOI: 10.1039/c1mt00124h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can regulate many cellular processes of great physiological significance.
Collapse
Affiliation(s)
- S Ramos
- REQUIMTE/CQFB, Dpto Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
34
|
Čolović MB, Bajuk-Bogdanović DV, Avramović NS, Holclajtner-Antunović ID, Bošnjaković-Pavlović NS, Vasić VM, Krstić DZ. Inhibition of rat synaptic membrane Na+/K+-ATPase and ecto-nucleoside triphosphate diphosphohydrolases by 12-tungstosilicic and 12-tungstophosphoric acid. Bioorg Med Chem 2011; 19:7063-9. [DOI: 10.1016/j.bmc.2011.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 11/25/2022]
|
35
|
Aureliano M. Recent perspectives into biochemistry of decavanadate. World J Biol Chem 2011; 2:215-25. [PMID: 22031844 PMCID: PMC3202125 DOI: 10.4331/wjbc.v2.i10.215] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/07/2011] [Accepted: 09/14/2011] [Indexed: 02/05/2023] Open
Abstract
The number of papers about decavanadate has doubled in the past decade. In the present review, new insights into decavanadate biochemistry, cell biology, and antidiabetic and antitumor activities are described. Decameric vanadate species (V10) clearly differs from monomeric vanadate (V1), and affects differently calcium pumps, and structure and function of myosin and actin. Only decavanadate inhibits calcium accumulation by calcium pump ATPase, and strongly inhibits actomyosin ATPase activity (IC50 = 1.4 μmol/L, V10), whereas no such effects are detected with V1 up to 150 μmol/L; prevents actin polymerization (IC50 of 68 μmol/L, whereas no effects detected with up to 2 mmol/L V1); and interacts with actin in a way that induces cysteine oxidation and vanadate reduction to vanadyl. Moreover, in vivo decavanadate toxicity studies have revealed that acute exposure to polyoxovanadate induces different changes in antioxidant enzymes and oxidative stress parameters, in comparison with vanadate. In vitro studies have clearly demonstrated that mitochondrial oxygen consumption is strongly affected by decavanadate (IC50, 0.1 μmol/L); perhaps the most relevant biological effect. Finally, decavanadate (100 μmol/L) increases rat adipocyte glucose accumulation more potently than several vanadium complexes. Preliminary studies suggest that decavanadate does not have similar effects in human adipocytes. Although decavanadate can be a useful biochemical tool, further studies must be carried out before it can be confirmed that decavanadate and its complexes can be used as anticancer or antidiabetic agents.
Collapse
|
36
|
How environment affects drug activity: Localization, compartmentalization and reactions of a vanadium insulin-enhancing compound, dipicolinatooxovanadium(V). Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.01.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Willsky GR, Chi LH, Godzala M, Kostyniak PJ, Smee JJ, Trujillo AM, Alfano JA, Ding W, Hu Z, Crans DC. Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coord Chem Rev 2011; 255:2258-2269. [PMID: 23049138 PMCID: PMC3461829 DOI: 10.1016/j.ccr.2011.06.015] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of oral treatment of rats with streptozotocin-induced diabetes with a range of vanadium dipicolinate complexes (Vdipic) and derivatives are reviewed. Structure-reactivity relationships are explored aiming to correlate properties such as stability, to their insulin-enhancing effects. Three types of modifications are investigated; first, substitutions on the aromatic ring, second, coordination of a hydroxylamido group to the vanadium, and third, changes in the oxidation state of the vanadium ion. These studies allowed us to address the importance of coordination chemistry, and redox chemistry, as modes of action. Dipicolinate was originally chosen as a ligand because the dipicolinatooxovanadium(V) complex (V5dipic), is a potent inhibitor of phosphatases. The effect of vanadium oxidation state (3, 4 or 5), on the insulin-enhancing properties was studied in both the Vdipic and VdipicCl series. Effects on blood glucose, body weight, serum lipids, alkaline phosphatase and aspartate transaminase were selectively monitored. Statistically distinct differences in activity were found, however, the trends observed were not the same in the Vdipic and VdipicCl series. Interperitoneal administration of the Vdipic series was used to compare the effect of administration mode. Correlations were observed for blood vanadium and plasma glucose levels after V5dipic treatment, but not after treatment with corresponding V4dipic and V3dipic complexes. Modifications of the aromatic ring structure with chloride, amine or hydroxyl groups had limited effects. Global gene expression was measured using Affymetrix oligonucleotide chips. All diabetic animals treated with hydroxyl substituted V5dipic (V5dipicOH) and some diabetic rats treated with vanadyl sulfate had normalized hyperlipidemia yet uncontrolled hyperglycemia and showed abnormal gene expression patterns. In contrast to the normal gene expression profiles previously reported for some diabetic rats treated with vanadyl sulfate, where both hyperlipidemia and hyperglycemia were normalized. Modification of the metal, changing the coordination chemistry to form a hydroxylamine ternary complex, had the most influence on the anti-diabetic action. Vanadium absorption into serum was determined by atomic absorption spectroscopy for selected vanadium complexes. Only diabetic rats treated with the ternary V5dipicOH hydroxylamine complex showed statistically significant increases in accumulation of vanadium into serum compared to diabetic rats treated with vanadyl sulfate. The chemistry and physical properties of the Vdipic complexes correlated with their anti-diabetic properties. Here, we propose that compound stability and ability to interact with cellular redox reactions are key components for the insulin-enhancing activity of vanadium compounds. Specifically, we found that the most overall effective anti-diabetic Vdipic compounds were obtained when the compound administered had an increased coordination number in the vanadium complex.
Collapse
Affiliation(s)
- Gail R. Willsky
- University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY USA
| | - Lai-Har Chi
- University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY USA
| | - Michael Godzala
- University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY USA
| | - Paul J. Kostyniak
- University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY USA
| | - Jason J. Smee
- Present Address: Dept of Chemistry, The University of Texas at Tyler, Tyler TX, USA
- Department of Chemistry, Colorado State University, Fort Collins CO, USA
| | | | - Josephine A. Alfano
- University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY USA
| | - Wenjin Ding
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Zihua Hu
- University at Buffalo, Center for Computational Research, Buffalo NY USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins CO, USA
| |
Collapse
|
38
|
Antidiabetic vanadium compound and membrane interfaces: interface-facilitated metal complex hydrolysis. J Biol Inorg Chem 2011; 16:961-72. [DOI: 10.1007/s00775-011-0796-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/09/2011] [Indexed: 10/25/2022]
|
39
|
Ho PH, Breynaert E, Kirschhock CEA, Parac-Vogt TN. Hydrolysis of carboxyesters promoted by vanadium(v) oxyanions. Dalton Trans 2011; 40:295-300. [DOI: 10.1039/c0dt00744g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Islam MN, Kumbhar AA, Kumbhar AS, Zeller M, Butcher RJ, Dusane MB, Joshi BN. Bis(maltolato)vanadium(III)-Polypyridyl Complexes: Synthesis, Characterization, DNA Cleavage, and Insulin Mimetic Activity. Inorg Chem 2010; 49:8237-46. [DOI: 10.1021/ic9025359] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Matthias Zeller
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555
| | | | - Menakshi Bhat Dusane
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune-411007, India
| | - Bimba N. Joshi
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune-411007, India
| |
Collapse
|
41
|
Nikolakis VA, Exarchou V, Jakusch T, Woolins JD, Slawin AMZ, Kiss T, Kabanos TA. Tris-(hydroxyamino)triazines: high-affinity chelating tridentate O,N,O-hydroxylamine ligand for the cis-VVO2+ cation. Dalton Trans 2010; 39:9032-8. [DOI: 10.1039/c0dt00574f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Pereira MJ, Carvalho E, Eriksson JW, Crans DC, Aureliano M. Effects of decavanadate and insulin enhancing vanadium compounds on glucose uptake in isolated rat adipocytes. J Inorg Biochem 2009; 103:1687-1692. [PMID: 19850351 DOI: 10.1016/j.jinorgbio.2009.09.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 02/07/2023]
Abstract
The effects of different vanadium compounds namely pyridine-2,6-dicarboxylatedioxovanadium(V) (V5-dipic), bis(maltolato) oxovanadium(IV) (BMOV) and amavadine, and oligovanadates namely metavanadate and decavanadate were analysed on basal and insulin stimulated glucose uptake in rat adipocytes. Decavanadate (50 microM), manifest a higher increases (6-fold) on glucose uptake compared with basal, followed by BMOV (1 mM) and metavanadate (1 mM) solutions (3-fold) whereas V5 dipic and amavadine had no effect. Decavanadate (100 microM) also shows the highest insulin like activity when compared with the others compounds studied. In the presence of insulin (10 nM), only decavanadate increases (50%) the glucose uptake when compared with insulin stimulated glucose uptake whereas BMOV and metavanadate, had no effect and V5 dipic and amavadine prevent the stimulation to about half of the basal value. Decavanadate is also able to reduce or eradicate the suppressor effect caused by dexamethasone on glucose uptake at the level of the adipocytes. Altogether, vanadium compounds and oligovanadates with several structures and coordination spheres reveal different effects on glucose uptake in rat primary adipocytes.
Collapse
Affiliation(s)
- Maria João Pereira
- CCMAR and FCT, University of Algarve, Campus das Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | |
Collapse
|
43
|
Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, Wang K. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J Inorg Biochem 2009; 104:371-8. [PMID: 20015552 DOI: 10.1016/j.jinorgbio.2009.11.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 12/28/2022]
Abstract
Vanadium compounds have been regarded as promising in therapeutic treatment of diabetes and in cancer prevention. In the present work, we studied the effects of vanadium compounds on mitochondria to investigate the mechanisms of toxicity. Mitochondria were isolated from rat liver and incubated with a variety of vanadium compounds, i.e. VOSO(4), NaVO(3), and vanadyl complexes with organic ligands. Our studies indicated that VO(2+), VO(3)(-), VO(acac)(2) and VOcit (1-100microM) could induce mitochondrial swelling in a concentration dependent manner and disrupt mitochondrial membrane potential (Deltapsi(m)) in a time dependent manner, which is quite different from the rapid Deltapsi(m) collapse caused by Ca(2+) or CCCP (carbonyl cyanide m-chlorophenylhydrazone, a mitochondrial uncoupling reagent). Release of cytochrome c (Cyt c) was observed and could be inhibited by cyclosporin A (CsA), an inhibitor of the mitochondrial permeability transition pore (PTP). Interestingly, VOdipic caused release of Cyt c without mitochondrial swelling and Deltapsi(m) disruption, an action previously only observed on the Bax protein, suggesting a potentially role of VOdipic in regulating PTP opening. In addition, all the vanadium compounds tested stimulated mitochondrial production of reactive oxygen species (ROS). Antioxidants, i.e. vitamin C and E, significantly delayed the Deltapsi(m) disruption. Overall, our experimental evidence indicated vanadium compounds exhibited multiple actions on mitochondria. Vanadium compounds did induce oxidative stress on mitochondrial and thus caused PTP opening, which led to collapse of Deltapsi(m) and Cyt c release as the initiation of cell apoptosis.
Collapse
Affiliation(s)
- Yuebin Zhao
- State Key Laboratories of Natural and Biomimetic Drugs, Peking University, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Currently, efforts have been directed towards using decavanadate as a tool for the understanding of several biochemical processes such as muscle contraction, calcium homeostasis, in vivo changes of oxidative stress markers, mitochondrial oxygen consumption, mitochondrial membrane depolarization, actin polymerization and glucose uptake, among others. In addition, studies have been conducted in order to make vanadium available and safe for clinical use, for instance with decavanadate compounds that present interesting pharmacological properties, eventually useful for the treatment of diabetes. Here, recent contributions of decavanadate to the effects of vanadium in biological systems, not only in vitro, but also in vivo, are analysed.
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculty of Sciences and Technology, University of Algarve, Portugal.
| |
Collapse
|
45
|
Ramos S, Duarte RO, Moura JJG, Aureliano M. Decavanadate interactions with actin: cysteine oxidation and vanadyl formation. Dalton Trans 2009:7985-7994. [PMID: 19771361 DOI: 10.1039/b906255f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Incubation of actin with decavanadate induces cysteine oxidation and oxidovanadium(IV) formation. The studies were performed combining kinetic with spectroscopic (NMR and EPR) methodologies. Although decavanadate is converted to labile oxovanadates, the rate of deoligomerization can be very slow (half-life time of 5.4 h, at 25 degrees C, with a first order kinetics), which effectively allows decavanadate to exist for some time under experimental conditions. It was observed that decavanadate inhibits F-actin-stimulated myosin ATPase activity with an IC(50) of 0.8 microM V(10) species, whereas 50 microM of vanadate or oxidovanadium(IV) only inhibits enzyme activity up to 25%. Moreover, from these three vanadium forms, only decavanadate induces the oxidation of the so called "fast" cysteines (or exposed cysteine, Cys-374) when the enzyme is in the polymerized and active form, F-actin, with an IC(50) of 1 microM V(10) species. Decavanadate exposition to F- and G-actin (monomeric form) promotes vanadate reduction since a typical EPR oxidovanadium(IV) spectrum was observed. Upon observation that V(10) reduces to oxidovanadium(IV), it is proposed that this cation interacts with G-actin (K(d) of 7.48 +/- 1.11 microM), and with F-actin (K(d) = 43.05 +/- 5.34 microM) with 1:1 and 4:1 stoichiometries, respectively, as observed by EPR upon protein titration with oxidovanadium(IV). The interaction of oxidovanadium(IV) with the protein may occur close to the ATP binding site of actin, eventually with lysine-336 and 3 water molecules.
Collapse
|
46
|
Crans DC, Baruah B, Ross A, Levinger NE. Impact of confinement and interfaces on coordination chemistry: Using oxovanadate reactions and proton transfer reactions as probes in reverse micelles. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.01.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Aureliano M, Crans DC. Decavanadate (V10 O28 6-) and oxovanadates: oxometalates with many biological activities. J Inorg Biochem 2009; 103:536-546. [PMID: 19110314 DOI: 10.1016/j.jinorgbio.2008.11.010] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 02/07/2023]
Abstract
The decameric vanadate species V(10)O(28)(6-), also referred to as decavanadate, impact proteins, lipid structures and cellular function, and show some effects in vivo on oxidative stress processes and other biological properties. The mode of action of decavanadate in many biochemical systems depends, at least in part, on the charge and size of the species and in some cases competes with the simpler oxovanadate species. The orange decavanadate that contains 10 vanadium atoms is a stable species for several days at neutral pH, but at higher pH immediately converts to the structurally and functionally distinct lower oxovanadates such as the monomer, dimer or tetramer. Although the biological effects of vanadium are generally assumed to derive from monomeric vanadate or the vanadyl cation, we show in this review that not all effects can be attributed to these simple oxovanadate forms. This topic has not previously been reviewed although background information is available [D.C. Crans, Comments Inorg. Chem. 16 (1994) 35-76; M. Aureliano (Ed.), Vanadium Biochemistry, Research Signpost Publs., Kerala, India, 2007]. In addition to pumps, channels and metabotropic receptors, lipid structures represent potential biological targets for decavanadate and some examples have been reported. Decavanadate interact with enzymes, polyphosphate, nucleotide and inositol 3-phosphate binding sites in the substrate domain or in an allosteric site, in a complex manner. In mitochondria, where vanadium was shown to accumulate following decavanadate in vivo administration, nM concentration of decavanadate induces membrane depolarization in addition to inhibiting oxygen consumption, suggesting that mitochondria may be potential targets for decameric toxicity. In vivo effects of decavanadate in piscine models demonstrated that antioxidant stress markers, lipid peroxidation and vanadium subcellular distribution is dependent upon whether or not the solutions administered contain decavanadate. The present review summarizes the reports on biological effects of decavanadate and highlights the importance of considering decavanadate in evaluations of the biological effects of vanadium.
Collapse
Affiliation(s)
- Manuel Aureliano
- CCMar and Dept. Chemistry, Biochemistry and Pharmacy, FCT, University of Algarve, Faro, Portugal.
| | | |
Collapse
|
48
|
Roess DA, Smith SML, Winter P, Zhou J, Dou P, Baruah B, Trujillo AM, Levinger NE, Yang X, Barisas BG, Crans DC. Effects of vanadium-containing compounds on membrane lipids and on microdomains used in receptor-mediated signaling. Chem Biodivers 2008; 5:1558-1570. [PMID: 18729092 DOI: 10.1002/cbdv.200890144] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is increasing evidence for the involvement of plasma membrane microdomains in insulin receptor function. Moreover, disruption of these structures, which are typically enriched in sphingomyelin and cholesterol, results in insulin resistance. Treatment strategies for insulin resistance include the use of vanadium (V) compounds which have been shown in animal models to enhance insulin responsiveness. One possible mechanism for insulin-enhancing effects might involve direct effects of V compounds on membrane lipid organization. These changes in lipid organization promote the partitioning of insulin receptors and other receptors into membrane microdomains where receptors are optimally functional. To explore this possibility, we have used several strategies involving V complexes such as [VO(2)(dipic)](-) (pyridin-2,6-dicarboxylatodioxovanadium(V)), decavanadate (V(10)O(28)(6-), V(10)), BMOV (bis(maltolato)oxovanadium(IV)), and [VO(saltris)](2) (2-salicylideniminato-2-(hydroxymethyl)-1,3-dihydroxypropane-oxovanadium(V)). Our strategies include an evaluation of interactions between V-containing compounds and model lipid systems, an evaluation of the effects of V compounds on lipid fluidity in erythrocyte membranes, and studies of the effects of V-containing compounds on signaling events initiated by receptors known to use membrane microdomains as signaling platforms.
Collapse
Affiliation(s)
- Deborah A Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1872, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nikolakis VA, Tsalavoutis JT, Stylianou M, Evgeniou E, Jakusch T, Melman A, Sigalas MP, Kiss T, Keramidas AD, Kabanos TA. Vanadium(V) Compounds with the Bis-(hydroxylamino)-1,3,5-triazine Ligand, H2bihyat: Synthetic, Structural, and Physical Studies of [V2VO3(bihyat)2] and of the Enhanced Hydrolytic Stability Species cis-[VVO2(bihyat)]−. Inorg Chem 2008; 47:11698-710. [DOI: 10.1021/ic801411x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Vladimiros A. Nikolakis
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, Ioannina 45110, Greece, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, and Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - John T. Tsalavoutis
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, Ioannina 45110, Greece, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, and Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Marios Stylianou
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, Ioannina 45110, Greece, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, and Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Evgenios Evgeniou
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, Ioannina 45110, Greece, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, and Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Tamas Jakusch
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, Ioannina 45110, Greece, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, and Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Artem Melman
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, Ioannina 45110, Greece, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, and Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Michael P. Sigalas
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, Ioannina 45110, Greece, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, and Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Tamas Kiss
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, Ioannina 45110, Greece, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, and Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Anastasios D. Keramidas
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, Ioannina 45110, Greece, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, and Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Themistoklis A. Kabanos
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, Ioannina 45110, Greece, Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, and Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|