1
|
Quiroz M, Jana M, Liu K, Bhuvanesh N, Hall MB, Darensbourg MY. Site specific redox properties in ligand differentiated di-nickel complexes inspired by the acetyl CoA synthase active site. Dalton Trans 2024; 53:7414-7423. [PMID: 38591102 DOI: 10.1039/d4dt00306c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Bimetallic transition metal complexes with site-specific redox properties offer a versatile platform for understanding electron polarization, intramolecular electron transfer processes, and customizing electronic and magnetic properties that might impact reactivity and catalyst design. Inspired by the dissymmetric nickel sites in the Acetyl CoA Synthase (ACS) Active Site, three new bimetallic Ni(N2S2)-Ni(S2C2R2) complexes based on Ni(N2S2) metalloligand donor synthons, Nid, in mimicry of the nickel site distal to the redox-active iron sulfur cluster of ACS, and nickel dithiolene receiver units, designated as Nip, the nickel proximal to the 4Fe4S cluster, were combined to explore the influence of ligand environment on electronic structure and redox properties of each unit. The combination of synthons gave a matrix of three S-bridged dinickel complexes, characterized by X-ray crystallography, and appropriate spectroscopies. Computational modeling is connected to the electronic characteristics of the nickel donor and receiver units. This study demonstrated the intricacies of identifying sites of electrochemical redox processes, within multi-metallic systems containing non-innocent ligands.
Collapse
Affiliation(s)
- Manuel Quiroz
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | - Manish Jana
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | - Kaiyang Liu
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | - Michael B Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
2
|
Domergue J, Guinard P, Douillard M, Pécaut J, Hostachy S, Proux O, Lebrun C, Le Goff A, Maldivi P, Duboc C, Delangle P. A Series of Ni Complexes Based on a Versatile ATCUN-Like Tripeptide Scaffold to Decipher Key Parameters for Superoxide Dismutase Activity. Inorg Chem 2023. [PMID: 37247425 DOI: 10.1021/acs.inorgchem.3c00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The cellular level of reactive oxygen species (ROS) has to be controlled to avoid some pathologies, especially those linked to oxidative stress. One strategy for designing antioxidants consists of modeling natural enzymes involved in ROS degradation. Among them, nickel superoxide dismutase (NiSOD) catalyzes the dismutation of the superoxide radical anion, O2•-, into O2 and H2O2. We report here Ni complexes with tripeptides derived from the amino-terminal CuII- and NiII-binding (ATCUN) motif that mimics some structural features found in the active site of the NiSOD. A series of six mononuclear NiII complexes were investigated in water at physiological pH with different first coordination spheres, from compounds with a N3S to N2S2 set, and also complexes that are in equilibrium between the N-coordination (N3S) and S-coordination (N2S2). They were fully characterized by a combination of spectroscopic techniques, including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations and their redox properties studied by cyclic voltammetry. They all display SOD-like activity, with a kcat ranging between 0.5 and 2.0 × 106 M-1 s-1. The complexes in which the two coordination modes are in equilibrium are the most efficient, suggesting a beneficial effect of a nearby proton relay.
Collapse
Affiliation(s)
- Jérémy Domergue
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Pawel Guinard
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Magali Douillard
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Jacques Pécaut
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Sarah Hostachy
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Olivier Proux
- CNRS, OSUG, Université Grenoble Alpes, 38000 Grenoble, France
| | - Colette Lebrun
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Pascale Maldivi
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Pascale Delangle
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| |
Collapse
|
3
|
Functional Conversion of Acetyl-Coenzyme a Synthase to a Nickel Superoxide Dismutase via Rational Design of Coordination Microenvironment for the Ni d-Site. Int J Mol Sci 2022; 23:ijms23052652. [PMID: 35269794 PMCID: PMC8910529 DOI: 10.3390/ijms23052652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The Nid site coordination microenvironment of a truncated acetyl-coenzyme A synthase has been designed systematically for functional conversion to a Ni-SOD-like enzyme. To this end, the first strategy is to introduce an axial histidine ligand, using mutations F598H, S594H and S594H-GP individually. The resulting three mutants obtained Ni-SOD-like activity successfully, although the catalytic activity was about 10-fold lower than in native Ni-SOD. The second strategy is to mimic the H-bond network in the second sphere coordination microenvironment of the native Ni-SOD. Two mutations based on F598H (EFG-F598H and YGP-F598H) were designed. The successful EFG-F598H exhibited ~3-fold Ni-SOD-like activity of F598H. These designed Ni-SOD-like metalloproteins were characterized by UV/Vis, EPR and Cyclic voltammetry while F598H was also characterized by X-ray protein crystallography. The pH titrations were performed to reveal the source of the two protons required for forming H2O2 in the SOD catalytic reaction. Based on all of the results, a proposed catalytic mechanism for the Ni-SOD-like metalloproteins is presented.
Collapse
|
4
|
Theoretical Studies of Acetyl-CoA Synthase Catalytic Mechanism. Catalysts 2022. [DOI: 10.3390/catal12020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
DFT calculations were performed for the A-cluster from the enzyme Acetyl-CoA synthase (ACS). The acid constants (pKa), reduction potentials, and pH-dependent reduction potential for the A-cluster with different oxidation states and ligands were calculated. Good agreement of the reduction potentials, dependent on pH in the experiment, was obtained. On the basis of the calculations, a mechanism for the methylation reaction involving two–electron reduction and protonation on the proximal nickel atom of the reduced A-cluster is proposed.
Collapse
|
5
|
Nickel(II)‐Mediated Reversible Thiolate/Disulfide Conversion as a Mimic for a Key Step of the Catalytic Cycle of Methyl‐Coenzyme M Reductase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Bhandari A, Mishra S, Maji RC, Kumar A, Olmstead MM, Patra AK. Nickel(II)‐Mediated Reversible Thiolate/Disulfide Conversion as a Mimic for a Key Step of the Catalytic Cycle of Methyl‐Coenzyme M Reductase. Angew Chem Int Ed Engl 2020; 59:9177-9185. [DOI: 10.1002/anie.202001363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Anirban Bhandari
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| | - Saikat Mishra
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| | - Ram Chandra Maji
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| | - Akhilesh Kumar
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | | | - Apurba K. Patra
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| |
Collapse
|
7
|
Alfano M, Cavazza C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci 2020; 29:1071-1089. [PMID: 32022353 DOI: 10.1002/pro.3836] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Nickel enzymes, present in archaea, bacteria, plants, and primitive eukaryotes are divided into redox and nonredox enzymes and play key functions in diverse metabolic processes, such as energy metabolism and virulence. They catalyze various reactions by using active sites of diverse complexities, such as mononuclear nickel in Ni-superoxide dismutase, glyoxylase I and acireductone dioxygenase, dinuclear nickel in urease, heteronuclear metalloclusters in [NiFe]-carbon monoxide dehydrogenase, acetyl-CoA decarbonylase/synthase and [NiFe]-hydrogenase, and even more complex cofactors in methyl-CoM reductase and lactate racemase. The presence of metalloenzymes in a cell necessitates a tight regulation of metal homeostasis, in order to maintain the appropriate intracellular concentration of nickel while avoiding its toxicity. As well, the biosynthesis and insertion of nickel active sites often require specific and elaborated maturation pathways, allowing the correct metal to be delivered and incorporated into the target enzyme. In this review, the phylogenetic distribution of nickel enzymes will be briefly described. Their tridimensional structures as well as the complexity of their active sites will be discussed. In view of the latest findings on these enzymes, a special focus will be put on the biosynthesis of their active sites and nickel activation of apo-enzymes.
Collapse
Affiliation(s)
- Marila Alfano
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, Grenoble, France
| | - Christine Cavazza
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, Grenoble, France
| |
Collapse
|
8
|
Alfano M, Veronesi G, Musiani F, Zambelli B, Signor L, Proux O, Rovezzi M, Ciurli S, Cavazza C. A Solvent‐Exposed Cysteine Forms a Peculiar Ni
II
‐Binding Site in the Metallochaperone CooT from
Rhodospirillum rubrum. Chemistry 2019; 25:15351-15360. [DOI: 10.1002/chem.201903492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Marila Alfano
- IRIG, CBMUniversity of Grenoble Alpes, CEA, CNRS 38000 Grenoble France
| | - Giulia Veronesi
- IRIG, CBMUniversity of Grenoble Alpes, CEA, CNRS 38000 Grenoble France
| | - Francesco Musiani
- Laboratory of Bioinorganic ChemistryDepartment of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Barbara Zambelli
- Laboratory of Bioinorganic ChemistryDepartment of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Luca Signor
- IRIG, IBSUniversity of Grenoble Alpes, CEA, CNRS 38000 Grenoble France
| | - Olivier Proux
- OSUG, FAMEUniversity of Grenoble Alpes, CNRS, IRDIrstea, Météo France 38000 Grenoble France
| | - Mauro Rovezzi
- OSUG, FAMEUniversity of Grenoble Alpes, CNRS, IRDIrstea, Météo France 38000 Grenoble France
| | - Stefano Ciurli
- Laboratory of Bioinorganic ChemistryDepartment of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Christine Cavazza
- IRIG, CBMUniversity of Grenoble Alpes, CEA, CNRS 38000 Grenoble France
| |
Collapse
|
9
|
Domergue J, Pécaut J, Proux O, Lebrun C, Gateau C, Le Goff A, Maldivi P, Duboc C, Delangle P. Mononuclear Ni(II) Complexes with a S3O Coordination Sphere Based on a Tripodal Cysteine-Rich Ligand: pH Tuning of the Superoxide Dismutase Activity. Inorg Chem 2019; 58:12775-12785. [PMID: 31545024 DOI: 10.1021/acs.inorgchem.9b01686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The superoxide dismutase (SOD) activity of mononuclear NiII complexes, whose structures are inspired by the NiSOD, has been investigated. They have been designed with a sulfur-rich pseudopeptide ligand, derived from nitrilotriacetic acid (NTA), where the three acid functions are grafted with cysteines (L3S). Two mononuclear complexes, which exist in pH-dependent proportions, have been fully characterized by a combination of spectroscopic techniques including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations. They display similar square-planar S3O coordination, with the three thiolates of the three cysteine moieties from L3S coordinated to the NiII ion, together with either a water molecule at physiological pH, as [NiL3S(OH2)]-, or a hydroxo ion in more basic conditions, as [NiL3S(OH)]2-. The 1H NMR study has revealed that contrary to the hydroxo ligand, the bound water molecule is labile. The cyclic voltammogram of both complexes displays an irreversible one-electron oxidation process assigned to the NiII/NiIII redox system with Epa = 0.48 and 0.31 V versus SCE for NiL3S(OH2) and NiL3S(OH), respectively. The SOD activity of both complexes has been tested. On the basis of the xanthine oxidase assay, an IC50 of about 1 μM has been measured at pH 7.4, where NiL3S(OH2) is mainly present (93% of the NiII species), while the IC50 is larger than 100 μM at pH 9.6, where NiL3S(OH) is the major species (92% of the NiII species). Interestingly, only NiL3S(OH2) displays SOD activity, suggesting that the presence of a labile ligand is required. The SOD activity has been also evaluated under catalytic conditions at pH 7.75, where the ratio between NiL3S(OH2)/ NiL3S(OH) is about (86:14), and a rate constant, kcat = 1.8 × 105 M-1 s-1, has been measured. NiL3S(OH2) is thus the first low-molecular weight, synthetic, bioinspired Ni complex that displays catalytic SOD activity in water at physiological pH, although it does not contain any N-donor ligand in its first coordination sphere, as in the NiSOD. Overall, the data show that a key structural feature is the presence of a labile ligand in the coordination sphere of the NiII ion.
Collapse
Affiliation(s)
- Jérémy Domergue
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Olivier Proux
- Univ. Grenoble Alpes, CNRS, OSUG , 38000 Grenoble , France
| | - Colette Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Christelle Gateau
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| |
Collapse
|
10
|
Selvan D, Prasad P, Farquhar ER, Shi Y, Crane S, Zhang Y, Chakraborty S. Redesign of a Copper Storage Protein into an Artificial Hydrogenase. ACS Catal 2019; 9:5847-5859. [PMID: 31341700 DOI: 10.1021/acscatal.9b00360] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the construction of an artificial hydrogenase (ArH) by reengineering a Cu storage protein (Cspl) into a Ni-binding protein (NBP) employing rational metalloprotein design. The hypothesis driven design approach involved deleting existing Cu sites of Csp1 and identification of a target tetrathiolate Ni binding site within the protein scaffold followed by repacking the hydrophobic core. Guided by modeling, the NBP was expressed and purified in high purity. NBP is a well-folded and stable construct displaying native-like unfolding behavior. Spectroscopic and computational studies indicated that the NBP bound nickel in a distorted square planar geometry that validated the design. Ni(II)-NBP is active for photo-induced H2 evolution following a reductive quenching mechanism. Ni(II)-NBP catalyzed H+ reduction to H2 gas electrochemically as well. Analysis of the catalytic voltammograms established a proton-coupled electron transfer (PCET) mechanism. Electrolysis studies confirmed H2 evolution with quantitative Faradaic yields. Our studies demonstrate an important scope of rational metalloprotein design that allows imparting functions into protein scaffolds that have natively not evolved to possess the same function of the target metalloprotein constructs.
Collapse
Affiliation(s)
- Dhanashree Selvan
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Pallavi Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Erik R. Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yelu Shi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| | - Skyler Crane
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
11
|
Hong D, Zhu X, Wang S, Wei Y, Zhou S, Huang Z, Zhu S, Wang R, Yue W, Mu X. Synthesis, characterization, and reactivity of dinuclear organo-rare-earth-metal alkyl complexes supported by 2-amidate-functionalized indolyl ligands: substituent effects on coordination and reactivity. Dalton Trans 2019; 48:5230-5242. [PMID: 30899927 DOI: 10.1039/c9dt00507b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two series of new dinuclear organo-rare-earth-metal alkyl complexes supported by 2-amidate-functionalized indolyl ligands with different haptic modes were synthesized and characterized. The treatment of [RE(CH2SiMe3)3(THF)2] with 1 equiv. of 2-(2,6-iPr2C6H3NHC[double bond, length as m-dash]O)C8H5NH (H2L1) and 2-(2-tBuC6H4NHC[double bond, length as m-dash]O)C8H5NH (H2L2) in toluene yielded the dinuclear organo-rare-earth-metal alkyl complexes {[η1:(μ2-η1:η1)-L1]RE(CH2SiMe3)(THF)2}2 [RE = Gd (1a), Dy (1b), Y (1c), Er (1d), and Yb (1e)] and {[η1:(μ2-η1:η1):η1-L2]RE(CH2SiMe3)(THF)2}2 [RE = Gd (2a), Dy (2b), Y (2c), Er (2d), and Yb (2e)] in good yields. When [RE(CH2SiMe3)3(THF)2] were treated with 2 equiv. of H2L1 or H2L2 in THF, the dinuclear organo-rare-earth-metal complexes {(η1:η1-HL)[η1:(μ2-η1:η1):η1-L]RE(THF)}2 (1ca: RE = Y, L = L1; 2ea: RE = Yb, L = L2) were obtained. The complexes could react with small organic molecules such as N,N'-diisopropylcarbodiimide (DIC), phenyl isocyanate, N-methylallylamine, phenylacetylene, pyridine, N-phenylimidazole, or 4-dimethylaminopyridine (DMAP) to yield a series of new complexes with different reactivity patterns along with the reported rare-earth-metal alkyl complexes. In the presence of cocatalysts, these dinuclear organo-rare-earth-metal alkyl complexes could initiate isoprene polymerization with high activity (100% conversion of 2000 equiv. of isoprene in 12 h), yielding polymers with high regioselectivity (1,4 polymers up to 96.1%).
Collapse
Affiliation(s)
- Dongjing Hong
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Truong PT, Broering EP, Dzul SP, Chakraborty I, Stemmler TL, Harrop TC. Simultaneous nitrosylation and N-nitrosation of a Ni-thiolate model complex of Ni-containing SOD. Chem Sci 2018; 9:8567-8574. [PMID: 30568781 PMCID: PMC6253683 DOI: 10.1039/c8sc03321h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is used as a substrate analogue/spectroscopic probe of metal sites that bind and activate oxygen and its derivatives. To assess the interaction of superoxide with the Ni center in Ni-containing superoxide dismutase (NiSOD), we studied the reaction of NO+ and NO with the model complex, Et4N[Ni(nmp)(SPh-o-NH2-p-CF3)] (1; nmp2- = dianion of N-(2-mercaptoethyl)picolinamide; -SPh-o-NH2-p-CF3 = 2-amino-4-(trifluoromethyl)benzenethiolate) and its oxidized analogue 1ox , respectively. The ultimate products of these reactions are the disulfide of -SPh-o-NH2-p-CF3 and the S,S-bridged tetrameric complex [Ni4(nmp)4], a result of S-based redox activity. However, introduction of NO to 1 affords the green dimeric {NiNO}10 complex (Et4N)2[{Ni(κ2-SPh-o-NNO-p-CF3)(NO)}2] (2) via NO-induced loss of nmp2- as the disulfide and N-nitrosation of the aromatic thiolate. Complex 2 was characterized by X-ray crystallography and several spectroscopies. These measurements are in-line with other tetrahedral complexes in the {NiNO}10 classification. In contrast to the established stability of this metal-nitrosyl class, the Ni-NO bond of 2 is labile and release of NO from this unit was quantified by trapping the NO with a CoII-porphyrin (70-80% yield). In the process, the Ni ends up coordinated by two o-nitrosaminobenzenethiolato ligands to result in the structurally characterized trans-(Et4N)2[Ni(SPh-o-NNO-p-CF3)2] (3), likely by a disproportionation mechanism. The isolation and characterization of 2 and 3 suggest that: (i) the strongly donating thiolates dominate the electronic structure of Ni-nitrosyls that result in less covalent Ni-NO bonds, and (ii) superoxide undergoes disproportionation via an outer-sphere mechanism in NiSOD as complexes in the {NiNO}9/8 state have yet to be isolated.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Ellen P Broering
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , USA
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Todd C Harrop
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| |
Collapse
|
13
|
Bhandari A, Chandra Maji R, Mishra S, Kumar A, Barman SK, Das PP, Ghiassi KB, Olmstead MM, Patra AK. Model Complexes for the Nip Site of Acetyl Coenzyme A Synthase/Carbon Monoxide (CO) Dehydrogenase: Structure, Electrochemistry, and CO Reactivity. Inorg Chem 2018; 57:13713-13727. [DOI: 10.1021/acs.inorgchem.8b02276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anirban Bhandari
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India
| | - Ram Chandra Maji
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India
| | - Saikat Mishra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India
| | - Akhilesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Suman Kumar Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Partha Pratim Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kamran B. Ghiassi
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Marilyn M. Olmstead
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Apurba K. Patra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India
| |
Collapse
|
14
|
Huang HT, Dillon S, Ryan KC, Campecino JO, Watkins OE, Cabelli DE, Brunold TC, Maroney MJ. The Role of Mixed Amine/Amide Ligation in Nickel Superoxide Dismutase. Inorg Chem 2018; 57:12521-12535. [PMID: 30281299 DOI: 10.1021/acs.inorgchem.8b01499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superoxide dismutases (SODs) utilize a ping-pong mechanism in which a redox-active metal cycles between oxidized and reduced forms that differ by one electron to catalyze the disproportionation of superoxide to dioxygen and hydrogen peroxide. Nickel-dependent SOD (NiSOD) is a unique biological solution for controlling superoxide levels. This enzyme relies on the use of cysteinate ligands to bring the Ni(III/II) redox couple into the range required for catalysis (∼300 mV vs. NHE). The use of cysteine thiolates, which are not found in any other SOD, is a curious choice because of their well-known oxidation by peroxide and dioxygen. The NiSOD active site cysteinate ligands are resistant to oxidation, and prior studies of synthetic and computational models point to the backbone N-donors in the active site (the N-terminal amine and the amide N atom of Cys2) as being involved in stabilizing the cysteines to oxidation. To test the role of the backbone N-donors, we have constructed a variant of NiSOD wherein an alanine residue was added to the N-terminus (Ala0-NiSOD), effectively altering the amine ligand to an amide. X-ray absorption, electronic absorption, and magnetic circular dichroism (MCD) spectroscopic analyses of as-isolated Ala0-NiSOD coupled with density functional theory (DFT) geometry optimized models that were evaluated on the basis of the spectroscopic data within the framework of DFT and time-dependent DFT computations are consistent with a diamagnetic Ni(II) site with two cysteinate, one His1 amide, and one Cys2 amidate ligands. The variant protein is catalytically inactive, has an altered electronic absorption spectrum associated with the nickel site, and is sensitive to oxidation. Mass spectrometric analysis of the protein exposed to air shows the presence of a mixture of oxidation products, the principal ones being a disulfide, a bis-sulfenate, and a bis-sulfinate derived from the active site cysteine ligands. Details of the electronic structure of the Ni(III) site available from the DFT calculations point to subtle changes in the unpaired spin density on the S-donors as being responsible for the altered sensitivity of Ala0-NiSOD to O2.
Collapse
Affiliation(s)
- Hsin-Ting Huang
- Department of Chemistry , University of Massachusetts at Amherst , 104 Lederle Graduate Research Tower A, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Stephanie Dillon
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Kelly C Ryan
- Department of Chemistry , University of Massachusetts at Amherst , 104 Lederle Graduate Research Tower A, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Julius O Campecino
- Department of Chemistry , University of Massachusetts at Amherst , 104 Lederle Graduate Research Tower A, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Olivia E Watkins
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Diane E Cabelli
- Department of Chemistry, Building 555A , Brookhaven National Laboratory , P.O. Box 5000, Upton , New York 11973 , United States
| | - Thomas C Brunold
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Michael J Maroney
- Department of Chemistry , University of Massachusetts at Amherst , 104 Lederle Graduate Research Tower A, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
15
|
Freige MJ, Senaratne NK, Eichhorn DM. (2-{[2-(Dimethylamino)ethyl]iminomethyl}benzenethiolato-κ 3
N, N′, S)(4-methoxybenzenethiolato-κ S)nickel(II). IUCRDATA 2018. [DOI: 10.1107/s2414314618011677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the title compound, [Ni(C11H15N2S)(C7H7OS)] or [Ni(NNImS)(4-OCH3PhS)] (NNImS = 2-{[2-(dimethylamino)ethyl]iminomethyl}benzenethiolato), the NiII cation is coordinated by a tridentate NNImS ligand and a monodentate thiolate ligand giving an N2S2 coordination set defining an almost square-planar environment. The Ni—Namine bond in the coordination plane is approximately 0.1 Å longer than the Ni—Nimine bond.
Collapse
|
16
|
LaPierre EA, Piers WE, Gendy C. Divergent Reactivity of CO2, CO, and Related Substrates at the Nickel Carbon Double Bond of (PCcarbeneP)Ni(II) Pincer Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00440] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Etienne A. LaPierre
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Warren E. Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Chris Gendy
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
17
|
Ni complexes of N 2 S ligands with amine/imine and amine/amide donors with relevance to the active site of Ni superoxide dismutase. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Inoue S, Mitsuhashi M, Ono T, Yan YN, Kataoka Y, Handa M, Kawamoto T. Photo- and Electrocatalytic Hydrogen Production Using Valence Isomers of N2S2-Type Nickel Complexes. Inorg Chem 2017; 56:12129-12138. [DOI: 10.1021/acs.inorgchem.7b01244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Satoshi Inoue
- Department of Chemistry,
Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Manabu Mitsuhashi
- Department of Chemistry,
Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Takeshi Ono
- Department of Chemistry,
Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Yin-Nan Yan
- Department of Chemistry,
Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Yusuke Kataoka
- Department of Material Science, Interdisciplinary Graduate School
of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Makoto Handa
- Department of Material Science, Interdisciplinary Graduate School
of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Tatsuya Kawamoto
- Department of Chemistry,
Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| |
Collapse
|
19
|
Zhang A, Raje S, Liu J, Li X, Angamuthu R, Tung CH, Wang W. Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ailing Zhang
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Sakthi Raje
- Laboratory
of Inorganic Synthesis and Bioinspired Catalysis (LISBIC), Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jianguo Liu
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Xiaoyan Li
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Raja Angamuthu
- Laboratory
of Inorganic Synthesis and Bioinspired Catalysis (LISBIC), Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chen-Ho Tung
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Wenguang Wang
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan 250100, China
| |
Collapse
|
20
|
Manesis AC, O'Connor MJ, Schneider CR, Shafaat HS. Multielectron Chemistry within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase. J Am Chem Soc 2017; 139:10328-10338. [PMID: 28675928 DOI: 10.1021/jacs.7b03892] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The acetyl coenzyme A synthase (ACS) enzyme plays a central role in the metabolism of anaerobic bacteria and archaea, catalyzing the reversible synthesis of acetyl-CoA from CO and a methyl group through a series of nickel-based organometallic intermediates. Owing to the extreme complexity of the native enzyme systems, the mechanism by which this catalysis occurs remains poorly understood. In this work, we have developed a protein-based model for the NiP center of acetyl coenzyme A synthase using a nickel-substituted azurin protein (NiAz). NiAz is the first model nickel protein system capable of accessing three (NiI/NiII/NiIII) distinct oxidation states within a physiological potential range in aqueous solution, a critical feature for achieving organometallic ACS activity, and binds CO and -CH3 groups with biologically relevant affinity. Characterization of the NiI-CO species through spectroscopic and computational techniques reveals fundamentally similar features between the model NiAz system and the native ACS enzyme, highlighting the potential for related reactivity in this model protein. This work provides insight into the enzymatic process, with implications toward engineering biological catalysts for organometallic processes.
Collapse
Affiliation(s)
- Anastasia C Manesis
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| | - Matthew J O'Connor
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| | - Camille R Schneider
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Truong PT, Gale EM, Dzul SP, Stemmler TL, Harrop TC. Steric Enforcement about One Thiolate Donor Leads to New Oxidation Chemistry in a NiSOD Model Complex. Inorg Chem 2017; 56:7761-7780. [PMID: 28459242 DOI: 10.1021/acs.inorgchem.7b00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ni-containing superoxide dismutase (NiSOD) represents an unusual member of the SOD family due to the presence of oxygen-sensitive Ni-SCys bonds at its active site. Reported in this account is the synthesis and properties of the NiII complex of the N3S2 ligand [N3S2Me2]3- ([N3S2Me2]3- = deprotonated form of 2-((2-mercapto-2-methylpropyl)(pyridin-2-ylmethyl)amino)-N-(2-mercaptoethyl)acetamide), namely Na[Ni(N3S2Me2)] (2), as a NiSOD model that features sterically robust gem-(CH3)2 groups on the thiolate α-C positioned trans to the carboxamide. The crystal structure of 2, coupled with spectroscopic measurements from 1H NMR, X-ray absorption, IR, UV-vis, and mass spectrometry (MS), reveal a planar NiII (S = 0) ion coordinated by only the N2S2 basal donors of the N3S2 ligand. While the structure and spectroscopic properties of 2 resemble those of NiSODred and other models, the asymmetric S ligands open up new reaction paths upon chemical oxidation. One unusual oxidation product is the planar NiII-N3S complex [Ni(Lox)] (5; Lox = 2-(5,5-dimethyl-2-(pyridin-2-yl)thiazolidin-3-yl)-N-(2-mercaptoethyl)acetamide), where two-electron oxidation takes place at the substituted thiolate and py-CH2 carbon to generate a thiazolidine heterocycle. Electrochemical measurements of 2 reveal irreversible events wholly consistent with thiolate redox, which were identified by comparison to the ZnII complex Na[Zn(N3S2Me2)] (3). Although no reaction is observed between 2 and azide, reaction of 2 with superoxide produces multiple products on the basis of UV-vis and MS data, one of which is 5. Density functional theory (DFT) computations suggest that the HOMO in 2 is π* with primary contributions from Ni-dπ/S-pπ orbitals. These contributions can be modulated and biased toward Ni when electron-withdrawing groups are placed on the thiolate α-C. Analysis of the oxidized five-coordinate species 2ox* by DFT reveal a singly occupied spin-up (α) MO that is largely thiolate based, which supports the proposed NiIII-thiolate/NiII-thiyl radical intermediates that ultimately yield 5 and other products.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| | - Eric M Gale
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Todd C Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Campeciño JO, Maroney MJ. Reinventing the Wheel: The NiSOD Story. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The most recently discovered SOD requires nickel in its active site – NiSOD. Among the available metals, nickel seems an unlikely redox center. This chapter discusses the protein adaptations required in order to use nickel for SOD catalysis. Cysteine ligands are employed for the first time in an SOD, to suppress the potential of the Ni(ii/iii) couple. However, this adaptation alone is not sufficient to produce an SOD, since thiolate ligands are sensitive to oxidation by H2O2 and O2. Additional adaptations include the use of two unusual backbone N-donor ligands, an amidate and the N-terminal amine. Yet merely producing a stable Ni redox center is not sufficient for SOD catalysis. A source of protons is needed to produce H2O2 and the pH-independent catalysis that is characteristic of SODs. Thus, the cysteine thiolates were also employed to provide a site for protonation. In restricting active site access, NiSOD appears to have utilized the same strategy employed by MnSOD and FeSOD – a “gateway” formed by Tyr residues. Thus, NiSOD represents evolution that converged on the same criteria for catalysis as other SODs, where the adaptations to the metal site are uniquely suited to using nickel as a redox center.
Collapse
Affiliation(s)
| | - Michael J. Maroney
- Department of Chemistry, University of Massachusetts Amherst MA 01003 USA
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
23
|
Steiner RA, Dzul SP, Stemmler TL, Harrop TC. Synthesis and Speciation-Dependent Properties of a Multimetallic Model Complex of NiSOD That Exhibits Unique Hydrogen-Bonding. Inorg Chem 2017; 56:2849-2862. [PMID: 28212040 DOI: 10.1021/acs.inorgchem.6b02997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The complex Na3[{NiII(nmp)}3S3BTAalk)] (1) (nmp2- = deprotonated form of N-(2-mercaptoethyl)picolinamide; H3S3BTAalk = N1,N3,N5-tris(2-mercaptoethyl)benzene-1,3,5-tricarboxamide, where H = dissociable protons), supported by the thiolate-benzenetricarboxamide scaffold (S3BTAalk), has been synthesized as a trimetallic model of nickel-containing superoxide dismutase (NiSOD). X-ray absorption spectroscopy (XAS) and 1H NMR measurements on 1 indicate that the NiII centers are square-planar with N2S2 coordination, and Ni-N and Ni-S distances of 1.95 and 2.16 Å, respectively. Additional evidence from IR indicates the presence of H-bonds in 1 from the approximately -200 cm-1 shift in νNH from free ligand. The presence of H-bonds allows for speciation that is temperature-, concentration-, and solvent-dependent. In unbuffered water and at low temperature, a dimeric complex (1A; λ = 410 nm) that aggregates through intermolecular NH···O═C bonds of BTA units is observed. Dissolution of 1 in pH 7.4 buffer or in unbuffered water at temperatures above 50 °C results in monomeric complex (1M; λ = 367 nm) linked through intramolecular NH···S bonds. DFT computations indicate a low energy barrier between 1A and 1M with nearly identical frontier MOs and Ni-ligand metrics. Notably, 1A and 1M exhibit remarkable stability in protic solvents such as MeOH and H2O, in stark contrast to monometallic [NiII(nmp)(SR)]- complexes. The reactivity of 1 with excess O2, H2O2, and O2•- is species-dependent. IR and UV-vis reveal that 1A in MeOH reacts with excess O2 to yield an S-bound sulfinate, but does not react with O2•-. In contrast, 1M is stable to O2 in pH 7.4 buffer, but reacts with O2•- to yield a putative [NiII(nmp)(O2)]- complex from release of the BTA-thiolate based on EPR.
Collapse
Affiliation(s)
- Ramsey A Steiner
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar St, Athens, Georgia 30602, United States
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, and Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, and Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Todd C Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar St, Athens, Georgia 30602, United States
| |
Collapse
|
24
|
Can M, Giles LJ, Ragsdale SW, Sarangi R. X-ray Absorption Spectroscopy Reveals an Organometallic Ni-C Bond in the CO-Treated Form of Acetyl-CoA Synthase. Biochemistry 2017; 56:1248-1260. [PMID: 28186407 DOI: 10.1021/acs.biochem.6b00983] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetyl-CoA synthase (ACS) is a key enzyme in the Wood-Ljungdahl pathway of anaerobic CO2 fixation, which has long been proposed to operate by a novel mechanism involving a series of protein-bound organometallic (Ni-CO, methyl-Ni, and acetyl-Ni) intermediates. Here we report the first direct structural evidence of the proposed metal-carbon bond. We describe the preparation of the highly active metal-replete enzyme and near-quantitative generation of the kinetically competent carbonylated intermediate. This advance has allowed a combination of Ni and Fe K-edge X-ray absorption spectroscopy and extended X-ray absorption fine structure experiments along with density functional theory calculations. The data reveal that CO binds to the proximal Ni of the six-metal metallocenter at the active site and undergoes dramatic structural and electronic perturbation in forming this organometallic Ni-CO intermediate. This direct identification of a Ni-carbon bond in the catalytically competent CO-bound form of the A cluster of ACS provides definitive experimental structural evidence supporting the proposed organometallic mechanism of anaerobic acetyl-CoA synthesis.
Collapse
Affiliation(s)
- Mehmet Can
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Logan J Giles
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States.,Department of Chemistry, Stanford University , Stanford, California 94306, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| |
Collapse
|
25
|
Beattie DD, Bowes EG, Drover MW, Love JA, Schafer LL. Oxidation State Dependent Coordination Modes: Accessing an Amidate-Supported Nickel(I) δ-bis(C−H) Agostic Complex. Angew Chem Int Ed Engl 2016; 55:13290-13295. [DOI: 10.1002/anie.201607243] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/09/2022]
Affiliation(s)
- D. Dawson Beattie
- Department of Chemistry; The University of British Columbia; Vancouver BC V6T 1Z1 Canada
| | - Eric G. Bowes
- Department of Chemistry; The University of British Columbia; Vancouver BC V6T 1Z1 Canada
| | - Marcus W. Drover
- Department of Chemistry; The University of British Columbia; Vancouver BC V6T 1Z1 Canada
| | - Jennifer A. Love
- Department of Chemistry; The University of British Columbia; Vancouver BC V6T 1Z1 Canada
| | - Laurel L. Schafer
- Department of Chemistry; The University of British Columbia; Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
26
|
Beattie DD, Bowes EG, Drover MW, Love JA, Schafer LL. Oxidation State Dependent Coordination Modes: Accessing an Amidate-Supported Nickel(I) δ-bis(C−H) Agostic Complex. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D. Dawson Beattie
- Department of Chemistry; The University of British Columbia; Vancouver BC V6T 1Z1 Canada
| | - Eric G. Bowes
- Department of Chemistry; The University of British Columbia; Vancouver BC V6T 1Z1 Canada
| | - Marcus W. Drover
- Department of Chemistry; The University of British Columbia; Vancouver BC V6T 1Z1 Canada
| | - Jennifer A. Love
- Department of Chemistry; The University of British Columbia; Vancouver BC V6T 1Z1 Canada
| | - Laurel L. Schafer
- Department of Chemistry; The University of British Columbia; Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
27
|
Warner DS, Limberg C, Oldenburg FJ, Braun B. Reaction of a polydentate cysteine-based ligand and its nickel(ii) complex with electrophilic and nucleophilic methyl-transfer reagents - from S-methylation to acetyl coenzyme A synthase reactivity. Dalton Trans 2015; 44:18378-85. [PMID: 26390049 DOI: 10.1039/c5dt02828k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The L-cysteine derived N2S2 ligand precursor H2L and its nickel(ii) complex L2Ni2 were investigated with respect to their behaviour in contact with electrophilic and nucleophilic methylation reagents (H2L = (N,N'-dimethyl-(2R,5R)-bis-(sulfanylmethyl)-piperazine). Treatment of deprotonated L(2-) with MeI led to the selective methylation of the thiolate groups thus generating a novel potential ligand, Me2L, which is neutral and contains two thioether donors. The coordinating properties of Me2L were demonstrated by the synthesis of a first nickel(ii) complex: reaction with NiBr2 led to a mononuclear complex 2 where all donor atoms coordinate to the nickel ion, which completes its octahedral coordination sphere by the two bromide ligands. If, however, the complex [LNi]2 (1) is treated with MeI only one thiolate function per ligand moiety is methylated, while the other one remains a thiolate. This leads to [MeLNi](+) complex metal fragments, which trimerize including a μ3-bridging iodide ion to give the compound 3 that was tested with regards to ACS reactivity. While it behaved inert towards CO, attempts to replace the bridging iodide ligand by methyl units in reactions with nucleophilic methylation reagents led to a product, which could not be identified but reacted with CO. Work-up showed that this protocol had converted the thiolate function of MeL(-) into a thioester function, which corresponds to an ACS-like reactivity.
Collapse
Affiliation(s)
- D S Warner
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, 12489 Berlin, Germany.
| | | | | | | |
Collapse
|
28
|
Yadav S, Kumar S, Gupta R. Manganese Complexes of Pyrrole‐ and Indolecarboxamide Ligands: Synthesis, Structure, Electrochemistry, and Applications in Oxidative and Lewis‐Acid‐Assisted Catalysis. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sunil Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India, http://people.du.ac.in/~rgupta/
| | - Sushil Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India, http://people.du.ac.in/~rgupta/
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India, http://people.du.ac.in/~rgupta/
| |
Collapse
|
29
|
Campeciño JO, Dudycz LW, Tumelty D, Berg V, Cabelli DE, Maroney MJ. A Semisynthetic Strategy Leads to Alteration of the Backbone Amidate Ligand in the NiSOD Active Site. J Am Chem Soc 2015; 137:9044-52. [PMID: 26135142 DOI: 10.1021/jacs.5b03629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Computational investigations have implicated the amidate ligand in nickel superoxide dismutase (NiSOD) in stabilizing Ni-centered redox catalysis and in preventing cysteine thiolate ligand oxidation. To test these predictions, we have used an experimental approach utilizing a semisynthetic scheme that employs native chemical ligation of a pentapeptide (HCDLP) to recombinant S. coelicolor NiSOD lacking these N-terminal residues, NΔ5-NiSOD. Wild-type enzyme produced in this manner exhibits the characteristic spectral properties of recombinant WT-NiSOD and is as catalytically active. The semisynthetic scheme was also employed to construct a variant where the amidate ligand was converted to a secondary amine, H1*-NiSOD, a novel strategy that retains a backbone N-donor atom. The H1*-NiSOD variant was found to have only ∼1% of the catalytic activity of the recombinant wild-type enzyme, and had altered spectroscopic properties. X-ray absorption spectroscopy reveals a four-coordinate planar site with N2S2-donor ligands, consistent with electronic absorption spectroscopic results indicating that the Ni center in H1*-NiSOD is mostly reduced in the as-isolated sample, as opposed to 50:50 Ni(II)/Ni(III) mixture that is typical for the recombinant wild-type enzyme. The EPR spectrum of as-isolated H1*-NiSOD accounts for ∼11% of the Ni in the sample and is similar to WT-NiSOD, but more axial, with gz < gx,y. (14)N-hyperfine is observed on gz, confirming the addition of the apical histidine ligand in the Ni(III) complex. The altered electronic properties and implications for redox catalysis are discussed in light of predictions based on synthetic and computational models.
Collapse
Affiliation(s)
- Julius O Campeciño
- †Department of Chemistry University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Lech W Dudycz
- ‡Lex Company Research Lab, Phoenix Park, 2 Shaker Road, Suite D 106, Shirley, Massachusetts 01464, United States
| | - David Tumelty
- §New England Peptide, 65 Zub Lane, Gardner, Massachusetts 01440, United States
| | - Volker Berg
- †Department of Chemistry University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Diane E Cabelli
- ∥Department of Chemistry, Brookhaven National Laboratory, Building 555A, P.O. Box 5000 Upton, New York 11973, United States
| | - Michael J Maroney
- †Department of Chemistry University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Denny JA, Darensbourg MY. Metallodithiolates as ligands in coordination, bioinorganic, and organometallic chemistry. Chem Rev 2015; 115:5248-73. [PMID: 25948147 DOI: 10.1021/cr500659u] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Broering EP, Dillon S, Gale EM, Steiner RA, Telser J, Brunold TC, Harrop TC. Accessing Ni(III)-thiolate versus Ni(II)-thiyl bonding in a family of Ni-N2S2 synthetic models of NiSOD. Inorg Chem 2015; 54:3815-28. [PMID: 25835183 PMCID: PMC4630978 DOI: 10.1021/ic503124f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Superoxide dismutase (SOD) catalyzes the disproportionation of superoxide (O2(• -)) into H2O2 and O2(g) by toggling through different oxidation states of a first-row transition metal ion at its active site. Ni-containing SODs (NiSODs) are a distinct class of this family of metalloenzymes due to the unusual coordination sphere that is comprised of mixed N/S-ligands from peptide-N and cysteine-S donor atoms. A central goal of our research is to understand the factors that govern reactive oxygen species (ROS) stability of the Ni-S(Cys) bond in NiSOD utilizing a synthetic model approach. In light of the reactivity of metal-coordinated thiolates to ROS, several hypotheses have been proffered and include the coordination of His1-Nδ to the Ni(II) and Ni(III) forms of NiSOD, as well as hydrogen bonding or full protonation of a coordinated S(Cys). In this work, we present NiSOD analogues of the general formula [Ni(N2S)(SR')](-), providing a variable location (SR' = aryl thiolate) in the N2S2 basal plane coordination sphere where we have introduced o-amino and/or electron-withdrawing groups to intercept an oxidized Ni species. The synthesis, structure, and properties of the NiSOD model complexes (Et4N)[Ni(nmp)(SPh-o-NH2)] (2), (Et4N)[Ni(nmp)(SPh-o-NH2-p-CF3)] (3), (Et4N)[Ni(nmp)(SPh-p-NH2)] (4), and (Et4N)[Ni(nmp)(SPh-p-CF3)] (5) (nmp(2-) = dianion of N-(2-mercaptoethyl)picolinamide) are reported. NiSOD model complexes with amino groups positioned ortho to the aryl-S in SR' (2 and 3) afford oxidized species (2(ox) and 3(ox)) that are best described as a resonance hybrid between Ni(III)-SR and Ni(II)-(•)SR based on ultraviolet-visible (UV-vis), magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectroscopies, as well as density functional theory (DFT) calculations. The results presented here, demonstrating the high percentage of S(3p) character in the highest occupied molecular orbital (HOMO) of the four-coordinate reduced form of NiSOD (NiSODred), suggest that the transition from NiSODred to the five-coordinate oxidized form of NiSOD (NiSODox) may go through a four-coordinate Ni-(•)S(Cys) (NiSODox-Hisoff) that is stabilized by coordination to Ni(II).
Collapse
Affiliation(s)
- Ellen P. Broering
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Stephanie Dillon
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Eric M. Gale
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Ramsey A. Steiner
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605, United States
| | - Thomas C. Brunold
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Todd C. Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
32
|
Liu XF, Li X, Yan J. Synthetic and structural studies of the mononuclear nickel(II) ethanedithiolate complexes with chelating N-substituted bis(diphenylphosphanyl)amine. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Shearer J, Peck KL, Schmitt JC, Neupane KP. Cysteinate protonation and water hydrogen bonding at the active-site of a nickel superoxide dismutase metallopeptide-based mimic: implications for the mechanism of superoxide reduction. J Am Chem Soc 2014; 136:16009-22. [PMID: 25322331 DOI: 10.1021/ja5079514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nickel-containing superoxide dismutase (NiSOD) is a mononuclear cysteinate-ligated nickel metalloenzyme that catalyzes the disproportionation of superoxide into dioxygen and hydrogen peroxide by cycling between Ni(II) and Ni(III) oxidation states. All of the ligating residues to nickel are found within the first six residues from the N-terminus, which has prompted several research groups to generate NiSOD metallopeptide-based mimics derived from the first several residues of the NiSOD sequence. To assess the viability of using these metallopeptide-based mimics (NiSOD maquettes) to probe the mechanism of SOD catalysis facilitated by NiSOD, we computationally explored the initial step of the O2(-) reduction mechanism catalyzed by the NiSOD maquette {Ni(II)(SOD(m1))} (SOD(m1) = HCDLP CGVYD PA). Herein we use spectroscopic (S K-edge X-ray absorption spectroscopy, electronic absorption spectroscopy, and circular dichroism spectroscopy) and computational techniques to derive the detailed active-site structure of {Ni(II)(SOD(m1))}. These studies suggest that the {Ni(II)(SOD(m1))} active-site possesses a Ni(II)-S(H(+))-Cys(6) moiety and at least one associated water molecule contained in a hydrogen-bonding interaction to the coordinated Cys(2) and Cys(6) sulfur atoms. A computationally derived mechanism for O2(-) reduction using the formulated active-site structure of {Ni(II)(SOD(m1))} suggests that O2(-) reduction takes place through an apparent initial outersphere hydrogen atom transfer (HAT) from the Ni(II)-S(H(+))-Cys(6) moiety to the O2(-) molecule. It is proposed that the water molecule aids in driving the reaction forward by lowering the Ni(II)-S(H(+))-Cys(6) pK(a). Such a mechanism is not possible in NiSOD itself for structural reasons. These results therefore strongly suggest that maquettes derived from the primary sequence of NiSOD are mechanistically distinct from NiSOD itself despite the similarities in the structure and physical properties of the metalloenzyme vs the NiSOD metallopeptide-based models.
Collapse
Affiliation(s)
- Jason Shearer
- Department of Chemistry, University of Nevada, Reno , Reno, Nevada 89557, United States
| | | | | | | |
Collapse
|
34
|
Liu XF. Condensation reactions of the mononuclear nickel(II) complexes [RN(PPh 2 ) 2 ]NiCl 2 with 1,2-ethanedithiol or 1,3-propanedithiol. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Shearer J. Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics. Acc Chem Res 2014; 47:2332-41. [PMID: 24825124 DOI: 10.1021/ar500060s] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nickel superoxide dismutase (NiSOD) is a nickel-containing metalloenzyme that catalyzes the disproportionation of superoxide through a ping-pong mechanism that relies on accessing reduced Ni(II) and oxidized Ni(III) oxidation states. NiSOD is the most recently discovered SOD. Unlike the other known SODs (MnSOD, FeSOD, and (CuZn)SOD), which utilize "typical" biological nitrogen and oxygen donors, NiSOD utilizes a rather unexpected ligand set. In the reduced Ni(II) oxidation state, NiSOD utilizes nitrogen ligands derived from the N-terminal amine and an amidate along with two cysteinates sulfur donors. These are unusual biological ligands, especially for an SOD: amine and amidate donors are underrepresented as biological ligands, whereas cysteinates are highly susceptible to oxidative damage. An axial histidine imidazole binds to nickel upon oxidation to Ni(III). This bond is long (2.3-2.6 Å) owing to a tight hydrogen-bonding network. All of the ligating residues to Ni(II) and Ni(III) are found within the first 6 residues from the NiSOD N-terminus. Thus, small nickel-containing metallopeptides derived from the first 6-12 residues of the NiSOD sequence can reproduce many of the properties of NiSOD itself. Using these nickel-containing metallopeptide-based NiSOD mimics, we have shown that the minimal sequence needed for nickel binding and reproduction of the structural, spectroscopic, and functional properties of NiSOD is H2N-HCXXPC. Insight into how NiSOD avoids oxidative damage has also been gained. Using small NiN2S2 complexes and metallopeptide-based mimics, it was shown that the unusual nitrogen donor atoms protect the cysteinates from oxidative damage (both one-electron oxidation and oxygen atom insertion reactions) by fine-tuning the electronic structure of the nickel center. Changing the nitrogen donor set to a bis-amidate or bis-amine nitrogen donor led to catalytically nonviable species owing to nickel-cysteinate bond oxidative damage. Only the amine/amidate nitrogen donor atoms within the NiSOD ligand set produce a catalytically viable species. These metallopeptide-based mimics have also hinted at the detailed mechanism of SOD catalysis by NiSOD. One such aspect is that the axial imidazole likely remains ligated to the Ni center under rapid catalytic conditions (i.e., high superoxide loads). This reduces the degree of structural rearrangement about the nickel center, leading to higher catalytic rates. Metallopeptide-based mimics have also shown that, although an axial ligand to Ni(III) is required for catalysis, the rates are highest when this is a weak interaction, suggesting a reason for the long axial His-Ni(III) bond found in NiSOD. These mimics have also suggested a surprising mechanistic insight: O2(-) reduction via a "H(•)" tunneling event from a R-S(H(+))-Ni(II) moiety to O2(-) is possible. The importance of this mechanism in NiSOD has not been verified.
Collapse
Affiliation(s)
- Jason Shearer
- Department
of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
36
|
Chatterjee SK, Maji RC, Barman SK, Olmstead MM, Patra AK. Hexacoordinate nickel(II)/(III) complexes that mimic the catalytic cycle of nickel superoxide dismutase. Angew Chem Int Ed Engl 2014; 53:10184-9. [PMID: 25056843 DOI: 10.1002/anie.201404133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/03/2014] [Indexed: 11/07/2022]
Abstract
A functional model complex of nickel superoxide dismutase (NiSOD) with a non-peptide ligand which mimics the full catalytic cycle of NiSOD is unknown. Similarly, it has not been fully elucidated whether NiSOD activity is a result of an outer- or inner-sphere electron-transfer mechanism. With this in mind, two octahedral nickel(II)/(III) complexes of a bis-tridentate N2 S donor carboxamide ligand, N-2-phenylthiophenyl-2'-pyridinecarboxamide (HL(Ph)), have been synthesized, structurally characterized, and their SOD activities examined. These complexes mimic the full catalytic cycle of NiSOD. Electrochemical experiments support an outer-sphere electron-transfer mechanism for their SOD activity.
Collapse
Affiliation(s)
- Sudip K Chatterjee
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209 (WB) (India)
| | | | | | | | | |
Collapse
|
37
|
Chatterjee SK, Maji RC, Barman SK, Olmstead MM, Patra AK. Hexacoordinate Nickel(II)/(III) Complexes that Mimic the Catalytic Cycle of Nickel Superoxide Dismutase. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Nakane D, Wasada-Tsutsui Y, Funahashi Y, Hatanaka T, Ozawa T, Masuda H. A Novel Square-Planar Ni(II) Complex with an Amino—Carboxamido—Dithiolato-Type Ligand as an Active-Site Model of NiSOD. Inorg Chem 2014; 53:6512-23. [DOI: 10.1021/ic402574d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Daisuke Nakane
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Yuko Wasada-Tsutsui
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Yasuhiro Funahashi
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tsubasa Hatanaka
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tomohiro Ozawa
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
39
|
Chiang C, Chu Y, Chen H, Kuo T, Lee W. Synthesis and Characterization of Ni
III
N3S2 Complexes as Active Site Models for the Oxidized Form of Nickel Superoxide Dismutase. Chemistry 2014; 20:6283-6. [PMID: 24737622 DOI: 10.1002/chem.201304543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/19/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Chien‐Wei Chiang
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting‐Chow Rd., 11677 Taipei (Taiwan)
| | - Yun‐Li Chu
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting‐Chow Rd., 11677 Taipei (Taiwan)
| | - Hong‐Ling Chen
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting‐Chow Rd., 11677 Taipei (Taiwan)
| | - Ting‐Shen Kuo
- Instrumentation Center, Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting‐Chow Rd., Taipei 11677, Taiwan (R.O.C.)
| | - Way‐Zen Lee
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting‐Chow Rd., 11677 Taipei (Taiwan)
| |
Collapse
|
40
|
Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 2013; 113:6621-58. [PMID: 23767781 PMCID: PMC3895110 DOI: 10.1021/cr300463y] [Citation(s) in RCA: 1347] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aaron M. Appel
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - John E. Bercaw
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrew B. Bocarsly
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Daniel L. DuBois
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Michel Dupuis
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Etsuko Fujita
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Paul J. A. Kenis
- Department of Chemical and Biochemical Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Cheryl A. Kerfeld
- DOE Joint Genome Institute, 2800 Mitchell Drive Walnut Creek, California 94598, United States, and Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall Berkeley, California 94720, United States
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Charles H. F. Peden
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Archie R. Portis
- Departments of Crop Sciences and Plant Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Joost N. H. Reek
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Rudolf K. Thauer
- Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Strasse 10, D-35043 Marburg, Germany
| | - Grover L. Waldrop
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
41
|
Mitsuhashi R, Suzuki T, Sunatsuki Y, Kojima M. Hydrogen-bonding interactions, geometrical selectivity and spectroscopic properties of cobalt(III) complexes with unsymmetrical tridentate amine-amidato-phenolato type ligands. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Broering EP, Truong PT, Gale EM, Harrop TC. Synthetic Analogues of Nickel Superoxide Dismutase: A New Role for Nickel in Biology. Biochemistry 2012; 52:4-18. [DOI: 10.1021/bi3014533] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ellen P. Broering
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| | - Phan T. Truong
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| | - Eric M. Gale
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| | - Todd C. Harrop
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
43
|
Krause ME, Glass AM, Jackson TA, Laurence JS. Embedding the Ni-SOD mimetic Ni-NCC within a polypeptide sequence alters the specificity of the reaction pathway. Inorg Chem 2012; 52:77-83. [PMID: 23214928 DOI: 10.1021/ic301175f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unique metal abstracting peptide asparagine-cysteine-cysteine (NCC) binds nickel in a square planar 2N:2S geometry and acts as a mimic of the enzyme nickel superoxide dismutase (Ni-SOD). The Ni-NCC tripeptide complex undergoes rapid, site-specific chiral inversion to dld-NCC in the presence of oxygen. Superoxide scavenging activity increases proportionally with the degree of chiral inversion. Characterization of the NCC sequence within longer peptides with absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies and mass spectrometry (MS) shows that the geometry of metal coordination is maintained, though the electronic properties of the complex are varied to a small extent because of bis-amide, rather than amine/amide, coordination. In addition, both Ni-tripeptide and Ni-pentapeptide complexes have charges of -2. This study demonstrates that the chiral inversion chemistry does not occur when NCC is embedded in a longer polypeptide sequence. Nonetheless, the superoxide scavenging reactivity of the embedded Ni-NCC module is similar to that of the chirally inverted tripeptide complex, which is consistent with a minor change in the reduction potential for the Ni-pentapeptide complex. Together, this suggests that the charge of the complex could affect the SOD activity as much as a change in the primary coordination sphere. In Ni-NCC and other Ni-SOD mimics, changes in chirality, superoxide scavenging activity, and oxidation of the peptide itself all depend on the presence of dioxygen or its reduced derivatives (e.g., superoxide), and the extent to which each of these distinct reactions occurs is ruled by electronic and steric effects that emenate from the organization of ligands around the metal center.
Collapse
Affiliation(s)
- Mary E Krause
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | | | | | | |
Collapse
|
44
|
Cindrić M, Pavlović G, Hrenar T, Uzelac M, Ćurić M. Donor Abilities of Heterocyclic Neutral Lewis Bases in a Nickel(II) Salicylaldehyde 4‐Phenylthiosemicarbazonato Coordination Environment. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201201050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marina Cindrić
- Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia, Fax: +385‐1‐461‐1191, http://www.chem.pmf.hr
| | - Gordana Pavlović
- Faculty of Textile Technology, Department of Applied Chemistry, University of Zagreb, Prilaz baruna Filipovića 28a, Zagreb 10000, Croatia, Fax: +385‐1‐3712‐599, http://www.unizg.ttf.hr
| | - Tomica Hrenar
- Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia, Fax: +385‐1‐461‐1191, http://www.chem.pmf.hr
| | - Marina Uzelac
- Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia, Fax: +385‐1‐461‐1191, http://www.chem.pmf.hr
| | - Manda Ćurić
- Rudjer Bošković Institute, P. O. Box 1016, Zagreb 10000, Croatia, http://www.irb.hr
| |
Collapse
|
45
|
Panja A, Eichhorn DM. Mono- and di-nuclear nickel(II) complexes with mixed N/S-donor ligands: Syntheses, structures and physical properties. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Chatterjee SK, Roy S, Barman SK, Maji RC, Olmstead MM, Patra AK. Shuttling of nickel oxidation states in N4S2 coordination geometry versus donor strength of tridentate N2S donor ligands. Inorg Chem 2012; 51:7625-35. [PMID: 22746828 DOI: 10.1021/ic300606g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Seven bis-Ni(II) complexes of a N(2)S donor set ligand have been synthesized and examined for their ability to stabilize Ni(0), Ni(I), Ni(II) and Ni(III) oxidation states. Compounds 1-5 consist of modifications of the pyridine ring of the tridentate Schiff base ligand, 2-pyridyl-N-(2'-methylthiophenyl)methyleneimine ((X)L1), where X = 6-H, 6-Me, 6-p-ClPh, 6-Br, 5-Br; compound 6 is the reduced amine form (L2); compound 7 is the amide analog (L3). The compounds are perchlorate salts except for 7, which is neutral. Complexes 1 and 3-7 have been structurally characterized. Their coordination geometry is distorted octahedral. In the case of 6, the tridentate ligand coordinates in a facial manner, whereas the remaining complexes display meridional coordination. Due to substitution of the pyridine ring of (X)L1, the Ni-N(py) distances for 1~5 < 3 < 4 increase and UV-vis λ(max) values corresponding to the (3)A(2g)(F)→(3)T(2g)(F) transition show an increasing trend 1~5 < 2 < 3 < 4. Cyclic voltammetry of 1-5 reveals two quasi-reversible reduction waves that correspond to Ni(II)→Ni(I) and Ni(I)→Ni(0) reduction. The E(1/2) for the Ni(II)/Ni(I) couple decreases as 1 > 2 > 3 > 4. Replacement of the central imine N donor in 1 by amine 6 or amide 7 N donors reveals that complex 6 in CH(3)CN exhibits an irreversible reductive response at E(pc) = -1.28 V, E(pa) = +0.25 V vs saturated calomel electrode (SCE). In contrast, complex 7 shows a reversible oxidation wave at E(1/2) = +0.84 V (ΔE(p) = 60 mV) that corresponds to Ni(II)→Ni(III). The electrochemically generated Ni(III) species, [(L3)(2)Ni(III)](+) is stable, showing a new UV-vis band at 470 nm. EPR measurements have also been carried out.
Collapse
Affiliation(s)
- Sudip K Chatterjee
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India
| | | | | | | | | | | |
Collapse
|
47
|
Bolligarla R, Das SK. Sulfur Oxygenation of [Ni(btdt)
2
]
2–
by Aerial Oxidation under Ambient Conditions – Syntheses, Crystal Structures, and Properties of [Bu
4
N]
2
[Ni(btdt)
2
] and [Bu
4
N]
2
[Ni(btdtO
2
)
2
]·H
2
O ({btdt}
2–
= 2,1,3‐Benzenethiadiazole‐5,6‐dithiolate). Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramababu Bolligarla
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, Andhra Pradesh, India, Fax: +91‐40‐2301‐2460
| | - Samar K. Das
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, Andhra Pradesh, India, Fax: +91‐40‐2301‐2460
| |
Collapse
|
48
|
Jayapal P, Rajaraman G. On the controversy of metal ion composition on amine oxygenase (AurF): a computational investigation. Phys Chem Chem Phys 2012; 14:9050-3. [DOI: 10.1039/c2cp40874k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Herdt DR, Grapperhaus CA. Kinetic study of nickel-thiolate oxygenation by hydrogen peroxide. Implications for nickel-containing superoxide dismutase. Dalton Trans 2012; 41:364-6. [DOI: 10.1039/c1dt11300c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Lee WZ, Chiang CW, Lin TH, Kuo TS. A Discrete Five-Coordinate NiIII Complex Resembling the Active Site of the Oxidized Form of Nickel Superoxide Dismutase. Chemistry 2011; 18:50-3. [DOI: 10.1002/chem.201102690] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/20/2011] [Indexed: 11/08/2022]
|