1
|
Xu Y, Kong T, Ma Y, Zhao Y, Chu L, Zheng M. Near-infrared spectroscopy: application in ensuring food quality and safety. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40264400 DOI: 10.1039/d4ay02039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
In recent years, the demand for intelligent control of food quality during processing has been increasing in the food industry. As a practical analytical tool, near-infrared (NIR) spectroscopy has become a common detection method to ensure food quality and safety because of its advantages of continuous, rapid on-line determination and strong analytical performance. In the past 20 years, many attempts and research studies have been conducted on the applications of NIR spectroscopy. Based on this, this review focuses on the specific application of near-infrared technology in the field of food, highlighting its breakthrough and applicability. NIR spectroscopy is widely used for online quantitative analysis of beneficial food components to the human body, which include proteins, polysaccharides, and polyphenols. Additionally, this technology is applied to food microbiological analysis, food safety detection (such as food adulteration), and food origin prediction. This review discusses the existing challenges, future development directions, and opportunities for NIR spectroscopy technology.
Collapse
Affiliation(s)
- Yuxia Xu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Tianyu Kong
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Yinfei Ma
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Yan Zhao
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Le Chu
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Mingzhu Zheng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Ramachandran DU, Gummadi SN. Kinetically controlled irreversible unfolding of esterase from Clostridium acetobutylicum: Thermal deactivation kinetics and structural studies. Int J Biol Macromol 2025; 297:139604. [PMID: 39788269 DOI: 10.1016/j.ijbiomac.2025.139604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
This study involves the thermal characterization of Ca-Est, an esterase from Clostridium acetobutylicum which has been previously found to exhibit maximum specific activity at 60 °C. In the present study, Ca-Est showed maximum stability at 30 °C with almost 75 % of its initial activity being retained after incubation for 5 h and the stability decreased with increasing temperature. Analysis of the thermodynamic parameters revealed that the deactivation of Ca-Est is endothermic and enthalpically favored. Circular Dichroism studies reveal that Ca-Est follows heat-induced irreversible unfolding. The melting temperature of the enzyme varied with different scan rates implying that the irreversible unfolding is kinetically controlled. At higher temperatures, unfolding of the protein resulted in the formation of aggregates which possibly prevented it from refolding back to its native structure. Intriguingly, at lower temperatures, where non aggregated states were present, unfolded Ca-Est did not refold back to the native structure, rather there was an increase in the percentage of beta sheets implying that the irreversibility could be due to an incorrect folding of the unfolded states which consecutively results in higher probability of forming aggregates. Future studies focusing on strategies to improve the reversibility would enhance the functionality of Ca-Est.
Collapse
Affiliation(s)
- Devasena Umai Ramachandran
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India.
| |
Collapse
|
3
|
Breimann S, Kamp F, Steiner H, Frishman D. AAontology: An Ontology of Amino Acid Scales for Interpretable Machine Learning. J Mol Biol 2024; 436:168717. [PMID: 39053689 DOI: 10.1016/j.jmb.2024.168717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Amino acid scales are crucial for protein prediction tasks, many of them being curated in the AAindex database. Despite various clustering attempts to organize them and to better understand their relationships, these approaches lack the fine-grained classification necessary for satisfactory interpretability in many protein prediction problems. To address this issue, we developed AAontology-a two-level classification for 586 amino acid scales (mainly from AAindex) together with an in-depth analysis of their relations-using bag-of-word-based classification, clustering, and manual refinement over multiple iterations. AAontology organizes physicochemical scales into 8 categories and 67 subcategories, enhancing the interpretability of scale-based machine learning methods in protein bioinformatics. Thereby it enables researchers to gain a deeper biological insight. We anticipate that AAontology will be a building block to link amino acid properties with protein function and dysfunctions as well as aid informed decision-making in mutation analysis or protein drug design.
Collapse
Affiliation(s)
- Stephan Breimann
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany; Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Frits Kamp
- Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany
| | - Harald Steiner
- Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
4
|
Khosroshahi ME, Woll-Morison V, Kim K. Dynamic spectroscopic and optical characterization and modeling of bovine serum albumin corona during interaction with N-hydroxysulfo-succinimide-covalently functionalized gold nanourchins. Biointerphases 2024; 19:051003. [PMID: 39356180 DOI: 10.1116/6.0003715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
In this study, bovine serum albumin (BSA) is used as a globular protein model to examine the conformational changes that occur during the interaction of BSA with N-hydroxysulfo-succinimide (sodium salt)-functionalized gold nanourchins (GNUs), for which dynamic spectroscopic techniques are employed. The results showed that the absorbance of phosphate-buffered saline-BSA at 278 nm decreased when a GNU was added to the solution due to adsorption, and it decreased further when the GNU was increased. The intensity and width of the peak of local surface plasmon resonance increased, indicating the effect of corona formation. Dynamic UV-vis spectroscopy and scattering revealed a nonlinear behavior of BSA-GNU interaction. The bioplasmonic solution resulted in higher transmission and scattering than the BSA solution. Fourier transform-near-infrared spectra exhibited several bands due to overtones and combinations of the amide group and different proportions of α-helix and β-sheet components in BSA before and after the addition of the GNU. Time-resolved fluorescence spectroscopy demonstrated an initial increase in blueshifted emission, followed by a redshifted quenching of two major peaks of Tyr and tryptophan (Trp). The binding and dissociation constants were determined as Kb = 2.17 × 1010 M-1 and Kd = 4.6 × 10-11, respectively, using the Stern-Volmer relation. Both the dynamic CMOS-based imaging and the cadmium sulfide sensors demonstrated a nonlinear response of bioplasmonic solution. By increasing the GNU, the resistance of the solution decreased in the order of A > S1 > S3, where S3 exhibited the highest initial transmission with a longer desorption time. MATLAB modeling showed 80% surface coverage by the protein in 15 s at 0.05M, equivalent to a thickness of 1.7 nm, which was in agreement with the value determined by using the Stokes-Einstein relation.
Collapse
Affiliation(s)
- Mohammad E Khosroshahi
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario L4B 1B4, Canada
- Institute for Advanced Non-Destructive and Non-Invasive Diagnostic Technologies (IANDIT) , University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Vaughan Woll-Morison
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario L4B 1B4, Canada
| | - Kyungho Kim
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario L4B 1B4, Canada
| |
Collapse
|
5
|
Ishigaki M, Ito A, Hara R, Miyazaki SI, Murayama K, Yoshikiyo K, Yamamoto T, Ozaki Y. Method of Monitoring the Number of Amide Bonds in Peptides Using Near-Infrared Spectroscopy. Anal Chem 2021; 93:2758-2766. [PMID: 33356160 DOI: 10.1021/acs.analchem.0c03424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using near-infrared (NIR) spectroscopy, we aimed to develop a method of monitoring the increasing number of amide bonds with the elongation of the chain length of peptides. Because peptide synthesis can be monitored by evaluating the increasing number of amide bonds with dehydration occurring between amino acids, polyglycine, which has the simplest structure among polyamino acids, was studied, and the key bands whose absorption intensities increased with the elongation of the chain length, such as the bands attributed to glycine, diglycine, triglycine, and tetraglycine, were searched. The bands due to the combinations of the amide A and amide II/III modes in the region of 5000-4500 cm-1 were revealed to be good candidates for key bands, their second derivative intensities increased as the number of amide bonds increased, regardless of pH, solvent species, and the presence of protecting groups. The number of amide bonds was evaluated by a partial least square regression using the abovementioned combination bands, and a calibration model with a high determination coefficient (≥0.99) was constructed. These results not only have demonstrated the usefulness of NIR spectroscopy as a process analytical technology tool for the process of synthesizing the peptide in a microflow reactor but also have provided basic knowledge for analyzing amide bonds in the NIR spectra of proteins, polyamino acids, polypeptides, and polyamides.
Collapse
Affiliation(s)
- Mika Ishigaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.,Raman Project Center for Medical and Biological Applications, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Atsushi Ito
- Research and Development Department, Yokogawa Electric Corporation, 2-9-32 Nakacho, Musashino, Tokyo 180-8750, Japan
| | - Risa Hara
- Research and Development Department, Yokogawa Electric Corporation, 2-9-32 Nakacho, Musashino, Tokyo 180-8750, Japan
| | - Shun-Ichi Miyazaki
- Research and Development Department, Yokogawa Electric Corporation, 2-9-32 Nakacho, Musashino, Tokyo 180-8750, Japan
| | - Kodai Murayama
- Research and Development Department, Yokogawa Electric Corporation, 2-9-32 Nakacho, Musashino, Tokyo 180-8750, Japan
| | - Keisuke Yoshikiyo
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Tatsuyuki Yamamoto
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.,Raman Project Center for Medical and Biological Applications, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
6
|
Ishigaki M, Yasui Y, Kajita M, Ozaki Y. Assessment of Embryonic Bioactivity through Changes in the Water Structure Using Near-Infrared Spectroscopy and Imaging. Anal Chem 2020; 92:8133-8141. [PMID: 32407102 DOI: 10.1021/acs.analchem.0c00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We explored the influence of embryonic bioactivity on the water structure using near-infrared (NIR) spectroscopy and imaging. Four groups of Japanese medaka fish (Oryzias latipes) eggs were studied: (a) one group of eggs was activated by fertilization, and (b-d) three groups of eggs were not activated because embryogenesis was stopped or not started by (b) culturing under cold temperature, (c) instant freezing, or (d) lack of fertilization. The yolks of the activated eggs contained higher proportions of weakly hydrogen bonded water than those of nonactivated eggs. A possible factor responsible for the significant changes in the water structure was revealed to be a protein secondary structural change from an α-helix to a β-sheet in the activated eggs. NIR images of the activated eggs successfully visualized the water structural variation in the yolk with a higher proportion of weak hydrogen bonds due to the activation of embryonic development. The embryogenic activity could be assessed through the water hydrogen bond network, which is affected by newly generated proteins with different secondary structures.
Collapse
Affiliation(s)
- Mika Ishigaki
- Raman Project Center for Medical and Biological Applications, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.,Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yui Yasui
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Misato Kajita
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
7
|
Kumar A, Toal SE, DiGuiseppi D, Schweitzer-Stenner R, Wong BM. Water-Mediated Electronic Structure of Oligopeptides Probed by Their UV Circular Dichroism, Absorption Spectra, and Time-Dependent DFT Calculations. J Phys Chem B 2020; 124:2579-2590. [PMID: 32207305 DOI: 10.1021/acs.jpcb.0c00657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the UV absorption spectra of a series of cationic GxG peptides (where x denotes a guest residue) in aqueous solution and find that only a subset of these spectra show a strong dependence with temperature. To explore whether or not this observation reflects conformational dependencies, we carry out time-dependent density functional calculations for the polyproline II (pPII) and β-strand conformations in implicit and explicit water. We find that the calculated CD spectra for pPII can qualitatively account for the experimental spectra irrespective of the water model. The β-strand UV-CD spectra, however, require the explicit consideration of water. Contrary to conventional wisdom, we find that both the NV1 and NV2 band are the envelopes of contributions from multiple transitions that involve more than just the HOMOs and LUMOs of the peptide groups. A natural transition orbital analysis reveals that some of the transitions have a charge-transfer character. The overall manifold of transitions depends on the peptide's backbone conformation, peptide hydration, and side chain of the guest residue. Our results reveal that peptide groups, side chains, and hydration shells must be considered as an entity for a physically valid characterization of UV absorbance and circular dichroism.
Collapse
Affiliation(s)
- Anshuman Kumar
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California, Riverside, Riverside, California 92521, United States
| | - Siobhan E Toal
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - David DiGuiseppi
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | - Bryan M Wong
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
8
|
Lipid Droplet Composition Varies Based on Medaka Fish Eggs Development as Revealed by NIR-, MIR-, and Raman Imaging. Molecules 2020; 25:molecules25040817. [PMID: 32070018 PMCID: PMC7070833 DOI: 10.3390/molecules25040817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/23/2023] Open
Abstract
In fertilized fish eggs, lipids are an energy reservoir for the embryo development and substrate for organogenesis. They occur in the cytoplasmic area and form lipid droplets (LDs), but also the yolk egg is composed of lipids and proteins. Insight on the LD formation and distribution and their interactions with other cellular organelles could provide information about the role based on the egg development. For non-destructive, macro-scale visualization of biochemical components of fish eggs, such as lipids proteins and water, near-infrared (NIR) imaging is the method of choice. Mid-infrared (MIR) and Raman spectroscopy imaging were used to provide details on chemical composition of LDs and other egg organelles. NIR imaging illustrated main compartments of the egg including membrane, LDs, yolk, relative protein, and lipid content in well-localized egg structures and their interactions with water molecules. In the yolk, a co-existence of lipids and proteins with carotenoids and carbohydrates was detected by Raman spectroscopy. Results showed a prominent decrease of unsaturated fatty acids, phospholipids, and triglycerides/cholesteryl esters content in the eggs due to the embryo development. An opposite trend of changes was observed by MIR spectroscopy for the glycogen, suggesting that consumption of lipids occurred with production of this carbohydrate. The comprehensive vibrational spectroscopic analysis based on NIR, MIR, and Raman imaging is a unique tool in studying in situ dynamic biological processes.
Collapse
|
9
|
Abstract
Cells of the vast majority of organisms are subject to temperature, pressure, pH, ionic strength, and other stresses. We discuss these effects in the light of protein folding and protein interactions in vitro, in complex environments, in cells, and in vivo. Protein phase diagrams provide a way of organizing different structural ensembles that occur under stress and how one can move among ensembles. Experiments that perturb biomolecules in vitro or in cells by stressing them have revealed much about the underlying forces that are competing to control protein stability, folding, and function. Two phenomena that emerge and serve to broadly classify effects of the cellular environment are crowding (mainly due to repulsive forces) and sticking (mainly due to attractive forces). The interior of cells is closely balanced between these emergent effects, and stress can tip the balance one way or the other. The free energy scale involved is small but significant on the scale of the "on/off switches" that control signaling in cells or of protein-protein association with a favorable function such as increased enzyme processivity. Quantitative tools from biophysical chemistry will play an important role in elucidating the world of crowding and sticking under stress.
Collapse
Affiliation(s)
- Mayank Boob
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
- Department of Chemistry, Department of Physics, Center for the Physics of Living Cells, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| |
Collapse
|
10
|
Ma L, Herren AW, Espinal G, Randol J, McLaughlin B, Martinez-Cerdeño V, Pessah IN, Hagerman RJ, Hagerman PJ. Composition of the Intranuclear Inclusions of Fragile X-associated Tremor/Ataxia Syndrome. Acta Neuropathol Commun 2019; 7:143. [PMID: 31481131 PMCID: PMC6720097 DOI: 10.1186/s40478-019-0796-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation repeat expansion (55-200 CGG repeats) in the 5' noncoding region of the FMR1 gene. Solitary intranuclear inclusions within FXTAS neurons and astrocytes constitute a hallmark of the disorder, yet our understanding of how and why these bodies form is limited. Here, we have discovered that FXTAS inclusions emit a distinct autofluorescence spectrum, which forms the basis of a novel, unbiased method for isolating FXTAS inclusions by preparative fluorescence-activated cell sorting (FACS). Using a combination of autofluorescence-based FACS and liquid chromatography/tandem mass spectrometry (LC-MS/MS)-based proteomics, we have identified more than two hundred proteins that are enriched within the inclusions relative to FXTAS whole nuclei. Whereas no single protein species dominates inclusion composition, highly enriched levels of conjugated small ubiquitin-related modifier 2 (SUMO 2) protein and p62/sequestosome-1 (p62/SQSTM1) protein were found within the inclusions. Many additional proteins involved with RNA binding, protein turnover, and DNA damage repair were enriched within inclusions relative to total nuclear protein. The current analysis has also allowed the first direct detection, through peptide sequencing, of endogenous FMRpolyG peptide, the product of repeat-associated non-ATG (RAN) translation of the FMR1 mRNA. However, this peptide was found only at extremely low levels and not within whole FXTAS nuclear preparations, raising the question whether endogenous RAN products exist at quantities sufficient to contribute to FXTAS pathogenesis. The abundance of the inclusion-associated ubiquitin- and SUMO-based modifiers supports a model for inclusion formation as the result of increased protein loads and elevated oxidative stress leading to maladaptive autophagy. These results highlight the need to further investigate FXTAS pathogenesis in the context of endogenous systems.
Collapse
Affiliation(s)
- Lisa Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Anthony W Herren
- Genome Center, University of California Davis, Davis, California, USA
| | - Glenda Espinal
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Jamie Randol
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Bridget McLaughlin
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California Davis, School of Medicine, Sacramento, California, USA
- MIND Institute, University of California Davis Health, Sacramento, California, USA
| | - Isaac N Pessah
- MIND Institute, University of California Davis Health, Sacramento, California, USA
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - Randi J Hagerman
- MIND Institute, University of California Davis Health, Sacramento, California, USA
- Department of Pediatrics, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA.
- MIND Institute, University of California Davis Health, Sacramento, California, USA.
| |
Collapse
|
11
|
Schweitzer-Stenner R, Toal SE. Anticooperative Nearest-Neighbor Interactions between Residues in Unfolded Peptides and Proteins. Biophys J 2019. [PMID: 29539392 DOI: 10.1016/j.bpj.2018.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Growing evidence suggests that the conformational distributions of amino acid residues in unfolded peptides and proteins depend on the nature of the nearest neighbors. To explore whether the underlying interactions would lead to a breakdown of the isolated pair hypothesis of the classical random coil model, we further analyzed the conformational propensities that were recently obtained for the two guest residues (x,y) of GxyG tetrapeptides. We constructed a statistical thermodynamics model that allows for cooperative as well as for anticooperative interactions between adjacent residues adopting either a polyproline II or a β-strand conformation. Our analysis reveals that the nearest-neighbor interactions between most of the central residues in the investigated GxyG peptides are anticooperative. Interaction Gibbs energies are rather large at high temperatures (350 K), at which point many proteins undergo thermal unfolding. At room temperature, these interaction energies are less pronounced. We used the obtained interaction parameter in a Zimm-Bragg/Ising-type approach to calculate the temperature dependence of the ultraviolet circular dichroism (CD) of the MAX3 peptide, which is predominantly built by KV repeats. The agreement between simulation and experimental data was found to be satisfactory. Finally, we analyzed the temperature dependence of the CD and 3J(HNHα) parameters of the amyloid β1-9 fragment. The results of this analysis and a more qualitative consideration of the temperature dependence of denatured proteins probed by CD spectroscopy further corroborate the dominance of anticooperative nearest-neighbor interactions. Generally, our results show that unfolded peptides-and most likely also proteins-exhibit some similarity with antiferromagnetic systems.
Collapse
Affiliation(s)
| | - Siobhan E Toal
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Tischer A, Machha VR, Rösgen J, Auton M. "Cooperative collapse" of the denatured state revealed through Clausius-Clapeyron analysis of protein denaturation phase diagrams. Biopolymers 2018; 109:e23106. [PMID: 29457634 DOI: 10.1002/bip.23106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 11/09/2022]
Abstract
Protein phase diagrams have a unique potential to identify the presence of additional thermodynamic states even when non-2-state character is not readily apparent from the experimental observables used to follow protein unfolding transitions. Two-state analysis of the von Willebrand factor A3 domain has previously revealed a discrepancy in the calorimetric enthalpy obtained from thermal unfolding transitions as compared with Gibbs-Helmholtz analysis of free energies obtained from the Linear Extrapolation Method (Tischer and Auton, Prot Sci 2013; 22(9):1147-60). We resolve this thermodynamic conundrum using a Clausius-Clapeyron analysis of the urea-temperature phase diagram that defines how Δ H and the urea m-value interconvert through the slope of cm versus T, ( ∂ c m / ∂ T ) = Δ H / ( m T ) . This relationship permits the calculation of Δ H at low temperature from m-values obtained through iso-thermal urea denaturation and high temperature m-values from Δ H obtained through iso-urea thermal denaturation. Application of this equation uncovers sigmoid transitions in both cooperativity parameters as temperature is increased. Such residual thermal cooperativity of Δ H and the m-value confirms the presence of an additional state which is verified to result from a cooperative phase transition between urea-expanded and thermally-compact denatured states. Comparison of the equilibria between expanded and compact denatured ensembles of disulfide-intact and carboxyamidated A3 domains reveals that introducing a single disulfide crosslink does not affect the presence of the additional denatured state. It does, however, make a small thermodynamically favorable free energy (∼-13 ± 1 kJ/mol) contribution to the cooperative denatured state collapse transition as temperature is raised and urea concentration is lowered. The thermodynamics of this "cooperative collapse" of the denatured state retain significant compensations between the enthalpy and entropy contributions to the overall free energy.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Venkata R Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jörg Rösgen
- Department Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania, 17033
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Yang G, Yu K, Kaitatzi CS, Singh A, Labahn J. Influence of solubilization and AD-mutations on stability and structure of human presenilins. Sci Rep 2017; 7:17970. [PMID: 29269939 PMCID: PMC5740079 DOI: 10.1038/s41598-017-18313-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
Presenilin (PS1 or PS2) functions as the catalytic subunit of γ-secretase, which produces the toxic amyloid beta peptides in Alzheimer’s disease (AD). The dependence of folding and structural stability of PSs on the lipophilic environment and mutation were investigated by far UV CD spectroscopy. The secondary structure content and stability of PS2 depended on the lipophilic environment. PS2 undergoes a temperature-dependent structural transition from α-helical to β-structure at 331 K. The restructured protein formed structures which tested positive in spectroscopic amyloid fibrils assays. The AD mutant PS1L266F, PS1L424V and PS1ΔE9 displayed reduced stability which supports a proposed ‘loss of function’ mechanism of AD based on protein instability. The exon 9 coded sequence in the inhibitory loop of the zymogen was found to be required for the modulation of the thermal stability of PS1 by the lipophilic environment.
Collapse
Affiliation(s)
- Ge Yang
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany
| | - Kun Yu
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany
| | - Christina-Symina Kaitatzi
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Physics Department, University of Patras, University Campus, 26504, Rio Achaia, Greece
| | - Abhilasha Singh
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany
| | - Jörg Labahn
- Centre for Structural Systems Biology (CSSB), CSSB-FZJ, Notkestr. 85, 22607, Hamburg, Germany. .,Institute of Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany. .,Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
14
|
Shah MA, Mishra S, Chaudhuri TK. Marginal stability drives irreversible unfolding of large multi-domain family 3 glycosylhydrolases from thermo-tolerant yeast. Int J Biol Macromol 2017; 108:1322-1330. [PMID: 29141194 DOI: 10.1016/j.ijbiomac.2017.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Protein folding is an extremely complex and fast, yet perfectly defined process, involving interplay of many intra and inter-molecular forces. In vitro, these molecular interactions are reversible for many proteins e.g., smaller and monomeric, organized into single domains. However, refolding of larger multi-domain/multimeric proteins is much more complicated, proceeds in a hierarchal way and is often irreversible. In a comparative study on two large, multi-domain and multimeric isozymes, β-glucosidase I (BGLI) and β-glucosidase II (BGLII) from Pichia etchellsii, we studied spontaneous and assisted refolding under three denaturing conditions viz. GdnHCl, alkaline pH and heat. During refolding, higher refolding yields were obtained for BGLII in case of pH induced unfolding (13.89%±0.25) than BGLI (6%±0.85) while for GdnHCl induced unfolding, refolding was marginal (BGLI=5%±0.5; BGLII=6%±0.69). Thermal unfolding was irreversible while assisted refolding also showed little structural gain for both proteins. When the apparent free energies of unfolding (ΔGUapp) were calculated from GdnHCl unfolding data, their values were strikingly found to be lower (BGLI ΔGUapp=3.02kcal/mol; BGLII ΔGUapp=2.99kcal/mol) than reported for globular (ΔGU=5-15kcal/mol)/multimeric proteins (ΔGU=23-29kcal/mol) indicating marginal stability results in low refolding.
Collapse
Affiliation(s)
- Mohammad Asif Shah
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Saroj Mishra
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tapan Kumar Chaudhuri
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Ksuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
15
|
Jabrani A, Makamte S, Moreau E, Gharbi Y, Plessis A, Bruzzone L, Sanial M, Biou V. Biophysical characterisation of the novel zinc binding property in Suppressor of Fused. Sci Rep 2017; 7:11139. [PMID: 28894158 PMCID: PMC5593987 DOI: 10.1038/s41598-017-11203-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023] Open
Abstract
Suppressor of Fused (SUFU) is a highly conserved protein that acts as a negative regulator of the Hedgehog (HH) signalling pathway, a major determinant of cell differentiation and proliferation. Therefore, SUFU deletion in mammals has devastating effects on embryo development. SUFU is part of a multi-protein cytoplasmic signal-transducing complex. Its partners include the Gli family of transcription factors that function either as repressors, or as transcription activators according to the HH activation state. The crystal structure of SUFU revealed a two-domain arrangement, which undergoes a closing movement upon binding a peptide from Gli1. There remains however, much to be discovered about SUFU’s behaviour. To this end, we expressed recombinant, full-length SUFU from Drosophila, Zebrafish and Human. Guided by a sequence analysis that revealed a conserved potential metal binding site, we discovered that SUFU binds zinc. This binding was found to occur with a nanomolar affinity to SUFU from all three species. Mutation of one histidine from the conserved motif induces a moderate decrease in affinity for zinc, while circular dichroism indicates that the mutant remains structured. Our results reveal new metal binding affinity characteristics about SUFU that could be of importance for its regulatory function in HH.
Collapse
Affiliation(s)
- Amira Jabrani
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099 CNRS, Université Paris Diderot, Sorbonne Paris Cité, PSL Research University, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Staëlle Makamte
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099 CNRS, Université Paris Diderot, Sorbonne Paris Cité, PSL Research University, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Emilie Moreau
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099 CNRS, Université Paris Diderot, Sorbonne Paris Cité, PSL Research University, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Yasmine Gharbi
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099 CNRS, Université Paris Diderot, Sorbonne Paris Cité, PSL Research University, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Anne Plessis
- Institut Jacques Monod UMR 7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Lucia Bruzzone
- Institut Jacques Monod UMR 7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Matthieu Sanial
- Institut Jacques Monod UMR 7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099 CNRS, Université Paris Diderot, Sorbonne Paris Cité, PSL Research University, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
16
|
Zerze GH, Best RB, Mittal J. Sequence- and Temperature-Dependent Properties of Unfolded and Disordered Proteins from Atomistic Simulations. J Phys Chem B 2015; 119:14622-30. [PMID: 26498157 DOI: 10.1021/acs.jpcb.5b08619] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use all-atom molecular simulation with explicit solvent to study the properties of selected intrinsically disordered proteins and unfolded states of foldable proteins, which include chain dimensions and shape, secondary structure propensity, solvent accessible surface area, and contact formation. We find that the qualitative scaling behavior of the chains matches expectations from theory under ambient conditions. In particular, unfolded globular proteins tend to be more collapsed under the same conditions than charged disordered sequences of the same length. However, inclusion of explicit solvent in addition naturally captures temperature-dependent solvation effects, which results in an initial collapse of the chains as temperature is increased, in qualitative agreement with experiment. There is a universal origin to the collapse, revealed in the change of hydration of individual residues as a function of temperature: namely, that the initial collapse is driven by unfavorable solvation free energy of individual residues, which in turn has a strong temperature dependence. We also observe that in unfolded globular proteins, increased temperature also initially favors formation of native-like (rather than non-native-like) structure. Our results help to establish how sequence encodes the degree of intrinsic disorder or order as well as its response to changes in environmental conditions.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Robert B Best
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
17
|
Wuttke R, Hofmann H, Nettels D, Borgia MB, Mittal J, Best RB, Schuler B. Temperature-dependent solvation modulates the dimensions of disordered proteins. Proc Natl Acad Sci U S A 2014; 111:5213-8. [PMID: 24706910 PMCID: PMC3986154 DOI: 10.1073/pnas.1313006111] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For disordered proteins, the dimensions of the chain are an important property that is sensitive to environmental conditions. We have used single-molecule Förster resonance energy transfer to probe the temperature-induced chain collapse of five unfolded or intrinsically disordered proteins. Because this behavior is sensitive to the details of intrachain and chain-solvent interactions, the collapse allows us to probe the physical interactions governing the dimensions of disordered proteins. We find that each of the proteins undergoes a collapse with increasing temperature, with the most hydrophobic one, λ-repressor, undergoing a reexpansion at the highest temperatures. Although such a collapse might be expected due to the temperature dependence of the classical "hydrophobic effect," remarkably we find that the largest collapse occurs for the most hydrophilic, charged sequences. Using a combination of theory and simulation, we show that this result can be rationalized in terms of the temperature-dependent solvation free energies of the constituent amino acids, with the solvation properties of the most hydrophilic residues playing a large part in determining the collapse.
Collapse
Affiliation(s)
- René Wuttke
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Hagen Hofmann
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | - Jeetain Mittal
- Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015; and
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Digestive and Diabetes and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
18
|
Toal SE, Verbaro DJ, Schweitzer-Stenner R. Role of Enthalpy–Entropy Compensation Interactions in Determining the Conformational Propensities of Amino Acid Residues in Unfolded Peptides. J Phys Chem B 2014; 118:1309-18. [DOI: 10.1021/jp500181d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siobhan E. Toal
- Departments of Chemistry and ‡Biology, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J. Verbaro
- Departments of Chemistry and ‡Biology, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, United States
| | - Reinhard Schweitzer-Stenner
- Departments of Chemistry and ‡Biology, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Foley J, Hill SE, Miti T, Mulaj M, Ciesla M, Robeel R, Persichilli C, Raynes R, Westerheide S, Muschol M. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth. J Chem Phys 2013; 139:121901. [PMID: 24089713 PMCID: PMC3716784 DOI: 10.1063/1.4811343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/03/2013] [Indexed: 11/14/2022] Open
Abstract
Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.
Collapse
Affiliation(s)
- Joseph Foley
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Aznauryan M, Nettels D, Holla A, Hofmann H, Schuler B. Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J Am Chem Soc 2013; 135:14040-3. [PMID: 24010673 DOI: 10.1021/ja407009w] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent Förster resonance energy transfer (FRET) experiments show that heat-unfolded states of proteins become more compact with increasing temperature. At the same time, NMR results indicate that cold-denatured proteins are more expanded than heat-denatured proteins. To clarify the connection between these observations, we investigated the unfolded state of yeast frataxin, whose cold denaturation occurs at temperatures above 273 K, with single-molecule FRET. This method allows the unfolded state dimensions to be probed not only in the cold- and heat-denatured range but also in between, i.e., in the presence of folded protein, and can thus be used to link the two regimes directly. The results show a continuous compaction of unfolded frataxin from 274 to 320 K, with a slight re-expansion at higher temperatures. Cold- and heat-denatured states are thus essentially two sides of the same coin, and their behavior can be understood within the framework of the overall temperature dependence of the unfolded state dimensions.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Department of Biochemistry, University of Zurich , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Abstract
Using a newly developed microsecond pressure-jump apparatus, we monitor the refolding kinetics of the helix-stabilized five-helix bundle protein λ*YA, the Y22W/Q33Y/G46,48A mutant of λ-repressor fragment 6-85, from 3 μs to 5 ms after a 1,200-bar P-drop. In addition to a microsecond phase, we observe a slower 1.4-ms phase during refolding to the native state. Unlike temperature denaturation, pressure denaturation produces a highly reversible helix-coil-rich state. This difference highlights the importance of the denatured initial condition in folding experiments and leads us to assign a compact nonnative helical trap as the reason for slower P-jump-induced refolding. To complement the experiments, we performed over 50 μs of all-atom molecular dynamics P-drop refolding simulations with four different force fields. Two of the force fields yield compact nonnative states with misplaced α-helix content within a few microseconds of the P-drop. Our overall conclusion from experiment and simulation is that the pressure-denatured state of λ*YA contains mainly residual helix and little β-sheet; following a fast P-drop, at least some λ*YA forms misplaced helical structure within microseconds. We hypothesize that nonnative helix at helix-turn interfaces traps the protein in compact nonnative conformations. These traps delay the folding of at least some of the population for 1.4 ms en route to the native state. Based on molecular dynamics, we predict specific mutations at the helix-turn interfaces that should speed up refolding from the pressure-denatured state, if this hypothesis is correct.
Collapse
|
22
|
Toal S, Meral D, Verbaro D, Urbanc B, Schweitzer-Stenner R. pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study. J Phys Chem B 2013; 117:3689-706. [PMID: 23448349 DOI: 10.1021/jp310466b] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several lines of evidence now well establish that unfolded peptides in general, and alanine in specific, have an intrinsic preference for the polyproline II (pPII) conformation. Investigation of local order in the unfolded state is, however, complicated by experimental limitations and the inherent dynamics of the system, which has in some cases yielded inconsistent results from different types of experiments. One method of studying these systems is the use of short model peptides, and specifically short alanine peptides, known for predominantly sampling pPII structure in aqueous solution. Recently, He et al. ( J. Am. Chem. Soc. 2012 , 134 , 1571 - 1576 ) proposed that unblocked tripeptides may not be suitable models for studying conformational propensities in unfolded peptides due to the presence of end effect, that is, electrostatic interactions between investigated amino acid residues and terminal charges. To determine whether changing the protonation states of the N- and C-termini influence the conformational manifold of the central amino acid residue in tripeptides, we have examined the pH-dependence of unblocked trialanine and the conformational preferences of alanine in the alanine dipeptide. To this end, we measured and globally analyzed amide I' band profiles and NMR J-coupling constants. We described conformational distributions as the superposition of two-dimensional Gaussian distributions assignable to specific subspaces of the Ramachandran plot. Results show that the conformational ensemble of trialanine as a whole, and the pPII content (χpPII = 0.84) in particular, remains practically unaffected by changing the protonation state. We found that compared to trialanine, the alanine dipeptide has slightly lower pPII content (χpPII = 0.74) and an ensemble more reminiscent of the unblocked Gly-Ala-Gly model peptide. In addition, a two-state thermodynamic analysis of the conformational sensitive Δε(T) and (3)J(H(N)H(α))(T) data obtained from electronic circular dichroism and H NMR spectra indicate that the free energy landscape of trialanine is similar in all protonation states. MD simulations for the investigated peptides corroborate this notion and show further that the hydration shell around unblocked trialanine is unaffected by the protonation/deprotonation of the C-terminal group. In contrast, the alanine dipeptide shows a reduced water density around the central residue as well as a less ordered hydration shell, which decreases the pPII propensity and reduces the lifetime of sampled conformations.
Collapse
Affiliation(s)
- Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
23
|
Rybka K, Toal SE, Verbaro DJ, Mathieu D, Schwalbe H, Schweitzer-Stenner R. Disorder and order in unfolded and disordered peptides and proteins: a view derived from tripeptide conformational analysis. II. Tripeptides with short side chains populating asx and β-type like turn conformations. Proteins 2013; 81:968-83. [PMID: 23229867 DOI: 10.1002/prot.24226] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/07/2012] [Accepted: 11/21/2012] [Indexed: 11/08/2022]
Abstract
In the preceding paper, we found that ensembles of tripeptides with long or bulky chains can include up to 20% of various turns. Here, we determine the structural and thermodynamic characteristics of GxG peptides with short polar and/or ionizable central residues (D, N, C), whose conformational distributions exhibit higher than average percentage (>20%) of turn conformations. To probe the side-chain conformations of these peptides, we determined the (3)J(H(α),H(β)) coupling constants and derived the population of three rotamers with χ1 -angles of -60°, 180° and 60°, which were correlated with residue propensities by DFT-calculations. For protonated GDG, the rotamer distribution provides additional evidence for asx-turns. A comparison of vibrational spectra and NMR coupling constants of protonated GDG, ionized GDG, and the protonated aspartic acid dipeptide revealed that side chain protonation increases the pPII content at the expense of turn populations. The charged terminal groups, however, have negligible influence on the conformational properties of the central residue. Like protonated GDG, cationic GCG samples asx-turns to a significant extent. The temperature dependence of the UVCD spectra and (3)J(H(N)H(α)) constants suggest that the turn populations of GDG and GNG are practically temperature-independent, indicating enthalpic and entropic stabilization. The temperature-independent J-coupling and UVCD spectra of GNG require a three-state model. Our results indicate that short side chains with hydrogen bonding capability in GxG segments of proteins may serve as hinge regions for establishing compact structures of unfolded proteins and peptides.
Collapse
Affiliation(s)
- Karin Rybka
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Prigozhin MB, Gruebele M. Microsecond folding experiments and simulations: a match is made. Phys Chem Chem Phys 2013; 15:3372-88. [PMID: 23361200 PMCID: PMC3632410 DOI: 10.1039/c3cp43992e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
For the past two decades, protein folding experiments have been speeding up from the second or millisecond time scale to the microsecond time scale, and full-atom simulations have been extended from the nanosecond to the microsecond and even millisecond time scale. Where the two meet, it is now possible to compare results directly, allowing force fields to be validated and refined, and allowing experimental data to be interpreted in atomistic detail. In this perspective we compare recent experiments and simulations on the microsecond time scale, pointing out the progress that has been made in determining native structures from physics-based simulations, refining experiments and simulations to provide more quantitative underlying mechanisms, and tackling the problems of multiple reaction coordinates, downhill folding, and complex underlying structure of unfolded or misfolded states.
Collapse
Affiliation(s)
- M. B. Prigozhin
- Department of Chemistry, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
| | - M. Gruebele
- Department of Chemistry, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
- Department of Physics, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
| |
Collapse
|
25
|
Kjaergaard M, Poulsen FM, Kragelund BB. Analyzing temperature-induced transitions in disordered proteins by NMR spectroscopy and secondary chemical shift analyses. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 896:249-56. [PMID: 22821529 DOI: 10.1007/978-1-4614-3704-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins using chemical shifts.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
26
|
Kjaergaard M, Poulsen FM, Kragelund BB. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy. Methods Mol Biol 2012; 896:233-47. [PMID: 22821528 DOI: 10.1007/978-1-4614-3704-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
27
|
Prigozhin MB, Gruebele M. The fast and the slow: folding and trapping of λ6-85. J Am Chem Soc 2011; 133:19338-41. [PMID: 22066714 DOI: 10.1021/ja209073z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations combining many microsecond trajectories have recently predicted that a very fast folding protein like lambda repressor fragment λ(6-85) D14A could have a slow millisecond kinetic phase. We investigated this possibility by detecting temperature-jump relaxation to 5 ms. While λ(6-85) D14A has no significant slow phase, two even more stable mutants do. A slow phase of λ(6-85) D14A does appear in mild denaturant. The experimental data and computational modeling together suggest the following hypothesis: λ(6-85) takes only microseconds to reach its native state from an extensively unfolded state, while the latter takes milliseconds to reach compact β-rich traps. λ(6-85) is not only thermodynamically but also kinetically protected from reaching such "intramolecular amyloids" while folding.
Collapse
Affiliation(s)
- Maxim B Prigozhin
- Department of Chemistry and Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
28
|
Li W, Qin M, Tie Z, Wang W. Effects of solvents on the intrinsic propensity of peptide backbone conformations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041933. [PMID: 22181201 DOI: 10.1103/physreve.84.041933] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/16/2011] [Indexed: 05/31/2023]
Abstract
We investigated the effects of solvents on the intrinsic propensity of peptide backbone conformations based on molecular dynamics simulations. The results show that compared with pure water, aqueous urea decreases the helix propensity. In comparison, methanol decreases the polyproline II (PPII) propensity. Such a solvent dependence of the intrinsic propensity of the backbone conformation is correlated with the solvent dependence of the hydration of the backbone groups and the formation probability of the local intrapeptide hydrogen bonds. Aqueous urea which has low ability to stabilize the local intrapeptide hydrogen bonds disfavors the helical conformation. Whereas, methanol which has low ability to hydrate the backbone groups disfavors the polyproline II conformation. In addition, the solvent effects can be further modulated by the side chains of the peptides. The solvent effects of the intrinsic propensity of peptide backbone conformations observed in this work suggest that changing the intrinsic propensity of the protein backbone conformations can partly contribute to the solvent-induced protein structure and dynamics variations. These results will be useful in understanding the solvent dependence of the conformational distributions of the unfolded proteins or peptides (or intrinsically disordered proteins) in which the global tertiary interactions are less important than that in the well-folded proteins.
Collapse
Affiliation(s)
- Wenfei Li
- National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, China
| | | | | | | |
Collapse
|
29
|
Bowman GR, Voelz VA, Pande VS. Atomistic folding simulations of the five-helix bundle protein λ(6−85). J Am Chem Soc 2011; 133:664-7. [PMID: 21174461 DOI: 10.1021/ja106936n] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein folding is a classic grand challenge that is relevant to numerous human diseases, such as protein misfolding diseases like Alzheimer’s disease. Solving the folding problem will ultimately require a combination of theory, simulation, and experiment, with theory and simulation providing an atomically detailed picture of both the thermodynamics and kinetics of folding and experimental tests grounding these models in reality. However, theory and simulation generally fall orders of magnitude short of biologically relevant time scales. Here we report significant progress toward closing this gap: an atomistic model of the folding of an 80-residue fragment of the λ repressor protein with explicit solvent that captures dynamics on a 10 milliseconds time scale. In addition, we provide a number of predictions that warrant further experimental investigation. For example, our model’s native state is a kinetic hub, and biexponential kinetics arises from the presence of many free-energy basins separated by barriers of different heights rather than a single low barrier along one reaction coordinate (the previously proposed incipient downhill folding scenario).
Collapse
Affiliation(s)
- Gregory R Bowman
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | | |
Collapse
|
30
|
Anand P, Hansmann UHE. Internal and environmental effects on folding and dimerization of the Alzheimer's β amyloid peptide. MOLECULAR SIMULATION 2011; 37:10.1080/08927022.2011.551879. [PMID: 24353373 PMCID: PMC3864693 DOI: 10.1080/08927022.2011.551879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Amyloid deposits are a hallmark of many diseases. In the case of Alzheimer's disease a turn between 21Ala and 30Ala, stabilized by a salt bridge between 22Glu/23Asp and 28Lys, may nucleate folding and aggregation of the Aβ peptide. In the present paper we test this hypothesis by studying how salt bridge and turn formation vary with intrinsic and environmental changes, and how these changes effect folding and aggregation of the Aβ peptide.
Collapse
Affiliation(s)
- Priya Anand
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA
| | - Ulrich H E Hansmann
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
31
|
Prigozhin MB, Sarkar K, Law D, Swope WC, Gruebele M, Pitera J. Reducing lambda repressor to the core. J Phys Chem B 2011; 115:2090-6. [PMID: 21319829 DOI: 10.1021/jp110175x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lambda repressor fragment λ(*)(6-85) is one of the fastest folding small protein fragments known to date. We hypothesized that removal of three out of five helices of λ(*)(6-85) would further reduce this protein to its smallest folding core. Molecular dynamics simulations singled out two energetically stable reduced structures consisting of only helices 1 and 4 connected by a short glycine/serine linker, as well as a less stable control. We investigated these three polypeptides and their fragments experimentally by using circular dichroism, fluorescence spectroscopy, and temperature jump relaxation spectroscopy to gain insight into their thermodynamic and kinetic properties. Based on the thermal melts, the order of peptide stability was in correspondence with theoretical predictions. The most stable two-helix bundle, λ(blue1), is a cooperatively folding miniprotein with the same melting temperature and folding rate as the full-length λ(*)(6-85) pseudo wild type and a well-defined computed structure.
Collapse
Affiliation(s)
- Maxim B Prigozhin
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
32
|
Verbaro D, Ghosh I, Nau WM, Schweitzer-Stenner R. Discrepancies between Conformational Distributions of a Polyalanine Peptide in Solution Obtained from Molecular Dynamics Force Fields and Amide I′ Band Profiles. J Phys Chem B 2010; 114:17201-8. [PMID: 21138254 DOI: 10.1021/jp109404r] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Daniel Verbaro
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States, and School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Indrajit Ghosh
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States, and School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Werner M. Nau
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States, and School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States, and School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| |
Collapse
|
33
|
Kjaergaard M, Nørholm AB, Hendus-Altenburger R, Pedersen SF, Poulsen FM, Kragelund BB. Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II? Protein Sci 2010; 19:1555-64. [PMID: 20556825 DOI: 10.1002/pro.435] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Structural characterization of intrinsically disordered proteins (IDPs) is mandatory for deciphering their potential unique physical and biological properties. A large number of circular dichroism (CD) studies have demonstrated that a structural change takes place in IDPs with increasing temperature, which most likely reflects formation of transient alpha-helices or loss of polyproline II (PPII) content. Using three IDPs, ACTR, NHE1, and Spd1, we show that the temperature-induced structural change is common among IDPs and is accompanied by a contraction of the conformational ensemble. This phenomenon was explored at residue resolution by multidimensional NMR spectroscopy. Intrinsic chemical shift referencing allowed us to identify regions of transiently formed helices and their temperature-dependent changes in helicity. All helical regions were found to lose rather than gain helical structures with increasing temperature, and accordingly these were not responsible for the change in the CD spectra. In contrast, the nonhelical regions exhibited a general temperature-dependent structural change that was independent of long-range interactions. The temperature-dependent CD spectroscopic signature of IDPs that has been amply documented can be rationalized to represent redistribution of the statistical coil involving a general loss of PPII conformations.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
Jollymore A, Li H. Measuring “Unmeasurable” Folding Kinetics of Proteins by Single-Molecule Force Spectroscopy. J Mol Biol 2010; 402:610-7. [DOI: 10.1016/j.jmb.2010.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 07/29/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
35
|
Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. Proc Natl Acad Sci U S A 2010; 107:12535-40. [PMID: 20616042 DOI: 10.1073/pnas.1001693107] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Native molten globules are the most folded kind of intrinsically disordered proteins. Little is known about the mechanism by which native molten globules bind to their cognate ligands to form fully folded complexes. The nuclear coactivator binding domain (NCBD) of CREB binding protein is particularly interesting in this respect as structural studies of its complexes have shown that NCBD folds into two remarkably different states depending on the ligand being ACTR or IRF-3. The ligand-free state of NCBD was characterized in order to understand the mechanism of folding upon ligand binding. Biophysical studies show that despite the molten globule nature of the domain, it contains a small cooperatively folded core. By NMR spectroscopy, we have demonstrated that the folded core of NCBD has a well ordered conformer with specific side chain packing. This conformer resembles the structure of the NCBD in complex with the protein ligand, ACTR, suggesting that ACTR binds to prefolded NCBD molecules from the ensemble of interconverting structures.
Collapse
|
36
|
Pizzanelli S, Forte C, Monti S, Zandomeneghi G, Hagarman A, Measey TJ, Schweitzer-Stenner R. Conformations of phenylalanine in the tripeptides AFA and GFG probed by combining MD simulations with NMR, FTIR, polarized Raman, and VCD spectroscopy. J Phys Chem B 2010; 114:3965-78. [PMID: 20184301 DOI: 10.1021/jp907502n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conformational properties of small, flexible peptides are a matter of ongoing interest since they can be considered as models for unfolded proteins. However, the investigation of the conformations of small peptides is challenging as they are ensembles of rapidly interconverting conformers; moreover, the different methods used are prone to different approximations and errors. In order to obtain more reliable results, it is prudent to combine different techniques; here, molecular dynamics (MD) simulations together with nuclear magnetic resonance (NMR), Fourier transform IR (FTIR), polarized Raman, and vibrational circular dichroism (VCD) measurements were used to study the conformational propensity of phenylalanine in the tripeptides AFA and GFG, motivated by the relevance of phenylalanine for the self-aggregation of peptides. The results of this analysis indicate that the F residue predominantly populates the beta-strand (beta) and polyproline II (PPII) conformations in both AFA and GFG. However, while phenylalanine exhibits a propensity for beta-strand conformations in GFG (0.40 < or = beta population < or = 0.69 and 0.29 < or = PPII population < or = 0.42), the substitution of terminal glycines with alanine residues induces a higher population of PPII (0.31 < or = beta population < or = 0.50 and 0.37 < or = PPII population < or = 0.57).
Collapse
Affiliation(s)
- Silvia Pizzanelli
- Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, Area della Ricerca di Pisa, via G. Moruzzi, 1 56124 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Holthauzen LMF, Rösgen J, Bolen DW. Hydrogen bonding progressively strengthens upon transfer of the protein urea-denatured state to water and protecting osmolytes. Biochemistry 2010; 49:1310-8. [PMID: 20073511 PMCID: PMC2817916 DOI: 10.1021/bi9015499] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using osmolyte cosolvents, we show that hydrogen-bonding contributions can be separated from hydrophobic interactions in the denatured state ensemble (DSE). Specifically, the effects of urea and the protecting osmolytes sarcosine and TMAO are reported on the thermally unfolded DSE of Nank4-7*, a truncated notch ankyrin protein. The high thermal energy of this state in the presence and absence of 6 M urea or 1 M sarcosine solution is sufficient to allow large changes in the hydrodynamic radius (R(h)) and secondary structure accretion without populating the native state. The CD change at 228 nm is proportional to the inverse of the volume of the DSE, giving a compact species equivalent to a premolten globule in 1 M sarcosine. The same general effects portraying hierarchical folding observed in the DSE at 55 degrees C are also often seen at room temperature. Analysis of Nank4-7* DSE structural energetics at room temperature as a function of solvent provides rationale for understanding the structural and dimensional effects in terms of how modulation of the solvent alters solvent quality for the peptide backbone. Results show that while the strength of hydrophobic interactions changes little on transferring the DSE from 6 M urea to water and then to 1 M TMAO, backbone-backbone (hydrogen-bonding) interactions are greatly enhanced due to progressively poorer solvent quality for the peptide backbone. Thus, increased intrachain hydrogen bonding guides secondary structure accretion and DSE contraction as solvent quality is decreased. This process is accompanied by increasing hydrophobic contacts as chain contraction gathers hydrophobes into proximity and the declining urea-backbone free energy gradient reaches urea concentrations that are energetically insufficient to keep hydrophobes apart in the DSE.
Collapse
Affiliation(s)
- Luis Marcelo F Holthauzen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1052, USA
| | | | | |
Collapse
|
38
|
Liu F, Maynard C, Scott G, Melnykov A, Hall KB, Gruebele M. A natural missing link between activated and downhill protein folding scenarios. Phys Chem Chem Phys 2010; 12:3542-9. [PMID: 20336253 PMCID: PMC7382783 DOI: 10.1039/b925033f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We propose protein PTB1 : 4W as a good candidate for engineering into a downhill folder. PTB1 : 4W has a probe-dependent thermal unfolding curve and sub-millisecond T-jump relaxation kinetics on more than one time scale. Its refolding rate in denaturant is a non-linear function of denaturant concentration (curved chevron plot). Yet at high denaturant concentration its unfolding is probe-independent, and the folding kinetics can be fitted to a single exponential decay. The domain appears to fold via a mechanism between downhill folding and activated folding over several small barriers, and when denaturant is added, one of these barriers greatly increases and simplifies the observed folding to apparent two-state kinetics. We predict the simplest free energy function consistent with the thermal denaturation and kinetics experiments by using the singular value Smoluchowski dynamics (SVSD) model. PTB1 : 4W is a natural 'missing link' between downhill and activated folding. We suggest mutations that could move the protein into the downhill folding limit.
Collapse
Affiliation(s)
- Feng Liu
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Caroline Maynard
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory Scott
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Artem Melnykov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen B. Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Martin Gruebele
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, IL 61801, USA
| |
Collapse
|
39
|
Abstract
As discussed by Liang and Dill, Enright and Leitner, and others, proteins are not 3D objects. We study an expanded macromolecular data set ranging from proteins to RNA, lipids, and viruses, and remove surface effects and size bias. Molecules and molecular assemblies with more than 1000 backbone atoms have a volume fractal dimension of D(v) = 2.70 +/- 0.05 by the embedded sphere method and D(v) = 2.71 +/- 0.04 by the ensemble method using radius of gyration as the size measure. The much larger D(v) = 2.89 +/- 0.05 obtained with the average surface radius as the length measure shows that surface corrugation is as extensive as cavity formation. Using a simple "Swiss cheese" model for molecules, we show that the distribution of voids in the interior of molecules cannot be a Boltzmann distribution of void energy as a function of void size. Instead, frustration from imperfect packing builds up with molecular size, allowing larger voids to form in larger molecules. We find that large molecules lie halfway between the extremes of packing for homogeneous objects (D = 3) and Apollonian packing, which accounts for packing of a hierarchy of random-sized objects (D approximately 2.47).
Collapse
Affiliation(s)
- Praveen D Chowdary
- Department of Chemistry, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
40
|
Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc Natl Acad Sci U S A 2009; 106:20740-5. [PMID: 19933333 DOI: 10.1073/pnas.0900622106] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used single-molecule FRET in combination with other biophysical methods and molecular simulations to investigate the effect of temperature on the dimensions of unfolded proteins. With single-molecule FRET, this question can be addressed even under near-native conditions, where most molecules are folded, allowing us to probe a wide range of denaturant concentrations and temperatures. We find a compaction of the unfolded state of a small cold shock protein with increasing temperature in both the presence and the absence of denaturant, with good agreement between the results from single-molecule FRET and dynamic light scattering. Although dissociation of denaturant from the polypeptide chain with increasing temperature accounts for part of the compaction, the results indicate an important role for additional temperature-dependent interactions within the unfolded chain. The observation of a collapse of a similar extent in the extremely hydrophilic, intrinsically disordered protein prothymosin alpha suggests that the hydrophobic effect is not the sole source of the underlying interactions. Circular dichroism spectroscopy and replica exchange molecular dynamics simulations in explicit water show changes in secondary structure content with increasing temperature and suggest a contribution of intramolecular hydrogen bonding to unfolded state collapse.
Collapse
|
41
|
Kim SJ, Matsumura Y, Dumont C, Kihara H, Gruebele M. Slowing down downhill folding: a three-probe study. Biophys J 2009; 97:295-302. [PMID: 19580767 DOI: 10.1016/j.bpj.2009.04.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022] Open
Abstract
The mutant Tyr22Trp/Glu33Tyr/Gly46Ala/Gly48Ala of lambda repressor fragment lambda(6-85) was previously assigned as an incipient downhill folder. We slow down its folding in a cryogenic water-ethylene-glycol solvent (-18 to -28 degrees C). The refolding kinetics are probed by small-angle x-ray scattering, circular dichroism, and fluorescence to measure the radius of gyration, the average secondary structure content, and the native packing around the single tryptophan residue. The main resolved kinetic phase of the mutant is probe independent and faster than the main phase observed for the pseudo-wild-type. Excess helical structure formed early on by the mutant may reduce the formation of turns and prevent the formation of compact misfolded states, speeding up the overall folding process. Extrapolation of our main cryogenic folding phase and previous T-jump measurements to 37 degrees C yields nearly the same refolding rate as extrapolated by Oas and co-workers from NMR line-shape data. Taken together, all the data consistently indicate a folding speed limit of approximately 4.5 micros for this fast folder.
Collapse
Affiliation(s)
- Seung Joong Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|
42
|
Gaggelli E, Janicka-Klos A, Jankowska E, Kozlowski H, Migliorini C, Molteni E, Valensin D, Valensin G, Wieczerzak E. NMR studies of the Zn2+ interactions with rat and human beta-amyloid (1-28) peptides in water-micelle environment. J Phys Chem B 2007; 112:100-9. [PMID: 18072760 DOI: 10.1021/jp075168m] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease is a fatal neurodegenerative disorder involving the abnormal accumulation and deposition of peptides (amyloid-beta, Abeta) derived from the amyloid precursor protein. Here, we present the structure and the Zn2+ binding sites of human and rat Abeta(1-28) fragments in water/sodium dodecyl sulfate (SDS) micelles by using 1H NMR spectroscopy. The chemical shift variations measured after Zn2+ addition at T>310 K allowed us to assign the binding donor atoms in both rat and human zinc complexes. The Asp-1 amine, His-6 Ndelta, Glu-11 COO-, and His-13 Nepsilon of rat Abeta28 all enter the metal coordination sphere, while His-6 Ndelta, His-13, His-14 Nepsilon, Asp-1 amine, and/or Glu-11 COO- are all bound to Zn2+ in the case of human Abeta28. Finally, a comparison between the rat and human binding abilities was discussed.
Collapse
Affiliation(s)
- Elena Gaggelli
- Department of Chemistry, University of Siena, via Aldo Moro, 53-100 Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Strucksberg K, Rosenkranz T, Fitter J. Reversible and irreversible unfolding of multi-domain proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1591-603. [DOI: 10.1016/j.bbapap.2007.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 09/06/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
|
44
|
Sasahara K, Yagi H, Naiki H, Goto Y. Heat-induced Conversion of β2-Microglobulin and Hen Egg-white Lysozyme into Amyloid Fibrils. J Mol Biol 2007; 372:981-991. [PMID: 17681531 DOI: 10.1016/j.jmb.2007.06.088] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/25/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Thermodynamic parameters characterizing protein stability can be obtained for a fully reversible folding/unfolding system directly by differential scanning calorimetry (DSC). However, the reversible DSC profile can be altered by an irreversible step causing aggregation. Here, to obtain insight into amyloid fibrils, ordered and fibrillar aggregates responsible for various amyloidoses, we studied the effects on human beta(2)-microglobulin and hen egg-white lysozyme of a combination of agitation and heating. Aggregates formed by mildly agitating protein solutions in the native state in the presence of NaCl were heated in the cell of the DSC instrument. For beta(2)-microglobulin, with an increase in the concentration of NaCl at neutral pH, the thermogram began to show an exothermic transition accompanied by a large decrease in heat capacity, followed by a kinetically controlled thermal response. Similarly, the aggregated lysozyme at a high concentration of NaCl revealed a similar distinct transition in the DSC thermogram over a wide pH range. Electron microscopy demonstrated the conformational change into amyloid fibrils. Taken together, the combined use of agitation and heating is a powerful way to generate amyloid fibrils from two proteins, beta(2)-microglobulin and hen egg-white lysozyme, and to evaluate the effects of heat on fibrillation, in which the heat capacity is crucial to characterizing the transition.
Collapse
Affiliation(s)
- Kenji Sasahara
- Institute for Protein Research, Osaka University and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Hisashi Yagi
- Institute for Protein Research, Osaka University and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Hironobu Naiki
- Faculty of Medical Sciences, University of Fukui and CREST, Japan Science and Technology Agency, Eiheiji, Fukui 910-1193, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
45
|
Dumont C, Matsumura Y, Kim SJ, Li J, Kondrashkina E, Kihara H, Gruebele M. Solvent-tuning the collapse and helix formation time scales of lambda(6-85)*. Protein Sci 2007; 15:2596-604. [PMID: 17075136 PMCID: PMC2242409 DOI: 10.1110/ps.062257406] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The lambda(6-85)(*) pseudo-wild type of lambda repressor fragment is a fast two-state folder (k(f) approximately 35 microsec(-1) at 58 degrees C). Previously, highly stable lambda(6-85)(*) mutants with k(f) > 30 microsec(-1) have been engineered to fold nearly or fully downhill. Stabilization of the native state by solvent tuning might also tune lambda(6-85)(*) away from two-state folding. We test this prediction by examining the folding thermodynamics and kinetics of lambda(6-85)(*) in a stabilizing solvent, 45% by weight aqueous ethylene glycol at -28 degrees C. Detection of kinetics by circular dichroism at 222 nm (sensitive to helix content) and small angle X-ray scattering (measuring the radius of gyration) shows that refolding from guanidine hydrochloride denatured conditions exhibits very different time scales for collapse and secondary structure formation: the two processes become decoupled. Collapse remains a low-barrier activated process, while the fastest of several secondary structure formation time scales approaches the downhill folding limit. Two-state folding of lambda(6-85)(*) is not a robust process.
Collapse
Affiliation(s)
- Charles Dumont
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Finke JM, Jennings PA, Lee JC, Onuchic JN, Winkler JR. Equilibrium unfolding of the poly(glutamic acid)20 helix. Biopolymers 2007; 86:193-211. [PMID: 17370320 DOI: 10.1002/bip.20719] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The equilibrium structural ensemble of a 20-residue polyglutamic acid peptide (E(20)) was studied with FRET, circular dichroism, and molecular dynamics (MD) simulations. A FRET donor, o-aminobenzamide, and acceptor, 3-nitrotyrosine, were introduced at the N- and C-termini, respectively. Circular dichroism, steady state FRET, and time-resolved FRET measurements were employed to characterize the fraction helix and end-to-end distance under different pH conditions: pH 4 (60% alpha-helix), pH 6 (0% alpha-helix), and pH 9 (0% alpha-helix). At pH 4, the end-to-end distance was measured at 24 A and determined to be considerably less than the 31 A predicted for an alpha-helix of the same length. At pH 6 and 9, the end-to-end distance was measured at > 31 and 39 A respectively, both which are determined to be considerably greater than the 27 A predicted for a freely jointed random coil of the same length. To better understand the physical forces underlying the unusual helix-coil transition in this peptide, three theoretical MD models of E(20) were constructed: (1) a pure alpha-helix, (2) an alpha-helix with equivalent attractive intramolecular contacts, and (3) a weak alpha-helix with termini-weighted intramolecular contacts ("sticky ends"). Using MD simulations, the bent helix structure calculated from Model 3 was found to be the closest in agreement with the experimental data.
Collapse
Affiliation(s)
- John M Finke
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, USA.
| | | | | | | | | |
Collapse
|
47
|
Fuda C, Hesek D, Lee M, Heilmayer W, Novak R, Vakulenko SB, Mobashery S. Mechanistic Basis for the Action of New Cephalosporin Antibiotics Effective against Methicillin- and Vancomycin-resistant Staphylococcus aureus. J Biol Chem 2006; 281:10035-41. [PMID: 16459335 DOI: 10.1074/jbc.m508846200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created challenges in treatment of nosocomial infections. The recent clinical emergence of vancomycin-resistant MRSA is a new disconcerting chapter in the evolution of these strains. S. aureus normally produces four PBPs, which are susceptible to modification by beta-lactam antibiotics, an event that leads to bacterial death. The gene product of mecA from MRSA is a penicillin-binding protein (PBP) designated PBP 2a. PBP 2a is refractory to the action of all commercially available beta-lactam antibiotics. Furthermore, PBP 2a is capable of taking over the functions of the other PBPs of S. aureus in the face of the challenge by beta-lactam antibiotics. Three cephalosporins (compounds 1-3) have been studied herein, which show antibacterial activities against MRSA, including the clinically important vancomycin-resistant strains. These cephalosporins exhibit substantially smaller dissociation constants for the preacylation complex compared with the case of typical cephalosporins, but their pseudo-second-order rate constants for encounter with PBP 2a (k(2)/K(s)) are not very large (< or =200 m(-1) s(-1)). It is documented herein that these cephalosporins facilitate a conformational change in PBP 2a, a process that is enhanced in the presence of a synthetic surrogate for cell wall, resulting in increases in the k(2)/K(s) parameter and in more facile enzyme inhibition. These findings argue that the novel cephalosporins are able to co-opt interactions between PBP 2a and the cell wall in gaining access to the active site in the inhibition process, a set of events that leads to effective inhibition of PBP 2a and the attendant killing of the MRSA strains.
Collapse
Affiliation(s)
- Cosimo Fuda
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Benjwal S, Verma S, Röhm KH, Gursky O. Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Sci 2006; 15:635-9. [PMID: 16452626 PMCID: PMC2249783 DOI: 10.1110/ps.051917406] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Thermal unfolding monitored by spectroscopy or calorimetry is widely used to determine protein stability. Equilibrium thermodynamic analysis of such unfolding is often hampered by its irreversibility, which usually results from aggregation of thermally denatured protein. In addition, heat-induced protein misfolding and aggregation often lead to formation of amyloid-like structures. We propose a convenient method to monitor in real time protein aggregation during thermal folding/ unfolding transition by recording turbidity or 90 degrees light scattering data in circular dichroism (CD) spectroscopic experiments. Since the measurements of turbidity and 90 degrees light scattering can be done simultaneously with far- or near-UV CD data collection, they require no additional time or sample and can be directly correlated with the protein conformational changes monitored by CD. The results can provide useful insights into the origins of irreversible conformational changes and test the linkage between protein unfolding or misfolding and aggregation in various macromolecular systems, including globular proteins and protein-lipid complexes described in this study, as well as a wide range of amyloid-forming proteins and peptides.
Collapse
Affiliation(s)
- Sangeeta Benjwal
- Department of Physiology and Biophysics, Boston University School of Medicine, W329, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The free energy per monomer of a protein aggregate varies with the number of participating monomers n. The change of this free energy with aggregate size, DeltaDeltaG(n), is difficult to determine by sedimentation or concentration studies. We introduce a kinetic approach to quantitate the free energy of aggregates in the presence of tethers. By linking the protein U1A into dimers and trimers, a high effective concentration of the monomers is achieved, together with exact size control of the aggregates. We found that the free energy of the aggregate relative to the native monomer reached a maximum for n = 2, and decreased by DeltaDeltaG(2) = -3.1 kT between dimer and trimer.
Collapse
Affiliation(s)
- Wei Yuan Yang
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, 61801, USA
| | | |
Collapse
|
50
|
Gruebele M. Downhill protein folding: evolution meets physics. C R Biol 2005; 328:701-12. [PMID: 16125648 DOI: 10.1016/j.crvi.2005.02.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 02/08/2005] [Accepted: 02/23/2005] [Indexed: 11/30/2022]
Abstract
Proteins can be redesigned to fold downhill on a free energy surface characterized by only a few coordinates, confirming a principal prediction of the 'energy-landscape' model. Nonetheless, natural proteins have small but significant barriers. Spectroscopy and kinetics reveal potential biological causes for activation barriers during protein folding: evolution against protein aggregation and for protein function.
Collapse
Affiliation(s)
- Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|