1
|
Ramakrishnan S, Anjukandi P. Superoxide to Peroxide Interconversion in Ni-TMC Complexes: The Significance of Structure and Spin States. Inorg Chem 2024; 63:15186-15196. [PMID: 39072391 DOI: 10.1021/acs.inorgchem.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A deeper comprehension of the characteristics of metal-superoxide and metal-peroxide chemical species is imperative, considering their pivotal functions in oxygen transport, enzymatic activation, and catalytic oxygenations. O2 activation is mediated by the interconversion of superoxide and peroxide species. Even though there are multiple studies on metal-superoxide and -peroxide intermediates, robust examples of their interconversion processes are scarce synthetically. For example, Ni-superoxide/peroxide complexes have been characterized with N-Tetramethylated Cyclam (TMC) ligands with different ring sizes, i.e., Nickel(II)-superoxide complex is characterized with 14-TMC while Nickel(III)-peroxide complex with 12-TMC. Later, both complexes were obtained with 13-TMC ligand by employing different bases; interestingly, no evidence of interconversion between them was identified. What are the factors influencing these processes and why is this preference? We attempt a computational analysis of this issue and provide arguments based on our conclusions. 2-dimensional potential energy scan is performed on the 12-TMC, 13-TMC, and 14-TMC systems to identify the reaction path connecting superoxide and peroxide species. Analyses indicate that structure and spin states play a significant role in determining the probability of interconversion. The superoxide-peroxide interconversion process appears to be bound by their propensity for distinct structural features and spin states.
Collapse
Affiliation(s)
- Shyama Ramakrishnan
- Department of Chemistry, Indian Institute of Technology, Kanjikode, Palakkad, Kerala 678623, India
| | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Kanjikode, Palakkad, Kerala 678623, India
| |
Collapse
|
2
|
Li RN, Chen SL. Mechanistic Insights into the N-Hydroxylations Catalyzed by the Binuclear Iron Domain of SznF Enzyme: Key Piece in the Synthesis of Streptozotocin. Chemistry 2024; 30:e202303845. [PMID: 38212866 DOI: 10.1002/chem.202303845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
SznF, a member of the emerging family of heme-oxygenase-like (HO-like) di-iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of Nω-methyl-L-arginine (L-NMA) into N-nitroso-containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L-NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O-O bond dissociation, forming Fe(IV)=O, induced by the H+/e- introduction to the FeA side of μ-1,2-peroxo-Fe2(III/III), the substrate hydrogen abstraction by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H+/e- to the FeB side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O-O bond dissociation (mechanism A) and the addition of H2O as a co-substrate (mechanism D), have been ruled out.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
McBride MJ, Nair MA, Sil D, Slater JW, Neugebauer M, Chang MCY, Boal AK, Krebs C, Bollinger JM. Substrate-Triggered μ-Peroxodiiron(III) Intermediate in the 4-Chloro-l-Lysine-Fragmenting Heme-Oxygenase-like Diiron Oxidase (HDO) BesC: Substrate Dissociation from, and C4 Targeting by, the Intermediate. Biochemistry 2022; 61:689-702. [PMID: 35380785 PMCID: PMC9047515 DOI: 10.1021/acs.biochem.1c00774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme BesC from the β-ethynyl-l-serine biosynthetic pathway in Streptomyces cattleya fragments 4-chloro-l-lysine (produced from l-Lysine by BesD) to ammonia, formaldehyde, and 4-chloro-l-allylglycine and can analogously fragment l-Lys itself. BesC belongs to the emerging family of O2-activating non-heme-diiron enzymes with the "heme-oxygenase-like" protein fold (HDOs). Here, we show that the binding of l-Lys or an analogue triggers capture of O2 by the protein's diiron(II) cofactor to form a blue μ-peroxodiiron(III) intermediate analogous to those previously characterized in two other HDOs, the olefin-installing fatty acid decarboxylase, UndA, and the guanidino-N-oxygenase domain of SznF. The ∼5- and ∼30-fold faster decay of the intermediate in reactions with 4-thia-l-Lys and (4RS)-chloro-dl-lysine than in the reaction with l-Lys itself and the primary deuterium kinetic isotope effects (D-KIEs) on decay of the intermediate and production of l-allylglycine in the reaction with 4,4,5,5-[2H4]-l-Lys suggest that the peroxide intermediate or a reversibly connected successor complex abstracts a hydrogen atom from C4 to enable olefin formation. Surprisingly, the sluggish substrate l-Lys can dissociate after triggering intermediate formation, thereby allowing one of the better substrates to bind and react. The structure of apo BesC and the demonstrated linkage between Fe(II) and substrate binding suggest that the triggering event involves an induced ordering of ligand-providing helix 3 (α3) of the conditionally stable HDO core. As previously suggested for SznF, the dynamic α3 also likely initiates the spontaneous degradation of the diiron(III) product cluster after decay of the peroxide intermediate, a trait emerging as characteristic of the nascent HDO family.
Collapse
Affiliation(s)
- Molly J. McBride
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mrutyunjay A. Nair
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Debangsu Sil
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jeffrey W. Slater
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Monica Neugebauer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Present address: Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michelle C. Y. Chang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Departments of Chemistry and of Molecular and Cell Biology, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
5
|
Shteinman AA. Bioinspired Oxidation of Methane: From Academic Models of Methane Monooxygenases to Direct Conversion of Methane to Methanol. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420030180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Chu YJ, Chen XM, Liu CG. Computational study on epoxidation of propylene by dioxygen using the silanol-functionalized polyoxometalate-supported osmium oxide catalyst. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00900k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The silanol-functionalized POM-supported single-site Os oxide catalyst has been theoretically considered for epoxidation of propylene in the presence of dioxygen based on density functional theory calculations.
Collapse
Affiliation(s)
- Yun-Jie Chu
- Department of Chemistry
- Faculty of Science
- Beihua University
- Jilin City
- P. R. China
| | - Xue-Mei Chen
- College of Chemical Engineering
- Northeast Electric Power University
- Jilin City
- P. R. China
| | - Chun-Guang Liu
- Department of Chemistry
- Faculty of Science
- Beihua University
- Jilin City
- P. R. China
| |
Collapse
|
7
|
Saito T, Fujiwara M, Takano Y. Quantitative Assessment of rPM6 for Fluorine- and Chlorine-Containing Metal Complexes: Comparison with Experimental, First-Principles, and Other Semiempirical Results. Molecules 2018; 23:E3332. [PMID: 30558286 PMCID: PMC6321459 DOI: 10.3390/molecules23123332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 11/17/2022] Open
Abstract
We report a reparameterization of PM6 parameters for fluorine and chlorine using our training set containing transition metal complexes. Spin unrestricted calculations with the resulting rPM6 (UrPM6) were examined quantitatively using two test sets: (i) the description of magnetic interactions in 25 dinuclear metal complexes and (ii) the prediction of barrier heights and reaction energies for epoxidation and fluorination reactions catalyzed by high-valent manganese-oxo species. The conventional UPM6 and UPM7 methods were also evaluated for comparison on the basis of either experimental or computational (the UB3LYP/SVP level) outcomes. The merits of UrPM6 are highlighted by both the test sets. As regards magnetic exchange coupling constants, the UrPM6 method had the smallest mean absolute errors from the experimental data (19 cm-1), followed by UPM7 (119 cm-1) and UPM6 (373 cm-1). For the epoxidation and fluorination reactions, all of the transition state searches were successful using UrPM6, while the success rates obtained by UPM6 and UPM7 were only 50%. The UrPM6-optimized stationary points also agreed well with the reference UB3LYP-optimized geometries. The accuracy for estimating reaction energies was also greatly remedied.
Collapse
Affiliation(s)
- Toru Saito
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima 731-3194, Japan.
| | - Manami Fujiwara
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima 731-3194, Japan.
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima 731-3194, Japan.
| |
Collapse
|
8
|
Cutsail GE, Banerjee R, Zhou A, Que L, Lipscomb JD, DeBeer S. High-Resolution Extended X-ray Absorption Fine Structure Analysis Provides Evidence for a Longer Fe···Fe Distance in the Q Intermediate of Methane Monooxygenase. J Am Chem Soc 2018; 140:16807-16820. [PMID: 30398343 DOI: 10.1021/jacs.8b10313] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite decades of intense research, the core structure of the methane C-H bond breaking diiron(IV) intermediate, Q, of soluble methane monooxygenase remains controversial, with conflicting reports supporting either a "diamond" diiron core structure or an open core structure. Early extended X-ray absorption fine structure (EXAFS) data assigned a short 2.46 Å Fe-Fe distance to Q (Shu et al. Science 1997, 275, 515 ) that is inconsistent with several theoretical studies and in conflict with our recent high-resolution Fe K-edge X-ray absorption spectroscopy (XAS) studies (Castillo et al. J. Am. Chem. Soc. 2017, 139, 18024 ). Herein, we revisit the EXAFS of Q using high-energy resolution fluorescence-detected extended X-ray absorption fine structure (HERFD-EXAFS) studies. The present data show no evidence for a short Fe-Fe distance, but rather a long 3.4 Å diiron distance, as observed in open core synthetic model complexes. The previously reported 2.46 Å feature plausibly arises from a background metallic iron contribution from the experimental setup, which is eliminated in HERFD-EXAFS due to the increased selectivity. Herein, we explore the origin of the short diiron feature in partial-fluorescent yield EXAFS measurements and discuss the diagnostic features of background metallic scattering contribution to the EXAFS of dilute biological samples. Lastly, differences in sample preparation and resultant sample inhomogeneity in rapid-freeze quenched samples for EXAFS analysis are discussed. The presented approaches have broad implications for EXAFS studies of all dilute iron-containing samples.
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , 321 Church Street SE , Minneapolis , Minnesota 55455 , United States.,Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ang Zhou
- Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Lawrence Que
- Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , 321 Church Street SE , Minneapolis , Minnesota 55455 , United States.,Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
9
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Liu YF, Du L. Theoretical Study of the Oxidation of Methane to Methanol by the [CuIICuII(μ-O)2CuIII(7-N-Etppz)]1+ Complex. Inorg Chem 2018; 57:3261-3271. [DOI: 10.1021/acs.inorgchem.8b00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yan Fang Liu
- The Key Laboratory of Biobased Materials, The Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Likai Du
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| |
Collapse
|
11
|
Bernasconi L, Kazaryan A, Belanzoni P, Baerends EJ. Catalytic Oxidation of Water with High-Spin Iron(IV)–Oxo Species: Role of the Water Solvent. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00568] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Leonardo Bernasconi
- STFC
Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Andranik Kazaryan
- Theoretical
Chemistry Section, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Paola Belanzoni
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and Institute of Molecular Science and Technologies (ISTM-CNR), Via Elce
di Sotto 8, I-06123 Perugia, Italy
| | - Evert Jan Baerends
- Theoretical
Chemistry Section, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
In-crystal reaction cycle of a toluene-bound diiron hydroxylase. Nature 2017; 544:191-195. [PMID: 28346937 DOI: 10.1038/nature21681] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
Electrophilic aromatic substitution is one of the most important and recognizable classes of organic chemical transformation. Enzymes create the strong electrophiles that are needed for these highly energetic reactions by using O2, electrons, and metals or other cofactors. Although the nature of the oxidants that carry out electrophilic aromatic substitution has been deduced from many approaches, it has been difficult to determine their structures. Here we show the structure of a diiron hydroxylase intermediate formed during a reaction with toluene. Density functional theory geometry optimizations of an active site model reveal that the intermediate is an arylperoxo Fe2+/Fe3+ species with delocalized aryl radical character. The structure suggests that a carboxylate ligand of the diiron centre may trigger homolytic cleavage of the O-O bond by transferring a proton from a metal-bound water. Our work provides the spatial and electronic constraints needed to propose a comprehensive mechanism for diiron enzyme arene hydroxylation that accounts for many prior experimental results.
Collapse
|
13
|
DeRosha DE, Mercado BQ, Lukat-Rodgers G, Rodgers KR, Holland PL. Enhancement of C−H Oxidizing Ability in Co-O 2 Complexes through an Isolated Heterobimetallic Oxo Intermediate. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel E. DeRosha
- Department of Chemistry; Yale University; 225 Prospect St. New Haven CT 06511 USA
| | - Brandon Q. Mercado
- Department of Chemistry; Yale University; 225 Prospect St. New Haven CT 06511 USA
| | - Gudrun Lukat-Rodgers
- Department of Chemistry and Biochemistry; North Dakota State University; PO Box 6050 Fargo ND 58108 USA
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry; North Dakota State University; PO Box 6050 Fargo ND 58108 USA
| | - Patrick L. Holland
- Department of Chemistry; Yale University; 225 Prospect St. New Haven CT 06511 USA
| |
Collapse
|
14
|
|
15
|
DeRosha DE, Mercado BQ, Lukat-Rodgers G, Rodgers KR, Holland PL. Enhancement of C−H Oxidizing Ability in Co-O2 Complexes through an Isolated Heterobimetallic Oxo Intermediate. Angew Chem Int Ed Engl 2017; 56:3211-3215. [DOI: 10.1002/anie.201612010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel E. DeRosha
- Department of Chemistry; Yale University; 225 Prospect St. New Haven CT 06511 USA
| | - Brandon Q. Mercado
- Department of Chemistry; Yale University; 225 Prospect St. New Haven CT 06511 USA
| | - Gudrun Lukat-Rodgers
- Department of Chemistry and Biochemistry; North Dakota State University; PO Box 6050 Fargo ND 58108 USA
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry; North Dakota State University; PO Box 6050 Fargo ND 58108 USA
| | - Patrick L. Holland
- Department of Chemistry; Yale University; 225 Prospect St. New Haven CT 06511 USA
| |
Collapse
|
16
|
Sproviero EM. Geometrical properties of the manganese(iv)/iron(iii) cofactor of Chlamydia trachomatis ribonucleotide reductase unveiled by simulations of XAS spectra. Dalton Trans 2017; 46:4724-4736. [DOI: 10.1039/c6dt03893j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A combination of EXAFS simulations and DFT calculations, including a novel protocol to evaluate Debye–Waller factors, provide insights into the structure of the Mn(iv)/Fe(iii) cofactor ofCtR2.
Collapse
Affiliation(s)
- Eduardo M. Sproviero
- Department of Chemistry and Biochemistry
- University of the Sciences in Philadelphia
- Philadelphia
- USA
| |
Collapse
|
17
|
A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Protein effects in non-heme iron enzyme catalysis: insights from multiscale models. J Biol Inorg Chem 2016; 21:645-57. [DOI: 10.1007/s00775-016-1374-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023]
|
19
|
Da Silva JCS, Pennifold RCR, Harvey JN, Rocha WR. A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: a computational perspective. Dalton Trans 2016; 45:2492-504. [DOI: 10.1039/c5dt02638e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hydrogen Atom Transfer (HAT) promoted by a triplet state of the bis-oxoCu2(iii) core generates a new radical rebound mechanism for the hydroxylation of methane catalyzed by the binuclear copper site of a pMMO enzyme.
Collapse
Affiliation(s)
- Júlio C. S. Da Silva
- BioMat: Biomaterial Modeling Group
- Departamento de Química Fundamental
- CCEN
- Universidade Federal de Pernambuco
- Cidade Universitária
| | | | | | - Willian R. Rocha
- LQC-MM: Laboratório de Química Computacional e Modelagem Molecular
- Departamento de Química
- ICEX
- Universidade Federal de Minas Gerais
- Belo Horizonte
| |
Collapse
|
20
|
Jerome SV, Hughes TF, Friesner RA. Successful application of the DBLOC method to the hydroxylation of camphor by cytochrome p450. Protein Sci 2016; 25:277-85. [PMID: 26441133 PMCID: PMC4815313 DOI: 10.1002/pro.2819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/19/2023]
Abstract
The activation barrier for the hydroxylation of camphor by cytochrome P450 was computed using a mixed quantum mechanics/molecular mechanics (QM/MM) model of the full protein-ligand system and a fully QM calculation using a cluster model of the active site at the B3LYP/LACVP*/LACV3P** level of theory, which consisted of B3LYP/LACV3P** single point energies computed at B3LYP/LACVP* optimized geometries. From the QM/MM calculation, a barrier height of 17.5 kcal/mol was obtained, while the experimental value was known to be less than or equal to 10 kcal/mol. This process was repeated using the D3 correction for hybrid DFT in order to investigate whether the inadequate treatment of dispersion interaction was responsible for the overestimation of the barrier. While the D3 correction does reduce the computed barrier to 13.3 kcal/mol, it was still in disagreement with experiment. After application of a series of transition metal optimized localized orbital corrections (DBLOC) and without any refitting of parameters, the barrier was further reduced to 10.0 kcal/mol, which was consistent with the experimental results. The DBLOC method to CH bond activation in methane monooxygenase (MMO) was also applied, as a second, independent test. The barrier in MMO was known, by experiment, to be 15.4 kcal/mol. After application of the DBLOC corrections to the MMO barrier compute by B3LYP, in a previous study, and accounting for dispersion with Grimme's D3 method, the unsigned deviation from experiment was improved from 3.2 to 2.3 kcal/mol. These results suggested that the combination of dispersion plus localized orbital corrections could yield significant quantitative improvements in modeling the catalytic chemistry of transition-metal containing enzymes, within the limitations of the statistical errors of the model, which appear to be on the order of approximately 2 kcal/mole.
Collapse
Affiliation(s)
- Steven V Jerome
- Department of Chemistry, Columbia University, New York, New York, 10027
| | | | | |
Collapse
|
21
|
Jayapal P, Ansari A, Rajaraman G. Computational Examination on the Active Site Structure of a (Peroxo)diiron(III) Intermediate in the Amine Oxygenase AurF. Inorg Chem 2015; 54:11077-82. [PMID: 26588098 DOI: 10.1021/acs.inorgchem.5b00872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we report the first computational investigation on the structure and properties of the (peroxo)diiron(III) intermediate of the AurF enzyme. Our calculations predict that, in the oxidized state of the AurF enzyme, the peroxo ligand is depicted in a μ-1,1-coordination mode with a protonated bridging ligand and is not in a μ-η(2):η(2) or μ-1,2 mode. Computed spectral data for the μ-1,1-coordination mode correlate well with experimental observations and unravel the potential of the energetics-spectroscopic approach adapted here.
Collapse
Affiliation(s)
- Prabha Jayapal
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| |
Collapse
|
22
|
Abdel-Azeim S, Jedidi A, Eppinger J, Cavallo L. Mechanistic insights into the reductive dehydroxylation pathway for the biosynthesis of isoprenoids promoted by the IspH enzyme. Chem Sci 2015; 6:5643-5651. [PMID: 28757951 PMCID: PMC5511988 DOI: 10.1039/c5sc01693b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/22/2015] [Indexed: 11/21/2022] Open
Abstract
Here, we report an integrated quantum mechanics/molecular mechanics (QM/MM) study of the bio-organometallic reaction pathway of the 2H+/2e- reduction of (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) into the so called universal terpenoid precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), promoted by the IspH enzyme. Our results support the viability of the bio-organometallic pathway through rotation of the OH group of HMBPP away from the [Fe4S4] cluster at the core of the catalytic site, to become engaged in a H-bond with Glu126. This rotation is synchronous with π-coordination of the C2[double bond, length as m-dash]C3 double bond of HMBPP to the apical Fe atom of the [Fe4S4] cluster. Dehydroxylation of HMBPP is triggered by a proton transfer from Glu126 to the OH group of HMBPP. The reaction pathway is completed by competitive proton transfer from the terminal phosphate group to the C2 or C4 atom of HMBPP.
Collapse
Affiliation(s)
- Safwat Abdel-Azeim
- King Abdullah University of Science and Technology , KAUST Catalysis Research Center , Physical Sciences and Engineering Division , Thuwal 23955-6900 , Saudi Arabia .
| | - Abdesslem Jedidi
- King Abdullah University of Science and Technology , KAUST Catalysis Research Center , Physical Sciences and Engineering Division , Thuwal 23955-6900 , Saudi Arabia .
| | - Jorg Eppinger
- King Abdullah University of Science and Technology , KAUST Catalysis Research Center , Physical Sciences and Engineering Division , Thuwal 23955-6900 , Saudi Arabia .
| | - Luigi Cavallo
- King Abdullah University of Science and Technology , KAUST Catalysis Research Center , Physical Sciences and Engineering Division , Thuwal 23955-6900 , Saudi Arabia .
| |
Collapse
|
23
|
Abstract
Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, protein-protein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.
Collapse
Affiliation(s)
- Sarah Sirajuddin
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
Guillet GL, Gordon JB, Di Francesco GN, Calkins MW, Čižmár E, Abboud KA, Meisel MW, García-Serres R, Murray LJ. A Family of Tri- and Dimetallic Pyridine Dicarboxamide Cryptates: Unusual O,N,O-Coordination and Facile Access to Secondary Coordination Sphere Hydrogen Bonding Interactions. Inorg Chem 2015; 54:2691-704. [DOI: 10.1021/ic502873d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gary L. Guillet
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jesse B. Gordon
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Gianna N. Di Francesco
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Matthew W. Calkins
- Department
of Physics and the National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611-8440, United States
| | - Erik Čižmár
- Institute
of Physics, Faculty of Science, P.J. Šafárik University, 04154 Košice, Slovakia
| | - Khalil A. Abboud
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Mark W. Meisel
- Department
of Physics and the National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611-8440, United States
| | - Ricardo García-Serres
- Laboratoire
de Chimie de Biologie des Métaux, UMR 5249, Université Joseph Fourier, Grenoble-1, CNRS-CEA, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Leslie J. Murray
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
25
|
Sazinsky MH, Lippard SJ. Methane Monooxygenase: Functionalizing Methane at Iron and Copper. Met Ions Life Sci 2015; 15:205-56. [DOI: 10.1007/978-3-319-12415-5_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Abstract
The elusive compound Q in methane monooxygenase has been characterised and firmly established as a diamond-core bis-μ-oxo FeIVFeIVcluster.
Collapse
Affiliation(s)
| | - Yi Lu
- Department of Chemistry
- University of Illinois
- Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
27
|
Dassama LMK, Silakov A, Krest CM, Calixto JC, Krebs C, Bollinger JM, Green MT. A 2.8 Å Fe-Fe separation in the Fe2(III/IV) intermediate, X, from Escherichia coli ribonucleotide reductase. J Am Chem Soc 2013; 135:16758-61. [PMID: 24094084 DOI: 10.1021/ja407438p] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A class Ia ribonucleotide reductase (RNR) employs a μ-oxo-Fe2(III/III)/tyrosyl radical cofactor in its β subunit to oxidize a cysteine residue ~35 Å away in its α subunit; the resultant cysteine radical initiates substrate reduction. During self-assembly of the Escherichia coli RNR-β cofactor, reaction of the protein's Fe2(II/II) complex with O2 results in accumulation of an Fe2(III/IV) cluster, termed X, which oxidizes the adjacent tyrosine (Y122) to the radical (Y122(•)) as the cluster is converted to the μ-oxo-Fe2(III/III) product. As the first high-valent non-heme-iron enzyme complex to be identified and the key activating intermediate of class Ia RNRs, X has been the focus of intensive efforts to determine its structure. Initial characterization by extended X-ray absorption fine structure (EXAFS) spectroscopy yielded a Fe-Fe separation (d(Fe-Fe)) of 2.5 Å, which was interpreted to imply the presence of three single-atom bridges (O(2-), HO(-), and/or μ-1,1-carboxylates). This short distance has been irreconcilable with computational and synthetic models, which all have d(Fe-Fe) ≥ 2.7 Å. To resolve this conundrum, we revisited the EXAFS characterization of X. Assuming that samples containing increased concentrations of the intermediate would yield EXAFS data of improved quality, we applied our recently developed method of generating O2 in situ from chlorite using the enzyme chlorite dismutase to prepare X at ~2.0 mM, more than 2.5 times the concentration realized in the previous EXAFS study. The measured d(Fe-Fe) = 2.78 Å is fully consistent with computational models containing a (μ-oxo)2-Fe2(III/IV) core. Correction of the d(Fe-Fe) brings the experimental data and computational models into full conformity and informs analysis of the mechanism by which X generates Y122(•).
Collapse
Affiliation(s)
- Laura M K Dassama
- Departments of †Chemistry and ‡Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Cerqueira NMFSA, Fernandes PA, Gonzalez PJ, Moura JJG, Ramos MJ. The sulfur shift: an activation mechanism for periplasmic nitrate reductase and formate dehydrogenase. Inorg Chem 2013; 52:10766-72. [PMID: 24066983 DOI: 10.1021/ic3028034] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A structural rearrangement known as sulfur shift occurs in some Mo-containing enzymes of the DMSO reductase family. This mechanism is characterized by the displacement of a coordinating cysteine thiol (or SeCys in Fdh) from the first to the second shell of the Mo-coordination sphere metal. The hexa-coordinated Mo ion found in the as-isolated state cannot bind directly any exogenous ligand (substrate or inhibitors), while the penta-coordinated ion, attained upon sulfur shift, has a free binding site for direct coordination of the substrate. This rearrangement provides an efficient mechanism to keep a constant coordination number throughout an entire catalytic pathway. This mechanism is very similar to the carboxylate shift observed in Zn-dependent enzymes, and it has been recently detected by experimental means. In the present paper, we calculated the geometries and energies involved in the sulfur-shift mechanism using QM-methods (M06/(6-311++G(3df,2pd),SDD)//B3LYP/(6-31G(d),SDD)). The results indicated that the sulfur-shift mechanism provides an efficient way to enable the metal ion for substrate coordination.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | | | | | | |
Collapse
|
29
|
Banerjee R, Meier KK, Münck E, Lipscomb JD. Intermediate P* from soluble methane monooxygenase contains a diferrous cluster. Biochemistry 2013; 52:4331-42. [PMID: 23718184 DOI: 10.1021/bi400182y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During a single turnover of the hydroxylase component (MMOH) of soluble methane monooxygenase from Methylosinus trichosporium OB3b, several discrete intermediates are formed. The diiron cluster of MMOH is first reduced to the Fe(II)Fe(II) state (H(red)). O₂ binds rapidly at a site away from the cluster to form the Fe(II)Fe(II) intermediate O, which converts to an Fe(III)Fe(III)-peroxo intermediate P and finally to the Fe(IV)Fe(IV) intermediate Q. Q binds and reacts with methane to yield methanol and water. The rate constants for these steps are increased by a regulatory protein, MMOB. Previously reported transient kinetic studies have suggested that an intermediate P* forms between O and P in which the g = 16 EPR signal characteristic of the reduced diiron cluster of H(red) and O is lost. This was interpreted as signaling oxidation of the cluster, but a low level of accumulation of P* prevented further characterization. In this study, three methods for directly detecting and trapping P* are applied together to allow its spectroscopic and kinetic characterization. First, the MMOB mutant His33Ala is used to specifically slow the decay of P* without affecting its formation rate, leading to its nearly quantitative accumulation. Second, spectra-kinetic data collection is used to provide a sensitive measure of the formation and decay rate constants of intermediates as well as their optical spectra. Finally, the substrate furan is included to react with Q and quench its strong chromophore. The optical spectrum of P* closely mimics those of H(red) and O, but it is distinctly different from that of P. The reaction cycle rate constants allowed prediction of the times for maximal accumulation of the intermediates. Mössbauer spectra of rapid freeze-quench samples at these times show that the intermediates are formed at almost exactly the predicted levels. The Mössbauer spectra show that the diiron cluster of P*, quite unexpectedly, is in the Fe(II)Fe(II) state. Thus, the loss of the g = 16 EPR signal results from a change in the electronic structure of the Fe(II)Fe(II) center rather than oxidation. The similarity of the optical and Mössbauer spectra of H(red), O, and P* suggests that only subtle changes occur in the electronic and physical structure of the diiron cluster as P* forms. Nevertheless, the changes that do occur are necessary for O₂ to be activated for hydrocarbon oxidation.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | |
Collapse
|
30
|
Bernasconi L, Baerends EJ. A Frontier Orbital Study with ab Initio Molecular Dynamics of the Effects of Solvation on Chemical Reactivity: Solvent-Induced Orbital Control in FeO-Activated Hydroxylation Reactions. J Am Chem Soc 2013; 135:8857-67. [DOI: 10.1021/ja311144d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leonardo Bernasconi
- STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX,
United Kingdom
| | - Evert Jan Baerends
- Theoretical
Chemistry Section, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081
HV Amsterdam, The Netherlands
- WCU program at Department of Chemistry, Pohang University of Science and Technology, Pohang
790-784, South Korea
- Chemistry
Department, Faculty
of Science, King Abdulaziz University,
Jeddah 21589, Saudi Arabia
| |
Collapse
|
31
|
Sadhukhan N, Sarkar M, Ghatak T, Rahaman SMW, Barbour LJ, Bera JK. Reactions of acids with naphthyridine-functionalized ferrocenes: protonation and metal extrusion. Inorg Chem 2013; 52:1432-42. [PMID: 23347083 DOI: 10.1021/ic302155e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Reaction of 1,8-naphthyrid-2-yl-ferrocene (FcNP) with a variety of acids affords protonated salts at first, whereas longer reaction time leads to partial demetalation of FcNP resulting in a series of Fe complexes. The corresponding salts [FcNP·H][X] (X = BF(4) or CF(3)SO(3) (1)) are isolated for HBF(4) and CF(3)SO(3)H. Reaction of FcNP with equimolar amount of CF(3)CO(2)H for 12 h affords a neutral complex [Fe(FcNP)(2)(O(2)CCF(3))(2)(OH(2))(2)] (2). Use of excess acid gave a trinuclear Fe(II) complex [Fe(3)(H(2)O)(2)(O(2)CCF(3))(8)(FcNP·H)(2)] (3). Three linear iron atoms are held together by four bridging trifluoroacetates and two aqua ligands in a symmetric fashion. Reaction with ethereal solution of HCl afforded [(FcNP·H)(3)(Cl)][FeCl(4)](2) (4) irrespective of the amount of the acid used. Even the picric acid (HPic) led to metal extrusion giving rise to [Fe(2)(Cl)(2)(FcNP)(2)(Pic)(2)] (5) when crystallized from dichloromethane. Metal extrusion was also observed for CF(3)SO(3)H, but an analytically pure compound could not be isolated. The demetalation reaction proceeds with an initial proton attack to the distal nitrogen of the NP unit. Subsequently, coordination of the conjugate base to the electrophilic Fe facilitates the release of Cp rings from metal. The conjugate base plays an important role in the demetalation process and favors the isolation of the Fe complex as well. The 1,1'-bis(1,8-naphthyrid-2-yl)ferrocene (FcNP(2)) does not undergo demetalation under identical conditions. Two NP units share one positive charge causing the Fe-Cp bonds weakened to an extent that is not sufficient for demetalation. X-ray structure of the monoprotonated FcNP(2) reveals a discrete dimer [(FcNP(2)·H)](2)[OTf](2) (6) supported by two N-H···N hydrogen bonds. Crystal packing and dispersive forces associated with intra- and intermolecular π-π stacking interactions (NP···NP and Cp···NP) allow the formation of the dimer in the solid-state. The protonation and demetalation reactions of FcNP and FcNP(2) with a variety of acids are reported.
Collapse
Affiliation(s)
- Nabanita Sadhukhan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | | | | | | | | |
Collapse
|
32
|
Lyakin OY, Shteinman AA. Oxo complexes of high-valence iron in oxidation catalysis. KINETICS AND CATALYSIS 2012. [DOI: 10.1134/s0023158412050084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Cranswick MA, Meier KK, Shan X, Stubna A, Kaizer J, Mehn MP, Münck E, Que L. Protonation of a peroxodiiron(III) complex and conversion to a diiron(III/IV) intermediate: implications for proton-assisted O-O bond cleavage in nonheme diiron enzymes. Inorg Chem 2012; 51:10417-26. [PMID: 22971084 PMCID: PMC3462276 DOI: 10.1021/ic301642w] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oxygenation of a diiron(II) complex, [Fe(II)(2)(μ-OH)(2)(BnBQA)(2)(NCMe)(2)](2+) [2, where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine], results in the formation of a metastable peroxodiferric intermediate, 3. The treatment of 3 with strong acid affords its conjugate acid, 4, in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter-lived than 3 and decays to generate in ~20% yield of a diiron(III/IV) species 5, which can be identified by electron paramagnetic resonance and Mössbauer spectroscopies. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to cleavage of the peroxo O-O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase.
Collapse
Affiliation(s)
- Matthew A. Cranswick
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Katlyn K. Meier
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Xiaopeng Shan
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Audria Stubna
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Jószef Kaizer
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Mark P. Mehn
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
34
|
Yang L, Liao RZ, Ding WJ, Liu K, Yu JG, Liu RZ. Why calcium inhibits magnesium-dependent enzyme phosphoserine phosphatase? A theoretical study. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Burger B, Demeshko S, Bill E, Dechert S, Meyer F. The Carboxylate Twist: Hysteretic Bistability of a High-Spin Diiron(II) Complex Identified by Mössbauer Spectroscopy. Angew Chem Int Ed Engl 2012; 51:10045-9. [DOI: 10.1002/anie.201202759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/15/2012] [Indexed: 11/10/2022]
|
36
|
Burger B, Demeshko S, Bill E, Dechert S, Meyer F. Der Carboxylat-Twist - Aufklärung hysteretischer Bistabilität eines High-Spin-Dieisen(II)-Komplexes mithilfe von Mößbauer-Spektroskopie. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
|
38
|
Srnec M, Rokob TA, Schwartz JK, Kwak Y, Rulíšek L, Solomon EI. Structural and Spectroscopic Properties of the Peroxodiferric Intermediate of Ricinus communis Soluble Δ9 Desaturase. Inorg Chem 2012; 51:2806-20. [DOI: 10.1021/ic2018067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Martin Srnec
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Tibor András Rokob
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Jennifer K. Schwartz
- Department of Chemistry, Stanford University, Stanford, California 94305-5080,
United States
| | - Yeonju Kwak
- Department of Chemistry, Stanford University, Stanford, California 94305-5080,
United States
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305-5080,
United States
| |
Collapse
|
39
|
Dassama LMK, Yosca TH, Conner DA, Lee MH, Blanc B, Streit BR, Green MT, DuBois JL, Krebs C, Bollinger JM. O(2)-evolving chlorite dismutase as a tool for studying O(2)-utilizing enzymes. Biochemistry 2012; 51:1607-16. [PMID: 22304240 DOI: 10.1021/bi201906x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct interrogation of fleeting intermediates by rapid-mixing kinetic methods has significantly advanced our understanding of enzymes that utilize dioxygen. The gas's modest aqueous solubility (<2 mM at 1 atm) presents a technical challenge to this approach, because it limits the rate of formation and extent of accumulation of intermediates. This challenge can be overcome by use of the heme enzyme chlorite dismutase (Cld) for the rapid, in situ generation of O(2) at concentrations far exceeding 2 mM. This method was used to define the O(2) concentration dependence of the reaction of the class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis, in which the enzyme's Mn(IV)/Fe(III) cofactor forms from a Mn(II)/Fe(II) complex and O(2) via a Mn(IV)/Fe(IV) intermediate, at effective O(2) concentrations as high as ~10 mM. With a more soluble receptor, myoglobin, an O(2) adduct accumulated to a concentration of >6 mM in <15 ms. Finally, the C-H-bond-cleaving Fe(IV)-oxo complex, J, in taurine:α-ketoglutarate dioxygenase and superoxo-Fe(2)(III/III) complex, G, in myo-inositol oxygenase, and the tyrosyl-radical-generating Fe(2)(III/IV) intermediate, X, in Escherichia coli RNR, were all accumulated to yields more than twice those previously attained. This means of in situ O(2) evolution permits a >5 mM "pulse" of O(2) to be generated in <1 ms at the easily accessible Cld concentration of 50 μM. It should therefore significantly extend the range of kinetic and spectroscopic experiments that can routinely be undertaken in the study of these enzymes and could also facilitate resolution of mechanistic pathways in cases of either sluggish or thermodynamically unfavorable O(2) addition steps.
Collapse
Affiliation(s)
- Laura M K Dassama
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bochevarov AD, Li J, Song WJ, Friesner RA, Lippard SJ. Insights into the different dioxygen activation pathways of methane and toluene monooxygenase hydroxylases. J Am Chem Soc 2011; 133:7384-97. [PMID: 21517016 PMCID: PMC3092846 DOI: 10.1021/ja110287y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The methane and toluene monooxygenase hydroxylases (MMOH and TMOH, respectively) have almost identical active sites, yet the physical and chemical properties of their oxygenated intermediates, designated P*, H(peroxo), Q, and Q* in MMOH and ToMOH(peroxo) in a subclass of TMOH, ToMOH, are substantially different. We review and compare the structural differences in the vicinity of the active sites of these enzymes and discuss which changes could give rise to the different behavior of H(peroxo) and Q. In particular, analysis of multiple crystal structures reveals that T213 in MMOH and the analogous T201 in TMOH, located in the immediate vicinity of the active site, have different rotatory configurations. We study the rotational energy profiles of these threonine residues with the use of molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) computational methods and put forward a hypothesis according to which T213 and T201 play an important role in the formation of different types of peroxodiiron(III) species in MMOH and ToMOH. The hypothesis is indirectly supported by the QM/MM calculations of the peroxodiiron(III) models of ToMOH and the theoretically computed Mössbauer spectra. It also helps explain the formation of two distinct peroxodiiron(III) species in the T201S mutant of ToMOH. Additionally, a role for the ToMOD regulatory protein, which is essential for intermediate formation and protein functioning in the ToMO system, is advanced. We find that the low quadrupole splitting parameter in the Mössbauer spectrum observed for a ToMOH(peroxo) intermediate can be explained by protonation of the peroxo moiety, possibly stabilized by the T201 residue. Finally, similarities between the oxygen activation mechanisms of the monooxygenases and cytochrome P450 are discussed.
Collapse
|
41
|
Abstract
The controlled oxidation of methane to methanol is a chemical transformation of great value, particularly in the pursuit of alternative fuels, but the reaction remains underutilized industrially because of inefficient and costly synthetic procedures. In contrast, methane monooxygenase enzymes (MMOs) from methanotrophic bacteria achieve this chemistry efficiently under ambient conditions. In this Account, we discuss the first observable step in the oxidation of methane at the carboxylate-bridged diiron active site of the soluble MMO (sMMO), namely, the reductive activation of atmospheric O(2). The results provide benchmarks against which the dioxygen activation mechanisms of other bacterial multicomponent monooxygenases can be measured. Molecular oxygen reacts rapidly with the reduced diiron(II) cen-ter of the hydroxylase component of sMMO (MMOH). The first spectroscopically characterized intermediate that results from this process is a peroxodiiron(III) species, P*, in which the iron atoms have identical environments. P* converts to a second peroxodiiron(III) unit, H(peroxo), in a process accompanied by the transfer of a proton, probably with the assistance of a residue near the active site. Proton-promoted O-O bond scission and rearrangement of the diiron core then leads to a diiron(IV) unit, termed Q, that is directly responsible for the oxidation of methane to methanol. In one section of this Account, we provide a detailed discussion of these processes, with particular emphasis on possible structures of the intermediates. The geometries of P* and H(peroxo) are currently unknown, and recent synthetic modeling chemistry has highlighted the need for further structural characterization of Q, currently assigned as a di(μ-oxo)diiron(IV) "diamond core." In another section of the Account, we discuss in detail proton transfer during the O(2) activation events. The role of protons in promoting O-O bond cleavage, thereby initiating the conversion of H(peroxo) to Q, was previously a controversial topic. Recent studies of the mechanism, covering a range of pH values and in D(2)O instead of H(2)O, confirmed conclusively that the transfer of protons, possibly at or near the active site, is necessary for both P*-to-H(peroxo) and H(peroxo)-to-Q conversions. Specific mechanistic insights into these processes are provided. In the final section of the Account, we present our view of experiments that need to be done to further define crucial aspects of sMMO chemistry. Here our goal is to detail the challenges that we and others face in this research, particularly with respect to some long-standing questions about the system, as well as approaches that might be used to solve them.
Collapse
Affiliation(s)
- Christine E. Tinberg
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
42
|
Bernasconi L, Belanzoni P, Baerends EJ. An abiotic analogue of the diiron(iv)oxo “diamond core” of soluble methane monooxygenase generated by direct activation of O2 in aqueous Fe(ii)/EDTA solutions: thermodynamics and electronic structure. Phys Chem Chem Phys 2011; 13:15272-82. [DOI: 10.1039/c1cp21244c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Burger B, Dechert S, Große C, Demeshko S, Meyer F. Visualising the carboxylate shift at a bioinspired diiron(ii) site in the solid state. Chem Commun (Camb) 2011; 47:10428-30. [DOI: 10.1039/c1cc13756e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Bochevarov AD, Friesner RA, Lippard SJ. The prediction of Fe Mössbauer parameters by the density functional theory: a benchmark study. J Chem Theory Comput 2010; 6:3735-3749. [PMID: 21258606 PMCID: PMC3023914 DOI: 10.1021/ct100398m] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the performance of eight density functionals (B3LYP, BPW91, OLYP, O3LYP, M06, M06-2X, PBE, and SVWN5) in two Gaussian basis sets (Wachters and Partridge-1 on iron atoms; cc-pVDZ on the rest of atoms) for the prediction of the isomer shift (IS) and the quadrupole splitting (QS) parameters of Mössbauer spectroscopy. Two sources of geometry (density functional theory-optimized and X-ray) are used. Our data set consists of 31 iron-containing compounds (35 signals), the Mössbauer spectra of which were determined at liquid helium temperature and where the X-ray geometries are known. Our results indicate that the larger and uncontracted Partridge-1 basis set produces slightly more accurate linear correlations of electronic density used for the prediction of IS and noticeably more accurate results for the QS parameter. We confirm and discuss the earlier observation of Noodleman and co-workers that different oxidation states of iron produce different IS calibration lines. The B3LYP and O3LYP functionals have the lowest errors for either IS or QS. BPW91, OLYP, PBE, and M06 have a mixed success whereas SVWN5 and M06-2X demonstrate the worst performance. Finally, our calibrations and conclusions regarding the best functional to compute the Mössbauer characteristics are applied to candidate structures for the peroxo and Q intermediates of the enzyme methane monooxygenase hydroxylase (MMOH), and compared to experimental data in the literature.
Collapse
|
45
|
Tinberg CE, Lippard SJ. Oxidation reactions performed by soluble methane monooxygenase hydroxylase intermediates H(peroxo) and Q proceed by distinct mechanisms. Biochemistry 2010; 49:7902-12. [PMID: 20681546 PMCID: PMC2935519 DOI: 10.1021/bi1009375] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Soluble methane monooxygenase is a bacterial enzyme that converts methane to methanol at a carboxylate-bridged diiron center with exquisite control. Because the oxidizing power required for this transformation is demanding, it is not surprising that the enzyme is also capable of hydroxylating and epoxidizing a broad range of hydrocarbon substrates in addition to methane. In this work we took advantage of this promiscuity of the enzyme to gain insight into the mechanisms of action of H(peroxo) and Q, two oxidants that are generated sequentially during the reaction of reduced protein with O(2). Using double-mixing stopped-flow spectroscopy, we investigated the reactions of the two intermediate species with a panel of substrates of varying C-H bond strength. Three classes of substrates were identified according to the rate-determining step in the reaction. We show for the first time that an inverse trend exists between the rate constant of reaction with H(peroxo) and the C-H bond strength of the hydrocarbon examined for those substrates in which C-H bond activation is rate-determining. Deuterium kinetic isotope effects revealed that reactions performed by Q, but probably not H(peroxo), involve extensive quantum mechanical tunneling. This difference sheds light on the observation that H(peroxo) is not a sufficiently potent oxidant to hydroxylate methane, whereas Q can perform this reaction in a facile manner. In addition, the reaction of H(peroxo) with acetonitrile appears to proceed by a distinct mechanism in which a cyanomethide anionic intermediate is generated, bolstering the argument that H(peroxo) is an electrophilic oxidant that operates via two-electron transfer chemistry.
Collapse
Affiliation(s)
- Christine E. Tinberg
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
46
|
Popp BV, Morales CM, Landis CR, Stahl SS. Electronic Structural Comparison of the Reactions of Dioxygen and Alkenes with Nitrogen-Chelated Palladium(0). Inorg Chem 2010; 49:8200-7. [DOI: 10.1021/ic100806w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Brian V. Popp
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706
| | - Christine M. Morales
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706
| | - Clark R. Landis
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706
| |
Collapse
|
47
|
Guesmi H, Berthomieu D, Kiwi-Minsker L. Reactivity of oxygen species formed upon N2O dissociation over Fe–ZSM-5 zeolite: CO oxidation as a model. CATAL COMMUN 2010. [DOI: 10.1016/j.catcom.2010.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Liao RZ, Yu JG, Himo F. Reaction Mechanism of the Trinuclear Zinc Enzyme Phospholipase C: A Density Functional Theory Study. J Phys Chem B 2010; 114:2533-40. [PMID: 20121060 DOI: 10.1021/jp910992f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rong-Zhen Liao
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden, and College of Chemistry, Beijing Normal University, Beijing, 100875, People’s Republic of China
| | - Jian-Guo Yu
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden, and College of Chemistry, Beijing Normal University, Beijing, 100875, People’s Republic of China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden, and College of Chemistry, Beijing Normal University, Beijing, 100875, People’s Republic of China
| |
Collapse
|
49
|
Tinberg CE, Lippard SJ. Revisiting the mechanism of dioxygen activation in soluble methane monooxygenase from M. capsulatus (Bath): evidence for a multi-step, proton-dependent reaction pathway. Biochemistry 2009; 48:12145-58. [PMID: 19921958 PMCID: PMC2797563 DOI: 10.1021/bi901672n] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stopped-flow kinetic investigations of soluble methane monooxygenase (sMMO) from M. capsulatus (Bath) have clarified discrepancies that exist in the literature regarding several aspects of catalysis by this enzyme. The development of thorough kinetic analytical techniques has led to the discovery of two novel oxygenated iron species that accumulate in addition to the well-established intermediates H(peroxo) and Q. The first intermediate, P*, is a precursor to H(peroxo) and was identified when the reaction of reduced MMOH and MMOB with O(2) was carried out in the presence of >or=540 microM methane to suppress the dominating absorbance signal due to Q. The optical properties of P* are similar to those of H(peroxo), with epsilon(420) = 3500 M(-1) cm(-1) and epsilon(720) = 1250 M(-1) cm(-1). These values are suggestive of a peroxo-to-iron(III) charge-transfer transition and resemble those of peroxodiiron(III) intermediates characterized in other carboxylate-bridged diiron proteins and synthetic model complexes. The second identified intermediate, Q*, forms on the pathway of Q decay when reactions are performed in the absence of hydrocarbon substrate. Q* does not react with methane, forms independently of buffer composition, and displays a unique shoulder at 455 nm in its optical spectrum. Studies conducted at different pH values reveal that rate constants corresponding to P* decay/H(peroxo) formation and H(peroxo) decay/Q formation are both significantly retarded at high pH and indicate that both events require proton transfer. The processes exhibit normal kinetic solvent isotope effects (KSIEs) of 2.0 and 1.8, respectively, when the reactions are performed in D(2)O. Mechanisms are proposed to account for the observations of these novel intermediates and the proton dependencies of P* to H(peroxo) and H(peroxo) to Q conversion.
Collapse
Affiliation(s)
| | - Stephen J. Lippard
- To whom correspondence should be addressed.
. Telephone: (617) 253-1892. Fax: (617)
258-8150
| |
Collapse
|
50
|
Khavrutskii IV, Grant B, Taylor SS, McCammon JA. A transition path ensemble study reveals a linchpin role for Mg(2+) during rate-limiting ADP release from protein kinase A. Biochemistry 2009; 48:11532-45. [PMID: 19886670 PMCID: PMC2789581 DOI: 10.1021/bi901475g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Protein kinases are key regulators of diverse signaling networks
critical for growth and development. Protein kinase A (PKA) is an
important kinase prototype that phosphorylates protein targets at
Ser and Thr residues by converting ATP to ADP. Mg2+ ions
play a crucial role in regulating phosphoryl transfer and can limit
overall enzyme turnover by affecting ADP release. However, the mechanism
by which Mg2+ participates in ADP release is poorly understood.
Here we use a novel transition path ensemble technique, the harmonic
Fourier beads method, to explore the atomic and energetic details
of the Mg2+-dependent ADP binding and release. Our studies
demonstrate that adenine-driven ADP binding to PKA creates three ion-binding
sites at the ADP/PKA interface that are absent otherwise. Two of these
sites bind the previously characterized Mg2+ ions, whereas
the third site binds a monovalent cation with high affinity. This
third site can bind the P-3 residue of substrate proteins and may
serve as a reporter of the active site occupation. Binding of Mg2+ ions restricts mobility of the Gly-rich loop that closes
over the active site. We find that simultaneous release of ADP with
Mg2+ ions from the active site is unfeasible. Thus, we
conclude that Mg2+ ions act as a linchpin and that at least
one ion must be removed prior to pyrophosphate-driven ADP release.
The results of the present study enhance understanding of Mg2+-dependent association of nucleotides with protein kinases.
Collapse
Affiliation(s)
- Ilja V Khavrutskii
- Howard Hughes Medical Institute, University of California San Diego,La Jolla, California 92093-0365, USA.
| | | | | | | |
Collapse
|