1
|
Catucci G, Ciaramella A, Di Nardo G, Zhang C, Castrignanò S, Gilardi G. Molecular Lego of Human Cytochrome P450: The Key Role of Heme Domain Flexibility for the Activity of the Chimeric Proteins. Int J Mol Sci 2022; 23:ijms23073618. [PMID: 35408976 PMCID: PMC8998974 DOI: 10.3390/ijms23073618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
The cytochrome P450 superfamily are heme-thiolate enzymes able to carry out monooxygenase reactions. Several studies have demonstrated the feasibility of using a soluble bacterial reductase from Bacillus megaterium, BMR, as an artificial electron transfer partner fused to the human P450 domain in a single polypeptide chain in an approach known as ‘molecular Lego’. The 3A4-BMR chimera has been deeply characterized biochemically for its activity, coupling efficiency, and flexibility by many different biophysical techniques leading to the conclusion that an extension of five glycines in the loop that connects the two domains improves all the catalytic parameters due to improved flexibility of the system. In this work, we extend the characterization of 3A4-BMR chimeras using differential scanning calorimetry to evaluate stabilizing role of BMR. We apply the ‘molecular Lego’ approach also to CYP19A1 (aromatase) and the data show that the activity of the chimeras is very low (<0.003 min−1) for all the constructs tested with a different linker loop length: ARO-BMR, ARO-BMR-3GLY, and ARO-BMR-5GLY. Nevertheless, the fusion to BMR shows a remarkable effect on thermal stability studied by differential scanning calorimetry as indicated by the increase in Tonset by 10 °C and the presence of a cooperative unfolding process driven by the BMR protein domain. Previously characterized 3A4-BMR constructs show the same behavior of ARO-BMR constructs in terms of thermal stabilization but a higher activity as a function of the loop length. A comparison of the ARO-BMR system to 3A4-BMR indicates that the design of each P450-BMR chimera should be carefully evaluated not only in terms of electron transfer, but also for the biophysical constraints that cannot always be overcome by chimerization.
Collapse
|
2
|
A Pathfinder in High-Pressure Bioscience: In Memoriam of Gaston Hui Bon Hoa. BIOLOGY 2021; 10:biology10080778. [PMID: 34440010 PMCID: PMC8389544 DOI: 10.3390/biology10080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022]
|
3
|
Harris KL, Thomson RES, Strohmaier SJ, Gumulya Y, Gillam EMJ. Determinants of thermostability in the cytochrome P450 fold. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:97-115. [PMID: 28822812 DOI: 10.1016/j.bbapap.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Cytochromes P450 are found throughout the biosphere in a wide range of environments, serving a multitude of physiological functions. The ubiquity of the P450 fold suggests that it has been co-opted by evolution many times, and likely presents a useful compromise between structural stability and conformational flexibility. The diversity of substrates metabolized and reactions catalyzed by P450s makes them attractive starting materials for use as biocatalysts of commercially useful reactions. However, process conditions impose different requirements on enzymes to those in which they have evolved naturally. Most natural environments are relatively mild, and therefore most P450s have not been selected in Nature for the ability to withstand temperatures above ~40°C, yet industrial processes frequently require extended incubations at much higher temperatures. Thus, there has been considerable interest and effort invested in finding or engineering thermostable P450 systems. Numerous P450s have now been identified in thermophilic organisms and analysis of their structures provides information as to mechanisms by which the P450 fold can be stabilized. In addition, protein engineering, particularly by directed or artificial evolution, has revealed mutations that serve to stabilize particular mesophilic enzymes of interest. Here we review the current understanding of thermostability as it applies to the P450 fold, gleaned from the analysis of P450s characterized from thermophilic organisms and the parallel engineering of mesophilic forms for greater thermostability. We then present a perspective on how this information might be used to design stable P450 enzymes for industrial application. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Kurt L Harris
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Silja J Strohmaier
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia.
| |
Collapse
|
4
|
Zhang C, Li J, Yang B, He F, Yang SY, Yu XQ, Wang Q. Enhanced turnover rate and enantioselectivity in the asymmetric epoxidation of styrene by new T213G mutants of CYP 119. RSC Adv 2014. [DOI: 10.1039/c4ra04626a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
New CYP 119 T213G mutants were constructed and characterized. Introduction of T213G mutation into the wild-type CYP 119 enhances the turnover rate for the styrene epoxidation to 346.2 min−1, and the double T213G/T214V mutant improves the ratio of the S- and R-enantiomers of the epoxide products to 5.8. The molecular docking results support our initial design and experimental data.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Medicinal Chemistry
- Luzhou Medical College
- Luzhou 646000, China
| | - Jing Li
- Department of Medicinal Chemistry
- Luzhou Medical College
- Luzhou 646000, China
| | - Bo Yang
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041, China
| | - Fang He
- Department of Medicinal Chemistry
- Luzhou Medical College
- Luzhou 646000, China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041, China
| | - Xiao-Qi Yu
- College of Chemistry
- Sichuan University
- Chengdu 610064, China
| | - Qin Wang
- Department of Medicinal Chemistry
- Luzhou Medical College
- Luzhou 646000, China
| |
Collapse
|
5
|
Sineva EV, Davydov DR. Cytochrome P450 from Photobacterium profundum SS9, a piezophilic bacterium, exhibits a tightened control of water access to the active site. Biochemistry 2010; 49:10636-46. [PMID: 21082780 DOI: 10.1021/bi101466y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report cloning, expression in Escherichia coli, and purification of cytochrome P450 from a deep-sea bacterium Photobacterium profundum strain SS9 (P450-SS9). The enzyme, which is predominately high spin (86%) in the absence of any added ligand, binds fatty acids and their derivatives and exhibits the highest affinity for myristic acid. Binding of the majority of saturated fatty acids displaces the spin equilibrium further toward the high-spin state, whereas the interactions with unsaturated fatty acids and their derivatives (arachidonoylglycine) have the opposite effect. Pressure perturbation studies showed that increasing pressure fails to displace the spin equilibrium completely to the low-spin state in the ligand-free P450-SS9 or in the complexes with either myristic acid or arachidonoylglycine. Stabilization of high-spin P450-SS9 signifies a pressure-induced transition to a state with reduced accessibility of the active site. This transition, which is apparently associated with substantial hydration of the protein, is characterized by the reaction volume change (ΔV) around -100 to -200 mL/mol and P(1/2) of 300-800 bar, which is close to the pressure of habitation of P. profundum. The transition to a state with confined water accessibility is hypothesized to represent a common feature of cytochromes P450 that serves to coordinate heme pocket hydration with ligand binding and the redox state. Displacement of the conformational equilibrium toward the "closed" state in P450-SS9 (even ligand-free) may have evolved to allow the protein to adapt to enhanced protein hydration at high hydrostatic pressures.
Collapse
Affiliation(s)
- Elena V Sineva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0703, United States
| | | |
Collapse
|
6
|
Behera RK, Goyal S, Mazumdar S. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: A rational approach. J Inorg Biochem 2010; 104:1185-94. [DOI: 10.1016/j.jinorgbio.2010.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/13/2010] [Accepted: 07/15/2010] [Indexed: 11/28/2022]
|
7
|
Lee YT, Wilson RF, Rupniewski I, Goodin DB. P450cam visits an open conformation in the absence of substrate. Biochemistry 2010; 49:3412-9. [PMID: 20297780 DOI: 10.1021/bi100183g] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
P450cam from Pseudomonas putida is the best characterized member of the vast family of cytochrome P450s, and it has long been believed to have a more rigid and closed active site relative to other P450s. Here we report X-ray structures of P450cam crystallized in the absence of substrate and at high and low [K(+)]. The camphor-free structures are observed in a distinct open conformation characterized by a water-filled channel created by the retraction of the F and G helices, disorder of the B' helix, and loss of the K(+) binding site. Crystallization in the presence of K(+) alone does not alter the open conformation, while crystallization with camphor alone is sufficient for closure of the channel. Soaking crystals of the open conformation in excess camphor does not promote camphor binding or closure, suggesting resistance to conformational change by the crystal lattice. This open conformation is remarkably similar to that seen upon binding large tethered substrates, showing that it is not the result of a perturbation by the ligand. Redissolved crystals of the open conformation are observed as a mixture of P420 and P450 forms, which is converted to the P450 form upon addition of camphor and K(+). These data reveal that P450cam can dynamically visit an open conformation that allows access to the deeply buried active site without being induced by substrate or ligand.
Collapse
Affiliation(s)
- Young-Tae Lee
- Department of Molecular Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
8
|
X-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative. Proc Natl Acad Sci U S A 2008; 105:8179-84. [PMID: 18174331 DOI: 10.1073/pnas.0708299105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytochrome P450 enzyme CYP119, its compound II derivative, and its nitrosyl complex were studied by iron K-edge x-ray absorption spectroscopy. The compound II derivative was prepared by reaction of the resting enzyme with peroxynitrite and had a lifetime of approximately 10 s at 23 degrees C. The CYP119 nitrosyl complex was prepared by reaction of the enzyme with nitrogen monoxide gas or with a nitrosyl donor and was stable at 23 degrees C for hours. Samples of CYP119 and its derivatives were studied by x-ray absorption spectroscopy at temperatures below 140 (K) at the Advanced Photon Source of Argonne National Laboratory. The x-ray absorption near-edge structure spectra displayed shifts in edge and pre-edge energies consistent with increasing effective positive charge on iron in the series native CYP119 < CYP119 nitrosyl complex < CYP119 compound II derivative. Extended x-ray absorption fine structure spectra were simulated with good fits for k = 12 A(-1) for native CYP119 and k = 13 A(-1) for both the nitrosyl complex and the compound II derivative. The important structural features for the compound II derivative were an iron-oxygen bond length of 1.82 A and an iron-sulfur bond length of 2.24 A, both of which indicate an iron-oxygen single bond in a ferryl-hydroxide, Fe(IV)OH, moiety.
Collapse
|
9
|
Davydov DR, Baas BJ, Sligar SG, Halpert JR. Allosteric mechanisms in cytochrome P450 3A4 studied by high-pressure spectroscopy: pivotal role of substrate-induced changes in the accessibility and degree of hydration of the heme pocket. Biochemistry 2007; 46:7852-64. [PMID: 17555301 PMCID: PMC2527461 DOI: 10.1021/bi602400y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric mechanisms in human cytochrome P450 3A4 (CYP3A4) in oligomers in solution or monomeric enzyme incorporated into Nanodiscs (CYP3A4ND) were studied by high-pressure spectroscopy. The allosteric substrates 1-pyrenebutanol (1-PB) and testosterone were compared with bromocriptine (BCT), which shows no cooperativity. In both CYP3A4 in solution and CYP3A4ND, we observed a complete pressure-induced high-to-low spin shift at pressures of <3 kbar either in the substrate-free enzyme or in the presence of BCT. In addition, both substrate-free and BCT-bound enzyme revealed a pressure-dependent equilibrium between two states with different barotropic parameters designated R for relaxed and P for pressure-promoted conformations. This pressure-induced conformational transition was also observed in the studies with 1-PB and testosterone. In CYP3A4 oligomers, the transition was accompanied by an important increase in homotropic cooperativity with both substrates. Surprisingly, at high concentrations of allosteric substrates, the amplitude of the spin shift in both CYP3A4 in solution and Nanodiscs was very low, demonstrating that hydrostatic pressure induces neither substrate dissociation nor an increase in the heme pocket hydration in the complexes of the pressure-promoted conformation of CYP3A4 with 1-PB or testosterone. These findings suggest that the mechanisms of interactions of CYP3A4 with 1-PB and testosterone involve an effector-induced transition that displaces a system of conformational equilibria in the enzyme toward the state(s) with decreased solvent accessibility of the active site so that the flux of water into the heme pocket is impeded and the high-spin state of the heme iron is stabilized.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA.
| | | | | | | |
Collapse
|
10
|
Hannemann F, Bichet A, Ewen KM, Bernhardt R. Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta Gen Subj 2007; 1770:330-44. [PMID: 16978787 DOI: 10.1016/j.bbagen.2006.07.017] [Citation(s) in RCA: 561] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 07/29/2006] [Indexed: 02/02/2023]
Abstract
Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.
Collapse
Affiliation(s)
- Frank Hannemann
- FR 8.3-Biochemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
11
|
Newcomb M, Zhang R, Chandrasena REP, Halgrimson JA, Horner JH, Makris TM, Sligar SG. Cytochrome p450 compound I. J Am Chem Soc 2006; 128:4580-1. [PMID: 16594688 PMCID: PMC2536593 DOI: 10.1021/ja060048y] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 enzymes (P450s) comprise a large class of enzymes that effect numerous oxidations in nature. The active oxidants in P450s are thought to be iron(IV)-oxo porphyrin radical cations termed Compounds I, and these intermediates have been sought since the discovery of P450s 40 years ago. We report formation of the Compound I derivative of a P450 enzyme by laser flash photolysis oxidation of the corresponding Compound II species, an iron(IV)-oxo neutral porphyrin intermediate. The Compound II derivative in turn was produced by oxidation of the P450 with peroxynitrite, which effected a net one-electron, oxo-transfer reaction to the iron(III) atom of the resting enzyme. For the P450 studied in this work, CYP119 from the thermophile Sulfolobus solfactaricus, the P450 Compound II derivative was stable for seconds at ambient temperature, and the Compound I transient decayed with a lifetime of ca. 200 ms.
Collapse
|
12
|
Nishida CR, Ortiz de Montellano PR. Thermophilic cytochrome P450 enzymes. Biochem Biophys Res Commun 2005; 338:437-45. [PMID: 16139791 DOI: 10.1016/j.bbrc.2005.08.093] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Thermophilic cytochrome P450 enzymes are of potential interest from structural, mechanistic, and biotechnological points of view. The structures and properties of two such enzymes, CYP119 and CYP175A1, have been investigated and provide the foundation for future work on thermophilic P450 enzymes.
Collapse
Affiliation(s)
- Clinton R Nishida
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
13
|
Oku Y, Ohtaki A, Kamitori S, Nakamura N, Yohda M, Ohno H, Kawarabayasi Y. Structure and direct electrochemistry of cytochrome P450 from the thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. J Inorg Biochem 2005; 98:1194-9. [PMID: 15219985 DOI: 10.1016/j.jinorgbio.2004.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Revised: 05/10/2004] [Accepted: 05/16/2004] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 from thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7 (P450st) has been expressed in Escherichia coli and purified at high homogeneity. P450st was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=53.6 A, b=55.1 A, and c=130.9 A, and the structure was determined at a 3.0 A resolution. The final R-factor was 0.194 (Rfree=0.235). Structural comparison with cytochrome P450 from S. solfataricus (CYP119) suggests that the region composed of the F to G helices and the Cl- binding site is responsible for the affinity for a ligand coordinating heme iron. Direct electrochemistry of P450st in a didodecyldimethylammonium bromide (DDAB) film on a plastic formed carbon (PFC) electrode has also been demonstrated. A quasi-reversible redox response has been observed even at elevated temperatures of up to 80 degrees C.
Collapse
Affiliation(s)
- Yusuke Oku
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Davydov DR, Halpert JR, Renaud JP, Hui Bon Hoa G. Conformational heterogeneity of cytochrome P450 3A4 revealed by high pressure spectroscopy. Biochem Biophys Res Commun 2004; 312:121-30. [PMID: 14630029 DOI: 10.1016/j.bbrc.2003.09.247] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We applied hydrostatic pressure perturbation to study substrate-induced transitions in human cytochrome P450 3A4 (CYP3A4) with bromocriptine (BCT) as a substrate. The barotropic behavior of the purified enzyme in solution was compared with that observed in recombinant microsomes of Saccharomyces cerevisiae coexpressing CYP3A4, cytochrome b(5), (b(5)) and NADPH-cytochrome P450 reductase (CPR). Important barotropic heterogeneity of CYP3A4 was detected in both cases. Only about 70% of CYP3A4 in solution and about 50% of the microsomal enzyme were susceptible to a pressure-induced P450-->P420 transition. The results suggest that both in solution and in the membrane CYP3A4 is represented by two conformers with different positions of spin equilibrium and different barotropic properties. No interconversion between these conformers was observed within the time frame of the experiment. Importantly, a pressure-induced spin shift, which is characteristic of all cytochromes P450 studied to date, was detected in CYP3A4 in solution only; the P450-->P420 transition was the sole pressure-induced process detected in microsomes. This fact suggests unusual stabilization of the high-spin state of CYP3A4, which is assumed to reflect decreased water accessibility of the heme moiety due to specific interactions of the hemoprotein with the protein partners (b(5) and CPR) and/or membrane lipids.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
Recent large-scale studies illustrate the importance of electrostatic interactions near the surface of proteins as a major factor in enhancing thermal stability. Mutagenesis studies have also demonstrated the importance of optimized charge interactions on the surface of the protein, which can significantly augment enzyme thermal stability. Directed evolution studies show that increased stability may be obtained by different routes, which may not mimic those used by nature. Despite observations that some of the most thermotolerant organisms grow under conditions of high pressure, little effort has been made to understand the correlation between pressure and temperature stability. One recent study demonstrates that the active-site volume may be important in increasing pressure stability.
Collapse
Affiliation(s)
- Jason K Yano
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Bancel F, Hoa GHB, Anzenbacher P, Balny C, Lange R. High pressure: a new tool to study P450 structure and function. Methods Enzymol 2003; 357:145-57. [PMID: 12424906 DOI: 10.1016/s0076-6879(02)57674-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Frédéric Bancel
- French National Institute for Health and Medical Research U 128, IFR 24, F-34293 Montpellier, France
| | | | | | | | | |
Collapse
|
17
|
Puchkaev AV, Koo LS, Ortiz de Montellano PR. Aromatic stacking as a determinant of the thermal stability of CYP119 from Sulfolobus solfataricus. Arch Biochem Biophys 2003; 409:52-8. [PMID: 12464244 DOI: 10.1016/s0003-9861(02)00402-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two notable features of the thermophilic CYP119, an Arg154-Glu212 salt bridge between the F-G loop and the I helix and an extended aromatic cluster, were studied to determine their contributions to the thermal stability of the enzyme. Site-specific mutants of the salt bridge (Arg154, Glu212) and aromatic cluster (Tyr2, Trp4, Trp231, Tyr250, Trp281) were expressed and purified. The substrate-binding and kinetic constants for lauric acid hydroxylation are little affected in most mutants, but the E212D mutant is inactive and the R154Q mutant has higher K(s),K(m), and k(cat) values. The salt bridge mutants, like wild-type CYP119, melt at 91+/-1 degrees C, whereas mutation of individual residues in the extended aromatic cluster lowers the T(m) by 10-15 degrees C even though no change is observed on mutation of an unrelated aromatic residue. The extended aromatic cluster, but not the Arg154-Glu212 salt bridge, contributes to the thermal stability of CYP119.
Collapse
Affiliation(s)
- Andrei V Puchkaev
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
18
|
Park SY, Yamane K, Adachi SI, Shiro Y, Weiss KE, Maves SA, Sligar SG. Thermophilic cytochrome P450 (CYP119) from Sulfolobus solfataricus: high resolution structure and functional properties. J Inorg Biochem 2002; 91:491-501. [PMID: 12237217 DOI: 10.1016/s0162-0134(02)00446-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Crystal structures of a thermostable cytochrome P450 (CYP119) and a site-directed mutant, (Phe24Leu), from the acidothermophilic archaea Sulfolobus solfataricus were determined at 1.5-2.0 A resolution. We identify important crystallographic waters in the ferric heme pocket, observe protein conformational changes upon inhibitor binding, and detect a unique distribution of surface charge not found in other P450s. An analysis of factors contributing to thermostability of CYP119 of these high resolution structures shows an apparent increase in clustering of aromatic residues and optimum stacking. The contribution of aromatic stacking was investigated further with the mutant crystal structure and differential scanning calorimetry.
Collapse
Affiliation(s)
- Sam-Yong Park
- RIKEN Harima Institute/Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Koo LS, Immoos CE, Cohen MS, Farmer PJ, Ortiz de Montellano PR. Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119. J Am Chem Soc 2002; 124:5684-91. [PMID: 12010041 DOI: 10.1021/ja017174g] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CYP119, a cytochrome P450 from a thermophilic organism for which a crystal structure is available, is shown here to hydroxylate lauric acid in a reaction supported by putidaredoxin and putidaredoxin reductase. This fatty acid hydroxylation activity is increased 15-fold by T214V and D77R mutations. The T214V mutation increases the rate by facilitating substrate binding and enhancing the associated spin state change, whereas the D77R mutation improves binding of the heterologous redox partner putidaredoxin to CYP119 and the rate of electron transfer from it to the heme group. A sequence alignment with P450(cam) can, therefore, be used to identify a part of the binding site for putidaredoxin on an unrelated P450 enzyme. This information can be used to engineer by mutagenesis an improved complementarity of the protein-protein interface that results in improved electron transfer from putidaredoxin to the P450 enzyme. As a result, the catalytic activity of the thermo- and barostable CYP119 has been incorporated into a catalytic system that hydroxylates fatty acids.
Collapse
Affiliation(s)
- Laura S Koo
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446, USA
| | | | | | | | | |
Collapse
|
20
|
Royer CA. Revisiting volume changes in pressure-induced protein unfolding. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:201-9. [PMID: 11983396 DOI: 10.1016/s0167-4838(01)00344-2] [Citation(s) in RCA: 330] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has long been known that the application of hydrostatic pressure generally leads to the unfolding of proteins. Despite a relatively large number of reports in the literature over the past few decades, there has been great confusion over the sign and magnitude as well as the fundamental factors contributing to volume effects in protein conformational transitions. It is the goal of this review to present and discuss the results obtained concerning the sign and magnitude of the volume changes accompanying the unfolding of proteins. The vast majority of cases point to a significant decrease in volume upon unfolding. Nonetheless, there is evidence that, due to differences in the thermal expansivity of the folded and unfolded states of proteins reported in a half dozen manuscripts, that the sign of the volume change may become positive at higher temperatures.
Collapse
Affiliation(s)
- Catherine A Royer
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR 5048, Montpellier, France.
| |
Collapse
|
21
|
Kellner DG, Hung SC, Weiss KE, Sligar SG. Kinetic characterization of compound I formation in the thermostable cytochrome P450 CYP119. J Biol Chem 2002; 277:9641-4. [PMID: 11799104 DOI: 10.1074/jbc.c100745200] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of formation and breakdown of the putative active oxygenating intermediate in cytochrome P450, a ferryl-oxo-(pi) porphyrin cation radical (Compound I), have been analyzed in the reaction of a thermostable P450, CYP119, with meta-chloroperoxybenzoic acid (m-CPBA). Upon rapid mixing of m-CPBA with the ferric form of CYP119, an intermediate with spectral features characteristic of a ferryl-oxo-(pi) porphyrin cation radical was clearly observed and identified by the absorption maxima at 370, 610, and 690 nm. The rate constant for the formation of Compound I was 3.20 (+/-0.3) x 10(5) m(-1) s(-1) at pH 7.0, 4 degrees C, and this rate decreased with increasing pH. Compound I of CYP119 decomposed back to the ferric form with a first order rate constant of 29.4 +/- 3.4 s(-1), which increased with increasing pH. These findings form the first kinetic analysis of Compound I formation and decay in the reaction of m-CPBA with ferric P450.
Collapse
Affiliation(s)
- David G Kellner
- Departments of Biochemistry, Chemistry, and the College of Medicine, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
22
|
|