1
|
Katoh T, Suga H. Promoting ribosomal incorporation of backbone-modifying nonproteinogenic amino acids into nascent peptides by ATP-binding cassette family-F proteins and EF-P. Nucleic Acids Res 2025; 53:gkaf446. [PMID: 40401556 PMCID: PMC12096078 DOI: 10.1093/nar/gkaf446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/18/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025] Open
Abstract
In the past two decades, tremendous efforts for increasing the efficiency of ribosomal incorporation of backbone-modifying nonproteinogenic amino acids (npAAs) have been made and given significant successes. For instance, the use of an engineered body sequence of transfer RNA (tRNA), known as tRNAPro1E2, that efficiently recruits EF-Tu and EF-P significantly improves consecutive incorporation of npAAs, giving a notion that certain protein factors paired with right tRNAs can enhance their incorporation efficiency. However, the consecutive incorporation of certain npAAs, e.g.N-methyl-l-leucine, remains more challenging. Here we have explored Escherichia coli ATP-binding cassette family-F proteins (EttA, Uup, YbiT, and YhsS) and RbbA for a possibility of enhancing the translation efficiency for such npAAs since these proteins are known to alleviate nascent peptide-dependent translation arrest. Indeed, among them the presence of Uup increases the translation level of model peptides bearing two consecutive npAAs by an average of 1.7-fold for 12 kinds of npAAs and that of a macrocyclic peptide bearing d-α-amino, N-methyl-l-α-amino, and β-amino acids by 1.8-fold. Moreover, the combination of EF-P and Uup further enhances the incorporation of npAAs charged on tRNAPro1E2, demonstrating a four-fold enhancement for two consecutive incorporations of N-methyl-l-leucine.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
3
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024; 124:12145-12175. [PMID: 39418482 PMCID: PMC11879460 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J. Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E. Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Ishida S, Ngo PHT, Gundlach A, Ellington A. Engineering Ribosomal Machinery for Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:7712-7730. [PMID: 38829723 DOI: 10.1021/acs.chemrev.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.
Collapse
Affiliation(s)
- Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arno Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Hampton JT, Liu WR. Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification. Chem Rev 2024; 124:6051-6077. [PMID: 38686960 PMCID: PMC11082904 DOI: 10.1021/acs.chemrev.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Dunkelmann DL, Piedrafita C, Dickson A, Liu KC, Elliott TS, Fiedler M, Bellini D, Zhou A, Cervettini D, Chin JW. Adding α,α-disubstituted and β-linked monomers to the genetic code of an organism. Nature 2024; 625:603-610. [PMID: 38200312 PMCID: PMC10794150 DOI: 10.1038/s41586-023-06897-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024]
Abstract
The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several β-amino acids, α,α-disubstituted-amino acids and β-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of β-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.
Collapse
Affiliation(s)
| | - Carlos Piedrafita
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandre Dickson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kim C Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marc Fiedler
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Dom Bellini
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew Zhou
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
8
|
Katoh T, Suga H. Translation initiation with exotic amino acids using EF-P-responsive artificial initiator tRNA. Nucleic Acids Res 2023; 51:8169-8180. [PMID: 37334856 PMCID: PMC10450175 DOI: 10.1093/nar/gkad496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/10/2023] [Accepted: 06/17/2023] [Indexed: 06/21/2023] Open
Abstract
Translation initiation using noncanonical initiator substrates with poor peptidyl donor activities, such as N-acetyl-l-proline (AcPro), induces the N-terminal drop-off-reinitiation event. Thereby, the initiator tRNA drops-off from the ribosome and the translation reinitiates from the second amino acid to yield a truncated peptide lacking the N-terminal initiator substrate. In order to suppress this event for the synthesis of full-length peptides, here we have devised a chimeric initiator tRNA, referred to as tRNAiniP, whose D-arm comprises a recognition motif for EF-P, an elongation factor that accelerates peptide bond formation. We have shown that the use of tRNAiniP and EF-P enhances the incorporation of not only AcPro but also d-amino, β-amino and γ-amino acids at the N-terminus. By optimizing the translation conditions, e.g. concentrations of translation factors, codon sequence and Shine-Dalgarno sequence, we could achieve complete suppression of the N-terminal drop-off-reinitiation for the exotic amino acids and enhance the expression level of full-length peptide up to 1000-fold compared with the use of the ordinary translation conditions.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Fu X, Shang Y, Chen S, Dedkova LM, Hecht SM. Activation of d-Asparagine and d-Glutamine Derivatives Using the Mitsunobu Reaction. Org Lett 2023. [PMID: 36800493 DOI: 10.1021/acs.orglett.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Seven d-amino acid derivatives having reactive side chains have been activated to afford their respective 3,5-dinitrobenzyl esters using the Mitsunobu reaction. This esterification was found to be difficult using traditional methods involving 3,5-dinitrobenzyl chloride under alkaline conditions. The conversion of a tRNA to the respective d-glutaminyl-tRNA using d-glutamine 3,5-dinitrobenzyl ester was catalyzed by a flexizyme, followed by purification to remove all the unacylated tRNAs and other byproducts. Both d- and l-glutamine were incorporated from their aminoacyl-tRNAs into a model peptide structurally related to IFN-β.
Collapse
Affiliation(s)
- Xuan Fu
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuqin Shang
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
10
|
Katoh T, Suga H. Ribosomal incorporation of negatively charged d-α- and N-methyl-l-α-amino acids enhanced by EF-Sep. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220038. [PMID: 36633283 PMCID: PMC9835608 DOI: 10.1098/rstb.2022.0038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023] Open
Abstract
Ribosomal incorporation of d-α-amino acids (dAA) and N-methyl-l-α-amino acids (MeAA) with negatively charged sidechains, such as d-Asp, d-Glu, MeAsp and MeGlu, into nascent peptides is far more inefficient compared to those with neutral or positively charged ones. This is because of low binding affinity of their aminoacyl-transfer RNA (tRNA) to elongation factor-thermo unstable (EF-Tu), a translation factor responsible for accommodation of aminoacyl-tRNA onto ribosome. It is well known that EF-Tu binds to two parts of aminoacyl-tRNA, the amino acid moiety and the T-stem; however, the amino acid binding pocket of EF-Tu bearing Glu and Asp causes electric repulsion against the negatively charged amino acid charged on tRNA. To circumvent this issue, here we adopted two strategies: (i) use of an EF-Tu variant, called EF-Sep, in which the Glu216 and Asp217 residues in EF-Tu are substituted with Asn216 and Gly217, respectively; and (ii) reinforcement of the T-stem affinity using an artificially developed chimeric tRNA, tRNAPro1E2, whose T-stem is derived from Escherichia coli tRNAGlu that has high affinity to EF-Tu. Consequently, we could successfully enhance the incorporation efficiencies of d-Asp, d-Glu, MeAsp and MeGlu and demonstrated for the first time, to our knowledge, ribosomal synthesis of macrocyclic peptides containing multiple d-Asp or MeAsp. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Katoh T, Suga H. In Vitro Genetic Code Reprogramming for the Expansion of Usable Noncanonical Amino Acids. Annu Rev Biochem 2022; 91:221-243. [PMID: 35729073 DOI: 10.1146/annurev-biochem-040320-103817] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic code reprogramming has enabled us to ribosomally incorporate various nonproteinogenic amino acids (npAAs) into peptides in vitro. The repertoire of usable npAAs has been expanded to include not only l-α-amino acids with noncanonical sidechains but also those with noncanonical backbones. Despite successful single incorporation of npAAs, multiple and consecutive incorporations often suffer from low efficiency or are even unsuccessful. To overcome this stumbling block, engineering approaches have been used to modify ribosomes, EF-Tu, and tRNAs. Here, we provide an overview of these in vitro methods that are aimed at optimal expansion of the npAA repertoire and their applications for the development of de novo bioactive peptides containing various npAAs.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; ,
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; ,
| |
Collapse
|
12
|
Katoh T, Suga H. In Vitro Selection of Foldamer-Like Macrocyclic Peptides Containing 2-Aminobenzoic Acid and 3-Aminothiophene-2-Carboxylic Acid. J Am Chem Soc 2022; 144:2069-2072. [PMID: 35099961 DOI: 10.1021/jacs.1c12133] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aromatic cyclic β2,3-amino acids (cβAAs), such as 2-aminobenzoic acid and 3-aminothiophene-2-carboxylic acid, are building blocks that can induce unique folding propensities of peptides. Although their ribosomal elongation had been a formidable task due to the low nucleophilicity of their amino groups, we have recently overcome this issue by means of an engineered tRNAPro1E2 that enhances their incorporation efficiency into nascent peptide chains. Here we report ribosomal synthesis of a random macrocyclic peptide library containing aromatic and aliphatic cβAAs, and its application to de novo discovery of binders against human IFNGR1 and FXIIa as model targets. The potent binding peptides showed not only high inhibitory activity but also high protease resistance in human serum. Moreover, these cβAAs play a critical role in exhibiting their properties, establishing a discovery platform for de novo foldamer-like macrocycles containing such unique building blocks.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Katoh T, Suga H. Consecutive Ribosomal Incorporation of α-Aminoxy/α-Hydrazino Acids with l/d-Configurations into Nascent Peptide Chains. J Am Chem Soc 2021; 143:18844-18848. [PMID: 34731572 DOI: 10.1021/jacs.1c09270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
α-Aminoxy and α-hydrazino acids are β-amino acid analogs with β-carbons replaced by oxygen and nitrogen, respectively. Such heteroatoms dictate the folding of peptides into specific secondary structures called pseudo-γ-turns. Achiral α-aminoxyacetic acid (NOGly) and l-α-hydrazinophenylalanine (l-NNPhe) have been shown to be suitable for single incorporation during ribosomal translation, but whether ribosomes tolerate other types of α-aminoxy/α-hydrazino acids with l/d-configurations is unknown. Moreover, whether multiple or consecutive incorporations are possible remains unclear. We show, for the first time, multiple and consecutive incorporations of α-aminoxy/α-hydrazino acids with l/d-configurations into various model peptides, including macrocyclic peptide scaffolds.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Incorporation of backbone modifications in mRNA-displayable peptides. Methods Enzymol 2021; 656:521-544. [PMID: 34325797 DOI: 10.1016/bs.mie.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we comprehensively summarize the most recent efforts in our research team, aiming at installing N-methyl and azole backbones into peptides expressed in translation. The genetic code reprogramming using the Flexible In-vitro Translation system (FIT system) has proven to be the most reliable and versatile approach for ribosomally installing various exotic amino acids. However, it had been yet difficult in translating diverse kinds of multiple and consecutive sequences of N-methyl amino acids (MeAAs). We have recently reported that a semi-rational fine tuning of MeAA-tRNA affinities for EF-Tu by altering tRNA T-stem sequence achieves efficient delivery of MeAA-tRNAs to the ribosome. Indeed, this approach has made it possible to express N-methyl-peptides containing multiple MeAAs with a remarkably high fidelity. Another interesting backbone modification in peptides is azole moieties often found in natural products, but they are explicitly installed by post-translational modifying enzymes. We have recently devised a method to bypass such enzymatic processes where a bromovinyl group-containing amino acid is incorporated into the peptide by genetic code reprogramming and then chemically converted to an azole group via an intramolecular heterocyclization reaction. These methods will grant more drug-like properties to peptides than ordinary peptides in terms of protease resistance and cell membrane permeability. Particularly when they can be integrated with in vitro mRNA display, such as the RaPID system, the discovery of de novo bioactive peptides can be realized.
Collapse
|
15
|
Abstract
Over the past decade, harnessing the cellular protein synthesis machinery to incorporate non-canonical amino acids (ncAAs) into tailor-made peptides has significantly advanced many aspects of molecular science. More recently, groundbreaking progress in our ability to engineer this machinery for improved ncAA incorporation has led to significant enhancements of this powerful tool for biology and chemistry. By revealing the molecular basis for the poor or improved incorporation of ncAAs, mechanistic studies of ncAA incorporation by the protein synthesis machinery have tremendous potential for informing and directing such engineering efforts. In this chapter, we describe a set of complementary biochemical and single-molecule fluorescence assays that we have adapted for mechanistic studies of ncAA incorporation. Collectively, these assays provide data that can guide engineering of the protein synthesis machinery to expand the range of ncAAs that can be incorporated into peptides and increase the efficiency with which they can be incorporated, thereby enabling the full potential of ncAA mutagenesis technology to be realized.
Collapse
|
16
|
Chu XY, Zhang HY. Protein Homochirality May Be Derived from Primitive Peptide Synthesis by RNA. ASTROBIOLOGY 2021; 21:628-635. [PMID: 33600215 DOI: 10.1089/ast.2020.2324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Homochirality is a feature of life, but its origin is still disputed. Recent theories indicate that the origin of homochirality coincided with that of the RNA world, but proteins have not yet been incorporated into the story. Ribosome is considered a living fossil that survived the RNA world and records the oldest interaction between RNA and proteins. Inspired by several ribosome-related findings, we propose a hypothesis as follows: the substrate chirality preference of some primitive peptide synthesis ribozymes can mediate the chirality transmission from RNA to protein. In return, the chiral preference of protective peptide-RNA interaction can bring these ribozymes an evolutionary advantage and facilitate the expansion of enantiomeric excess in peptides. Monte Carlo simulation results show that this system's chemistry model is plausible. This model can be further tested through investigation of the chirality preference for the interactions between d/l-ribose-composed rRNA homologs and l/d-amino acid-composed peptides.
Collapse
Affiliation(s)
- Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
17
|
Discovery of De Novo Macrocyclic Peptides by Messenger RNA Display. Trends Pharmacol Sci 2021; 42:385-397. [PMID: 33771353 DOI: 10.1016/j.tips.2021.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Macrocyclic peptides are a promising class of compounds that can often engage challenging therapeutic targets. Display technologies, such as mRNA display, allow for the efficient discovery of macrocyclic peptides. This article reviews the current approaches for generating macrocyclic peptide libraries using mRNA display and highlights some recent examples of ribosomal incorporation of nonproteinogenic amino acids into macrocyclic peptides.
Collapse
|
18
|
Katoh T, Suga H. Development of Bioactive Foldamers Using Ribosomally Synthesized Nonstandard Peptide Libraries. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Abstract
The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.
Collapse
Affiliation(s)
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
20
|
Danchin A. Isobiology: A Variational Principle for Exploring Synthetic Life. Chembiochem 2020; 21:1781-1792. [DOI: 10.1002/cbic.202000060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Antoine Danchin
- Stellate TherapeuticsInstitut Cochin 24 rue du Faubourg Saint-Jacques 75014 Paris France
| |
Collapse
|
21
|
Katoh T, Suga H. Ribosomal Elongation of Cyclic γ-Amino Acids using a Reprogrammed Genetic Code. J Am Chem Soc 2020; 142:4965-4969. [PMID: 32129615 DOI: 10.1021/jacs.9b12280] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Because γ-amino acids generally undergo rapid self-cyclization upon esterification on the carboxyl group, for example, γ-aminoacyl-tRNA, there are no reports of the ribosomal elongation of γ-amino acids to the best of our knowledge. To avoid such self-cyclization, we utilized cyclic γ-amino acids and demonstrated their elongation into a peptide chain. Although the incorporation of the cyclic γ-amino acids is intrinsically slow, we here show that the combination of elongation factor P and engineered tRNAs improves cyclic γ-amino acid incorporation efficiency. Via this method, thioether-macrocyclic peptides containing not only cyclic γ-amino acids but also d-α-, N-methyl-α-, and cyclic β-amino acids were expressed under the reprogrammed genetic code. Ribosomally synthesized macrocyclic peptide libraries containing cyclic γ-amino acids should be applicable to in vitro screening methodologies such as mRNA display for discovering novel peptide drugs.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Hammerling MJ, Krüger A, Jewett MC. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 2020; 48:1068-1083. [PMID: 31777928 PMCID: PMC7026604 DOI: 10.1093/nar/gkz1011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
23
|
Dedkova LM, Hecht SM. Expanding the Scope of Protein Synthesis Using Modified Ribosomes. J Am Chem Soc 2019; 141:6430-6447. [PMID: 30901982 DOI: 10.1021/jacs.9b02109] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ribosome produces all of the proteins and many of the peptides present in cells. As a macromolecular complex composed of both RNAs and proteins, it employs a constituent RNA to catalyze the formation of peptide bonds rapidly and with high fidelity. Thus, the ribosome can be argued to represent the key link between the RNA World, in which RNAs were the primary catalysts, and present biological systems in which protein catalysts predominate. In spite of the well-known phylogenetic conservation of rRNAs through evolutionary history, rRNAs can be altered readily when placed under suitable pressure, e.g. in the presence of antibiotics which bind to functionally critical regions of rRNAs. While the structures of rRNAs have been altered intentionally for decades to enable the study of their role(s) in the mechanism of peptide bond formation, it is remarkable that the purposeful alteration of rRNA structure to enable the elaboration of proteins and peptides containing noncanonical amino acids has occurred only recently. In this Perspective, we summarize the history of rRNA modifications, and demonstrate how the intentional modification of 23S rRNA in regions critical for peptide bond formation now enables the direct ribosomal incorporation of d-amino acids, β-amino acids, dipeptides and dipeptidomimetic analogues of the normal proteinogenic l-α-amino acids. While proteins containing metabolically important functional groups such as carbohydrates and phosphate groups are normally elaborated by the post-translational modification of nascent polypeptides, the use of modified ribosomes to produce such polymers directly is also discussed. Finally, we describe the elaboration of such modified proteins both in vitro and in bacterial cells, and suggest how such novel biomaterials may be exploited in future studies.
Collapse
Affiliation(s)
- Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
24
|
Iqbal ES, Dods KK, Hartman MCT. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase. Org Biomol Chem 2019; 16:1073-1078. [PMID: 29367962 DOI: 10.1039/c7ob02931d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to incorporate non-canonical amino acids (ncAA) using translation offers researchers the ability to extend the functionality of proteins and peptides for many applications including synthetic biology, biophysical and structural studies, and discovery of novel ligands. Here we describe the high promiscuity of an editing-deficient valine-tRNA synthetase (ValRS T222P). Using this enzyme, we demonstrate ribosomal translation of 11 ncAAs including those with novel side chains, α,α-disubstitutions, and cyclic β-amino acids.
Collapse
Affiliation(s)
- Emil S Iqbal
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, Virginia 23284, USA.
| | | | | |
Collapse
|
25
|
Liljeruhm J, Wang J, Kwiatkowski M, Sabari S, Forster AC. Kinetics of d-Amino Acid Incorporation in Translation. ACS Chem Biol 2019; 14:204-213. [PMID: 30648860 DOI: 10.1021/acschembio.8b00952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the stereospecificity of translation for l-amino acids (l-AAs) in vivo, synthetic biologists have enabled ribosomal incorporation of d-AAs in vitro toward encoding polypeptides with pharmacologically desirable properties. However, the steps in translation limiting d-AA incorporation need clarification. In this work, we compared d- and l-Phe incorporation in translation by quench-flow kinetics, measuring 250-fold slower incorporation into the dipeptide for the d isomer from a tRNAPhe-based adaptor (tRNAPheB). Incorporation was moderately hastened by tRNA body swaps and higher EF-Tu concentrations, indicating that binding by EF-Tu can be rate-limiting. However, from tRNAAlaB with a saturating concentration of EF-Tu, the slow d-Phe incorporation was unexpectedly very efficient in competition with incorporation of the l isomer, indicating fast binding to EF-Tu, fast binding of the resulting complex to the ribosome, and rate-limiting accommodation/peptide bond formation. Subsequent elongation with an l-AA was confirmed to be very slow and inefficient. This understanding helps rationalize incorporation efficiencies in vitro and stereospecific mechanisms in vivo and suggests approaches for improving incorporation.
Collapse
Affiliation(s)
- Josefine Liljeruhm
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 751 24 Uppsala, Sweden
| | - Jinfan Wang
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 751 24 Uppsala, Sweden
| | - Marek Kwiatkowski
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 751 24 Uppsala, Sweden
| | - Samudra Sabari
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 751 24 Uppsala, Sweden
| | - Anthony C. Forster
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 751 24 Uppsala, Sweden
| |
Collapse
|
26
|
Katoh T, Suga H. Engineering Translation Components Improve Incorporation of Exotic Amino Acids. Int J Mol Sci 2019; 20:ijms20030522. [PMID: 30691159 PMCID: PMC6386890 DOI: 10.3390/ijms20030522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Methods of genetic code manipulation, such as nonsense codon suppression and genetic code reprogramming, have enabled the incorporation of various nonproteinogenic amino acids into the peptide nascent chain. However, the incorporation efficiency of such amino acids largely varies depending on their structural characteristics. For instance, l-α-amino acids with artificial, bulky side chains are poorer substrates for ribosomal incorporation into the nascent peptide chain, mainly owing to the lower affinity of their aminoacyl-tRNA toward elongation factor-thermo unstable (EF-Tu). Phosphorylated Ser and Tyr are also poorer substrates for the same reason; engineering EF-Tu has turned out to be effective in improving their incorporation efficiencies. On the other hand, exotic amino acids such as d-amino acids and β-amino acids are even poorer substrates owing to their low affinity to EF-Tu and poor compatibility to the ribosome active site. Moreover, their consecutive incorporation is extremely difficult. To solve these problems, the engineering of ribosomes and tRNAs has been executed, leading to successful but limited improvement of their incorporation efficiency. In this review, we comprehensively summarize recent attempts to engineer the translation systems, resulting in a significant improvement of the incorporation of exotic amino acids.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
27
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
28
|
Wang J, Forster AC. Ribosomal incorporation of unnatural amino acids: lessons and improvements from fast kinetics studies. Curr Opin Chem Biol 2018; 46:180-187. [DOI: 10.1016/j.cbpa.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022]
|
29
|
Fleisher RC, Cornish VW, Gonzalez RL. d-Amino Acid-Mediated Translation Arrest Is Modulated by the Identity of the Incoming Aminoacyl-tRNA. Biochemistry 2018; 57:4241-4246. [PMID: 29979035 DOI: 10.1021/acs.biochem.8b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A complete understanding of the determinants that restrict d-amino acid incorporation by the ribosome, which is of interest to both basic biologists and the protein engineering community, remains elusive. Previously, we demonstrated that d-amino acids are successfully incorporated into the C-terminus of the nascent polypeptide chain. Ribosomes carrying the resulting peptidyl-d-aminoacyl-tRNA (peptidyl-d-aa-tRNA) donor substrate, however, partition into subpopulations that either undergo translation arrest through inactivation of the ribosomal peptidyl-transferase center (PTC) or remain translationally competent. The proportion of each subpopulation is determined by the identity of the d-amino acid side chain. Here, we demonstrate that the identity of the aminoacyl-tRNA (aa-tRNA) acceptor substrate that is delivered to ribosomes carrying a peptidyl-d-aa-tRNA donor further modulates this partitioning. Our discovery demonstrates that it is the pairing of the peptidyl-d-aa-tRNA donor and the aa-tRNA acceptor that determines the activity of the PTC. Moreover, we provide evidence that both the amino acid and tRNA components of the aa-tRNA acceptor contribute synergistically to the extent of arrest. The results of this work deepen our understanding of the mechanism of d-amino acid-mediated translation arrest and how cells avoid this precarious obstacle, reveal similarities to other translation arrest mechanisms involving the PTC, and provide a new route for improving the yields of engineered proteins containing d-amino acids.
Collapse
Affiliation(s)
- Rachel C Fleisher
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Virginia W Cornish
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Ruben L Gonzalez
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
30
|
Katoh T, Passioura T, Suga H. Advances in in vitro genetic code reprogramming in 2014-2017. Synth Biol (Oxf) 2018; 3:ysy008. [PMID: 32995516 PMCID: PMC7445766 DOI: 10.1093/synbio/ysy008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022] Open
Abstract
To date, various genetic code manipulation methods have been developed to introduce non-proteinogenic amino acids into peptides by translation. However, the number of amino acids that can be used simultaneously remains limited even using these methods. Additionally, the scope of amino acid substrates that are compatible with ribosomal translation systems is also limited. For example, difficult substrates such as d-amino acids and β-amino acids are much less efficiently incorporated into peptides than l-α-amino acids. Here, we focus on three recently developed methodologies that address these issues: (i) artificial division of codon boxes to increase the number of available amino acids, (ii) orthogonal ribosomal translation systems to ‘duplicate’ the codon table and (iii) development of novel artificial tRNAs that enhance incorporation of difficult amino acid substrates.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, PRESTO, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Abstract
Our understanding of the complex molecular processes of living organisms at the molecular level is growing exponentially. This knowledge, together with a powerful arsenal of tools for manipulating the structures of macromolecules, is allowing chemists to to harness and reprogram the cellular machinery in ways previously unimaged. Here we review one example in which the genetic code itself has been expanded with new building blocks that allow us to probe and manipulate the structures and functions of proteins with unprecedented precision.
Collapse
Affiliation(s)
- Douglas D. Young
- Department of Chemistry, College of William & Mary,
P.O. Box 8795, Williamsburg, VA 23187 (USA)
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute,
La Jolla, CA 92037 (USA),
| |
Collapse
|
32
|
Ring CM, Iqbal ES, Hacker DE, Hartman MCT, Cropp TA. Genetic incorporation of 4-fluorohistidine into peptides enables selective affinity purification. Org Biomol Chem 2018; 15:4536-4539. [PMID: 28517015 DOI: 10.1039/c7ob00844a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the lowered pKa of 4-fluorohistidine relative to histidine, peptides and proteins containing this amino acid are potentially endowed with novel properties. We report here the optimized synthesis of 4-fluorohistidine and show that it can efficiently replace histidine in in vitro translation reactions. Moreover, peptides containing 6×-fluorohistidine tags are able to be selectively captured and eluted from nickel resin in the presence of his-tagged protein mixtures.
Collapse
Affiliation(s)
- Christine M Ring
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, USA.
| | | | | | | | | |
Collapse
|
33
|
Cheloha RW, Chen B, Kumar NN, Watanabe T, Thorne RG, Li L, Gardella TJ, Gellman SH. Development of Potent, Protease-Resistant Agonists of the Parathyroid Hormone Receptor with Broad β Residue Distribution. J Med Chem 2017; 60:8816-8833. [PMID: 29064243 DOI: 10.1021/acs.jmedchem.7b00876] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The parathyroid hormone receptor 1 (PTHR1) is a member of the B-family of GPCRs; these receptors are activated by long polypeptide hormones and constitute targets of drug development efforts. Parathyroid hormone (PTH, 84 residues) and PTH-related protein (PTHrP, 141 residues) are natural agonists of PTHR1, and an N-terminal fragment of PTH, PTH(1-34), is used clinically to treat osteoporosis. Conventional peptides in the 20-40-mer length range are rapidly degraded by proteases, which may limit their biomedical utility. We have used the PTHR1-ligand system to explore the impact of broadly distributed replacement of α-amino acid residues with β-amino acid residues on susceptibility to proteolysis and agonist activity. This effort led us to identify new PTHR1 agonists that contain α → β replacements throughout their sequences, manifest potent agonist activity in cellular assays, and display remarkable resistance to proteolysis, in cases remaining active after extended exposure to simulated gastric fluid. The strategy we have employed suggests a path toward identifying protease-resistant agonists of other B-family GPCRs.
Collapse
Affiliation(s)
- Ross W Cheloha
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Niyanta N Kumar
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Tomoyuki Watanabe
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Robert G Thorne
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States.,Clinical Neuroengineering Training Program, University of Wisconsin-Madison Biomedical Engineering , Engineering Centers Building, Room 2120, 1550 Engineering Drive, Madison Wisconsin 53706, United States.,Neuroscience Training Program & Center for Neuroscience, Wisconsin Institutes for Medical Research II , Rooms 9531 and 9533, 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Cellular and Molecular Pathology Graduate Training Program, UW Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison , 1685 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
34
|
Abstract
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
Collapse
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK
| |
Collapse
|
35
|
Abstract
In ribosomal translation, only 20 kinds of proteinogenic amino acids (pAAs), namely 19 l-amino acids and glycine, are exclusively incorporated into polypeptide chain. To overcome this limitation, various methods to introduce non-proteinogenic amino acids (npAAs) other than the 20 pAAs have been developed to date. However, the repertoire of amino acids that can be simultaneously introduced is still limited. Moreover, the efficiency of npAA incorporation is not always sufficient depending on their structures. Fidelity of translation is sometimes low due to misincorporation of competing pAAs and/or undesired translation termination. Here, we provide an overview of efforts to solve these issues, focusing on the engineering of tRNAs.
Collapse
Affiliation(s)
- Takayuki Katoh
- a Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo , Japan.,b JST, PRESTO , 7-3-1 Hongo, Bunkyo-ku , Tokyo , Japan
| | - Yoshihiko Iwane
- a Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo , Japan
| | - Hiroaki Suga
- a Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo , Japan.,c JST, CREST , 7-3-1 Hongo, Bunkyo-ku , Tokyo , Japan
| |
Collapse
|
36
|
De Bo G, Gall MAY, Kitching MO, Kuschel S, Leigh DA, Tetlow DJ, Ward JW. Sequence-Specific β-Peptide Synthesis by a Rotaxane-Based Molecular Machine. J Am Chem Soc 2017; 139:10875-10879. [DOI: 10.1021/jacs.7b05850] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guillaume De Bo
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Malcolm A. Y. Gall
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Matthew O. Kitching
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sonja Kuschel
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Daniel J. Tetlow
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - John W. Ward
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
37
|
Rewiring protein synthesis: From natural to synthetic amino acids. Biochim Biophys Acta Gen Subj 2017; 1861:3024-3029. [PMID: 28095316 DOI: 10.1016/j.bbagen.2017.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. SCOPE OF REVIEW This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. MAJOR CONCLUSIONS The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. GENERAL SIGNIFICANCE Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
38
|
Katoh T, Tajima K, Suga H. Consecutive Elongation of D-Amino Acids in Translation. Cell Chem Biol 2016; 24:46-54. [PMID: 28042044 DOI: 10.1016/j.chembiol.2016.11.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 11/17/2022]
Abstract
Recent progress in the field of genetic code reprogramming using a reconstituted cell-free translation system has made it possible to incorporate a wide array of non-proteinogenic amino acids, including N-methyl-amino acids and D-amino acids. Despite the fact that up to ten N-methyl-amino acid residues can be continuously elongated, the successive incorporation of even two D-amino acids into a nascent peptide chain remains a formidable challenge, thus far being nearly impossible. Here we report achievement of continuous D-amino acid elongation by the use of engineered tRNAs and optimized concentrations of translation factors, enabling us to incorporate up to ten consecutive D-Ser residues into a nascent peptide chain. We have also expressed macrocyclic peptides consisting of four or five consecutive D-amino acids consisting of D-Phe, D-Ser, D-Ala, or D-Cys closed by either a disulfide bond or a thioether bond.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; JST, PRESTO, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kenya Tajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; JST, CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
39
|
Kawakami T, Ogawa K, Hatta T, Goshima N, Natsume T. Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor. ACS Chem Biol 2016; 11:1569-77. [PMID: 27010125 DOI: 10.1021/acschembio.5b01014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-alkyl amino acids are useful building blocks for the in vitro display evolution of ribosomally synthesized peptides because they can increase the proteolytic stability and cell permeability of these peptides. However, the translation initiation substrate specificity of nonproteinogenic N-alkyl amino acids has not been investigated. In this study, we screened various N-alkyl amino acids and nonamino carboxylic acids for translation initiation with an Escherichia coli reconstituted cell-free translation system (PURE system) and identified those that efficiently initiated translation. Using seven of these efficiently initiating acids, we next performed in vitro display evolution of cyclized peptidomimetics against an arbitrarily chosen model human protein (β-catenin) cell-free expressed from its cloned cDNA (HUPEX) and identified a novel β-catenin-binding cyclized peptoid-peptide chimera. Furthermore, by a proteomic approach using direct nanoflow liquid chromatography-tandem mass spectrometry (DNLC-MS/MS), we successfully identified which protein-β-catenin interaction is inhibited by the chimera. The combination of in vitro display evolution of cyclized N-alkyl peptidomimetics and in vitro expression of human proteins would be a powerful approach for the high-speed discovery of diverse human protein-targeted cyclized N-alkyl peptidomimetics.
Collapse
Affiliation(s)
- Takashi Kawakami
- Molecular Profiling Research
Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Koji Ogawa
- Molecular Profiling Research
Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research
Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Naoki Goshima
- Molecular Profiling Research
Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research
Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
40
|
Richardson CJ, First EA. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain. Biochemistry 2016; 55:1541-53. [DOI: 10.1021/acs.biochem.5b01167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Charles J. Richardson
- Department of Biochemistry
and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, 1501 Kings Highway, Shreveport, Louisiana 71130, United States
| | - Eric A. First
- Department of Biochemistry
and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, 1501 Kings Highway, Shreveport, Louisiana 71130, United States
| |
Collapse
|
41
|
Fujino T, Goto Y, Suga H, Murakami H. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids. J Am Chem Soc 2016; 138:1962-9. [DOI: 10.1021/jacs.5b12482] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomoshige Fujino
- Department
of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Hiroshi Murakami
- Department
of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
42
|
Fujino T, Murakami H. In VitroSelection Combined with Ribosomal Translation Containing Non-proteinogenic Amino Acids. CHEM REC 2016; 16:365-77. [DOI: 10.1002/tcr.201500239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Tomoshige Fujino
- Department of Chemical and Biological Engineering, School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Murakami
- Department of Chemical and Biological Engineering, School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
43
|
Wang J, Kwiatkowski M, Forster AC. Kinetics of Ribosome-Catalyzed Polymerization Using Artificial Aminoacyl-tRNA Substrates Clarifies Inefficiencies and Improvements. ACS Chem Biol 2015; 10:2187-92. [PMID: 26191973 DOI: 10.1021/acschembio.5b00335] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomal synthesis of polymers of unnatural amino acids (AAs) is limited by low incorporation efficiencies using the artificial AA-tRNAs, but the kinetics have yet to be studied. Here, kinetics were performed on five consecutive incorporations using various artificial AA-tRNAs with all intermediate products being analyzed. Yields within a few seconds displayed similar trends to our prior yields after 30 min without preincubation, demonstrating the relevance of fast kinetics to traditional long-incubation translations. Interestingly, the two anticodon swaps were much less inhibitory in the present optimized system, which should allow more flexibility in the engineering of artificial AA-tRNAs. The biggest kinetic defect was caused by the penultimate dC introduced from the standard, chemoenzymatic, charging method. This prompted peptidyl-tRNA drop-off, decreasing processivities during five consecutive AA incorporations. Indeed, two tRNA charging methods that circumvented the dC dramatically improved efficiencies of ribosomal, consecutive, unnatural AA incorporations to give near wild-type kinetics.
Collapse
Affiliation(s)
- Jinfan Wang
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| | - Marek Kwiatkowski
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| | - Anthony C. Forster
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| |
Collapse
|
44
|
Maini R, Chowdhury SR, Dedkova LM, Roy B, Daskalova SM, Paul R, Chen S, Hecht SM. Protein Synthesis with Ribosomes Selected for the Incorporation of β-Amino Acids. Biochemistry 2015; 54:3694-706. [PMID: 25982410 PMCID: PMC4472090 DOI: 10.1021/acs.biochem.5b00389] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/16/2015] [Indexed: 02/04/2023]
Abstract
In an earlier study, β³-puromycin was used for the selection of modified ribosomes, which were utilized for the incorporation of five different β-amino acids into Escherichia coli dihydrofolate reductase (DHFR). The selected ribosomes were able to incorporate structurally disparate β-amino acids into DHFR, in spite of the use of a single puromycin for the selection of the individual clones. In this study, we examine the extent to which the structure of the β³-puromycin employed for ribosome selection influences the regio- and stereochemical preferences of the modified ribosomes during protein synthesis; the mechanistic probe was a single suppressor tRNA(CUA) activated with each of four methyl-β-alanine isomers (1-4). The modified ribosomes were found to incorporate each of the four isomeric methyl-β-alanines into DHFR but exhibited a preference for incorporation of 3(S)-methyl-β-alanine (β-mAla; 4), i.e., the isomer having the same regio- and stereochemistry as the O-methylated β-tyrosine moiety of β³-puromycin. Also conducted were a selection of clones that are responsive to β²-puromycin and a demonstration of reversal of the regio- and stereochemical preferences of these clones during protein synthesis. These results were incorporated into a structural model of the modified regions of 23S rRNA, which included in silico prediction of a H-bonding network. Finally, it was demonstrated that incorporation of 3(S)-methyl-β-alanine (β-mAla; 4) into a short α-helical region of the nucleic acid binding domain of hnRNP LL significantly stabilized the helix without affecting its DNA binding properties.
Collapse
MESH Headings
- Alanine/analogs & derivatives
- Alanine/chemistry
- Alanine/metabolism
- Escherichia coli/enzymology
- Escherichia coli/metabolism
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/chemistry
- Heterogeneous-Nuclear Ribonucleoprotein L/biosynthesis
- Heterogeneous-Nuclear Ribonucleoprotein L/chemistry
- Heterogeneous-Nuclear Ribonucleoprotein L/genetics
- Humans
- Hydrogen Bonding
- Models, Molecular
- Molecular Dynamics Simulation
- Mutant Proteins/biosynthesis
- Mutant Proteins/chemistry
- Mutant Proteins/genetics
- Nucleotide Motifs
- Peptidyl Transferases/genetics
- Peptidyl Transferases/metabolism
- Protein Conformation
- Protein Stability
- Puromycin/analogs & derivatives
- Puromycin/chemistry
- Puromycin/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Ribosomes/metabolism
- Stereoisomerism
- Substrate Specificity
- Tetrahydrofolate Dehydrogenase/biosynthesis
- Tetrahydrofolate Dehydrogenase/chemistry
Collapse
Affiliation(s)
- Rumit Maini
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Sandipan Roy Chowdhury
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M. Dedkova
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Basab Roy
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Sasha M. Daskalova
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Rakesh Paul
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M. Hecht
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
45
|
Achenbach J, Jahnz M, Bethge L, Paal K, Jung M, Schuster M, Albrecht R, Jarosch F, Nierhaus KH, Klussmann S. Outwitting EF-Tu and the ribosome: translation with d-amino acids. Nucleic Acids Res 2015; 43:5687-98. [PMID: 26026160 PMCID: PMC4499158 DOI: 10.1093/nar/gkv566] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
Key components of the translational apparatus, i.e. ribosomes, elongation factor EF-Tu and most aminoacyl-tRNA synthetases, are stereoselective and prevent incorporation of d-amino acids (d-aa) into polypeptides. The rare appearance of d-aa in natural polypeptides arises from post-translational modifications or non-ribosomal synthesis. We introduce an in vitro translation system that enables single incorporation of 17 out of 18 tested d-aa into a polypeptide; incorporation of two or three successive d-aa was also observed in several cases. The system consists of wild-type components and d-aa are introduced via artificially charged, unmodified tRNAGly that was selected according to the rules of ‘thermodynamic compensation’. The results reveal an unexpected plasticity of the ribosomal peptidyltransferase center and thus shed new light on the mechanism of chiral discrimination during translation. Furthermore, ribosomal incorporation of d-aa into polypeptides may greatly expand the armamentarium of in vitro translation towards the identification of peptides and proteins with new properties and functions.
Collapse
Affiliation(s)
- John Achenbach
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Michael Jahnz
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Lucas Bethge
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Krisztina Paal
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Maria Jung
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Maja Schuster
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Renate Albrecht
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Florian Jarosch
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Knud H Nierhaus
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
46
|
The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center. Proc Natl Acad Sci U S A 2015; 112:6038-43. [PMID: 25918365 DOI: 10.1073/pnas.1424712112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The cellular translational machinery (TM) synthesizes proteins using exclusively L- or achiral aminoacyl-tRNAs (aa-tRNAs), despite the presence of D-amino acids in nature and their ability to be aminoacylated onto tRNAs by aa-tRNA synthetases. The ubiquity of L-amino acids in proteins has led to the hypothesis that D-amino acids are not substrates for the TM. Supporting this view, protein engineering efforts to incorporate D-amino acids into proteins using the TM have thus far been unsuccessful. Nonetheless, a mechanistic understanding of why D-aa-tRNAs are poor substrates for the TM is lacking. To address this deficiency, we have systematically tested the translation activity of D-aa-tRNAs using a series of biochemical assays. We find that the TM can effectively, albeit slowly, accept D-aa-tRNAs into the ribosomal aa-tRNA binding (A) site, use the A-site D-aa-tRNA as a peptidyl-transfer acceptor, and translocate the resulting peptidyl-D-aa-tRNA into the ribosomal peptidyl-tRNA binding (P) site. During the next round of continuous translation, however, we find that ribosomes carrying a P-site peptidyl-D-aa-tRNA partition into subpopulations that are either translationally arrested or that can continue translating. Consistent with its ability to arrest translation, chemical protection experiments and molecular dynamics simulations show that P site-bound peptidyl-D-aa-tRNA can trap the ribosomal peptidyl-transferase center in a conformation in which peptidyl transfer is impaired. Our results reveal a novel mechanism through which D-aa-tRNAs interfere with translation, provide insight into how the TM might be engineered to use D-aa-tRNAs, and increase our understanding of the physiological role of a widely distributed enzyme that clears D-aa-tRNAs from cells.
Collapse
|
47
|
Abstract
An RNA World that predated the modern world of polypeptide and polynucleotide is one of the most widely accepted models in origin of life research. In this model, the translation system shepherded the RNA World into the extant biology of DNA, RNA, and protein. Here, we examine the RNA World Hypothesis in the context of increasingly detailed information available about the origins, evolution, functions, and mechanisms of the translation system. We conclude that the translation system presents critical challenges to RNA World Hypotheses. Firstly, a timeline of the RNA World is problematic when the ribosome is incorporated. The mechanism of peptidyl transfer of the ribosome appears distinct from evolved enzymes, signaling origins in a chemical rather than biological milieu. Secondly, we have no evidence that the basic biochemical toolset of life is subject to substantive change by Darwinian evolution, as required for the transition from the RNA world to extant biology. Thirdly, we do not see specific evidence for biological takeover of ribozyme function by protein enzymes. Finally, we can find no basis for preservation of the ribosome as ribozyme or the universality of translation, if it were the case that other information transducing ribozymes, such as ribozyme polymerases, were replaced by protein analogs and erased from the phylogenetic record. We suggest that an updated model of the RNA World should address the current state of knowledge of the translation system.
Collapse
|
48
|
Abstract
This review discusses the template-directed preparation of sequence-defined polymers.
Collapse
|
49
|
Kwiatkowski M, Wang J, Forster AC. Facile synthesis of N-acyl-aminoacyl-pCpA for preparation of mischarged fully ribo tRNA. Bioconjug Chem 2014; 25:2086-91. [PMID: 25338217 DOI: 10.1021/bc500441b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemical synthesis of N-acyl-aminoacyl-pdCpA and its ligation to tRNA(minus CA) is widely used for the preparation of unnatural aminoacyl-tRNA substrates for ribosomal translation. However, the presence of the unnatural deoxyribose can decrease incorporation yield in translation and there is no straightforward method for chemical synthesis of the natural ribo version. Here, we show that pCpA is surprisingly stable to treatment with strong organic bases provided that anhydrous conditions are used. This allowed development of a facile method for chemical aminoacylation of pCpA. Preparative synthesis of pCpA was also simplified by using t-butyl-dithiomethyl protecting group methodology, and a more reliable pCpA postpurification treatment method was developed. Such aminoacyl-pCpA analogues ligated to tRNA(minus CA) transcripts are highly active in a purified translation system, demonstrating utility of our synthetic method.
Collapse
Affiliation(s)
- Marek Kwiatkowski
- Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, Uppsala 75124, Sweden
| | | | | |
Collapse
|
50
|
Wang J, Kwiatkowski M, Pavlov MY, Ehrenberg M, Forster AC. Peptide formation by N-methyl amino acids in translation is hastened by higher pH and tRNA(Pro). ACS Chem Biol 2014; 9:1303-11. [PMID: 24673854 DOI: 10.1021/cb500036a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Applications of N-methyl amino acids (NMAAs) in drug discovery are limited by their low efficiencies of ribosomal incorporation, and little is known mechanistically about the steps leading to incorporation. Here, we demonstrate that a synthetic tRNA body based on a natural N-alkyl amino acid carrier, tRNA(Pro), increases translation incorporation rates of all three studied NMAAs compared with tRNA(Phe)- and tRNA(Ala)-based bodies. We also investigate the pH dependence of the incorporation rates and find that the rates increase dramatically in the range of pH 7 to 8.5 with the titration of a single proton. Results support a rate-limiting peptidyl transfer step dependent on deprotonation of the N-nucleophile of the NMAA. Competition experiments demonstrate that several futile cycles of delivery and rejection of A-site NMAA-tRNA are required per peptide bond formed and that increasing magnesium ion concentration increases incorporation yield. Data clarify the mechanism of ribosomal NMAA incorporation and provide three generalizable ways to improve incorporation of NMAAs in translation.
Collapse
Affiliation(s)
- Jinfan Wang
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| | - Marek Kwiatkowski
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| | - Michael Y. Pavlov
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| | - Anthony C. Forster
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| |
Collapse
|