1
|
Wang J, Dong P, Wu W, Pan X, Liang X. High-throughput thermal stability assessment of DNA hairpins based on high resolution melting. J Biomol Struct Dyn 2016; 36:1-13. [PMID: 28024437 DOI: 10.1080/07391102.2016.1266967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
On the basis of high-resolution melting, a high-throughput approach to measure melting temperatures (Tms) of short DNA hairpins was developed. With this method, Tms of thousands of triloop, tetraloop, and pentaloop hairpins involving various loop sequences and various closing base pairs (cbp) were obtained in hours. The stability of triloop hairpins decreased with the change of cbp (5'-3') in the order of c-g > g-c > t-a ≥ a-t, showing that the cbp of 5'-Pyr-Pur-3' (Pyr = pyrimidine, Pur = purine) contributed more stability than 5'-Pur-Pyr-3'. For tetraloop hairpins, GNNA, GNAB, and CNNG (N = A, G, C, or T; B = G, C, or T) were found to be highly stable irrespective of the cbp type. TNNA was also stable in both g-c and a-t families, while CGNA only in the c-g family. Pentaloop hairpins of cTGNAGg, cGNYNAg (Y = T or C) and cCGNNAg were exceptionally stable motifs. In most cases, pyrimidine-rich loops were more favorable to stabilize the whole structure than purine-rich ones. The present approach showed a good performance in assessing the thermal stability of large amounts of DNA hairpins comprehensively. These data are useful to understand the sequence dependence of the stability of DNA secondary structures and promising to improve the structure simulation by consummating basic databases.
Collapse
Affiliation(s)
- Jing Wang
- a College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Ping Dong
- a College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Wei Wu
- a College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Xiaoming Pan
- a College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Xingguo Liang
- a College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| |
Collapse
|
2
|
Wang J, Pan X, Liang X. Assessment for Melting Temperature Measurement of Nucleic Acid by HRM. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:5318935. [PMID: 27833775 PMCID: PMC5090098 DOI: 10.1155/2016/5318935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/04/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
High resolution melting (HRM), with a high sensitivity to distinguish the nucleic acid species with small variations, has been widely applied in the mutation scanning, methylation analysis, and genotyping. For the aim of extending HRM for the evaluation of thermal stability of nucleic acid secondary structures on sequence dependence, we investigated effects of the dye of EvaGreen, metal ions, and impurities (such as dNTPs) on melting temperature (Tm ) measurement by HRM. The accuracy of HRM was assessed as compared with UV melting method, and little difference between the two methods was found when the DNA Tm was higher than 40°C. Both insufficiency and excessiveness of EvaGreen were found to give rise to a little bit higher Tm , showing that the proportion of dye should be considered for precise Tm measurement of nucleic acids. Finally, HRM method was also successfully used to measure Tm s of DNA triplex, hairpin, and RNA duplex. In conclusion, HRM can be applied in the evaluation of thermal stability of nucleic acid (DNA or RNA) or secondary structural elements (even when dNTPs are present).
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoming Pan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Nayak RK, Van Orden A. Counterion and polythymidine loop-length-dependent folding and thermodynamic stability of DNA hairpins reveal the unusual counterion-dependent stability of tetraloop hairpins. J Phys Chem B 2013; 117:13956-66. [PMID: 24144397 DOI: 10.1021/jp404832d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stem-loop DNA hairpins containing a 5-base-pair (bp) stem and single-stranded polythymidine loop were investigated using thermodynamic melting analysis and stopped-flow kinetics. These studies revealed the thermodynamic stability and folding kinetics as a function of loop length and counterion concentration. Our results show the unusually high thermodynamic stability for tetraloop or 4 poly(dT) loop hairpin as compared with longer loop length hairpins. Furthermore, this exceptional stability is highly counterion-dependent. For example, in the higher counterion concentration regime of 50 mM NaCl and above, the tetraloop hairpin displays enhanced stability as compared with longer loop length hairpins. However, at lower counterion concentration of 25 mM NaCl and below, the thermal stability of tetraloop hairpin is consistent with the longer loop hairpins. The enhanced stability of tetraloop hairpins at higher counterion concentration can be explained on the basis of the combined entropic effect of loop closure as well as base stacking in the loop regions. The stability of longer loop length hairpins at all counterion concentrations as well as tetraloop hairpin at lower counterion concentration can be explained on the basis of entropic effect of loop closure alone. The thermodynamic parameters at lower and higher counterion concentrations were determined to quantify the enhanced stability of base-stacking effects occurring at higher counterion concentrations. For example, for 100 mM NaCl, excess Gibbs energy and enthalpy due to base stacking within the tetraloops were measured to be -1.2 ± 0.14 and -3.28 ± 0.32 kcal/mol, respectively, whereas, no excess of Gibbs energy and enthalpy was observed for 0, 5, 10, and 25 mM NaCl. These findings suggest significant base-stacking interactions occurring in the loop region of the tetraloop hairpins at higher counterion concentration and less significant base-stacking interactions in the lower counterion concentration regime. We suggest that at higher counterion concentrations, hydrophobic collapse of the nucleotides in the loop may be enhanced due to the increased polarity of the solvent, thereby enhancing base-stacking interactions that contribute to unusually high stability.
Collapse
Affiliation(s)
- Rajesh K Nayak
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
4
|
Chang CYJ, Stellwagen NC. Tandem GA residues on opposite sides of the loop in molecular beacon-like DNA hairpins compact the loop and increase hairpin stability. Biochemistry 2011; 50:9148-57. [PMID: 21942650 DOI: 10.1021/bi201263n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The free solution electrophoretic mobilities and thermal stabilities of hairpins formed by two complementary 26-nucleotide oligomers have been measured by capillary electrophoresis. The oligomers are predicted to form molecular beacon-like hairpins with 5 bp stems and 16 nucleotides in the loop. One hairpin, called hairpin2 (hp2), migrates with a relatively fast free solution mobility and exhibits melting temperatures that are reasonably well predicted by the popular structure-prediction program Mfold. Its complement, called hairpin1 (hp1), migrates with a slower free solution mobility and forms a stable hairpin only in solutions containing ≥200 mM Na(+). The melting temperatures observed for hp1 are ~18 °C lower than those observed for hp2 and ~20 °C lower than those predicted by Mfold. The greater thermal stability of hp2 is due to the presence of tandem GA residues on opposite sides of the loop. If the corresponding TC residues in the hp1 loop are replaced by tandem GA residues, the melting temperatures of the modified hairpin are close to those observed for hp2. Eliminating the tandem GA residues in the hp2 loop significantly decreases the thermal stability of hp2. If the loops are replaced by a loop of 16 thymine residues, the free solution mobilities and thermal stabilities of the T-loop hairpin are equal to those observed for hp1. Hence, the loop of hp1 appears to be relatively unstructured, with few base-base stacking interactions. Interactions between tandem GA residues on opposite sides of the hp2 loop appear to compact the loop and increase hairpin stability.
Collapse
Affiliation(s)
- Chun Yaw Joel Chang
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | |
Collapse
|
5
|
Kannan S, Zacharias M. Role of the closing base pair for d(GCA) hairpin stability: free energy analysis and folding simulations. Nucleic Acids Res 2011; 39:8271-80. [PMID: 21724608 PMCID: PMC3201870 DOI: 10.1093/nar/gkr541] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 01/17/2023] Open
Abstract
Hairpin loops belong to the most important structural motifs in folded nucleic acids. The d(GNA) sequence in DNA can form very stable trinucleotide hairpin loops depending, however, strongly on the closing base pair. Replica-exchange molecular dynamics (REMD) were employed to study hairpin folding of two DNA sequences, d(gcGCAgc) and d(cgGCAcg), with the same central loop motif but different closing base pairs starting from single-stranded structures. In both cases, conformations of the most populated conformational cluster at the lowest temperature showed close agreement with available experimental structures. For the loop sequence with the less stable G:C closing base pair, an alternative loop topology accumulated as second most populated conformational state indicating a possible loop structural heterogeneity. Comparative-free energy simulations on induced loop unfolding indicated higher stability of the loop with a C:G closing base pair by ~3 kcal mol(-1) (compared to a G:C closing base pair) in very good agreement with experiment. The comparative energetic analysis of sampled unfolded, intermediate and folded conformational states identified electrostatic and packing interactions as the main contributions to the closing base pair dependence of the d(GCA) loop stability.
Collapse
Affiliation(s)
- Srinivasaraghavan Kannan
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale) and Physik-Department T38, Technische Universität München, 85747 Garching, Germany
| | - Martin Zacharias
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale) and Physik-Department T38, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
6
|
Amiri AR, Macgregor RB. The effect of hydrostatic pressure on the thermal stability of DNA hairpins. Biophys Chem 2011; 156:88-95. [DOI: 10.1016/j.bpc.2011.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 02/02/2011] [Accepted: 02/08/2011] [Indexed: 11/29/2022]
|
7
|
Sivaleela T, Nagaveni V, Prabhakar S, Vairamani M. Chiral discrimination of drugs by DNA tetranucleotides under electrospray ionisation conditions. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:177-186. [PMID: 21719925 DOI: 10.1255/ejms.1116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The DNA tetranucleotides, extended versions of GCA at the 3'-end or 5'-end, were used as chiral selectors for the chiral discrimination of atenolol, DOPA, tamsulosin, valacyclovir and zolmitriptan. Chiral discrimination was achieved by investigating the collision-induced dissociation spectra of the [X+Y-2H](2-) ion generated by electrospraying a solution mixture of tetranucleotide (X) and R- or S-analyte drug (Y). The relative abundances of the precursor ion and the product ion, resulting from the loss of drug, were considered for measuring the degree of chiral discrimination. Among all the tetranucleotides studied, AGCA showed the highest chiral discrimination. The present study emphasised the position of an adenine base in the tetranucleotide in chiral discrimination. The suitability of the method for the measurement of optical purity was also demonstrated in the case of zolmitriptan.
Collapse
Affiliation(s)
- Tallagadda Sivaleela
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology, Hyderabad-500 607, India
| | | | | | | |
Collapse
|
8
|
Mohan S, Hsiao C, Bowman JC, Wartell R, Williams LD. RNA Tetraloop Folding Reveals Tension between Backbone Restraints and Molecular Interactions. J Am Chem Soc 2010; 132:12679-89. [DOI: 10.1021/ja104387k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Srividya Mohan
- School of Chemistry and Biochemistry, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Chiaolong Hsiao
- School of Chemistry and Biochemistry, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Jessica C. Bowman
- School of Chemistry and Biochemistry, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Roger Wartell
- School of Chemistry and Biochemistry, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
9
|
Blose JM, Lloyd KP, Bevilacqua PC. Portability of the GN(R)A Hairpin Loop Motif between RNA and DNA. Biochemistry 2009; 48:8787-94. [DOI: 10.1021/bi901038s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Joshua M. Blose
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
- Present Address: School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Kenneth P. Lloyd
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, Massachusetts 01605
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
10
|
Blose JM, Proctor DJ, Veeraraghavan N, Misra VK, Bevilacqua PC. Contribution of the closing base pair to exceptional stability in RNA tetraloops: roles for molecular mimicry and electrostatic factors. J Am Chem Soc 2009; 131:8474-84. [PMID: 19476351 DOI: 10.1021/ja900065e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hairpins are common RNA secondary structures that play multiple roles in nature. Tetraloops are the most frequent RNA hairpin loops and are often phylogenetically conserved. For both the UNCG and GNRA families, CG closing base pairs (cbps) confer exceptional thermodynamic stability but the molecular basis for this has remained unclear. We propose that, despite having very different overall folds, these two tetraloop families achieve stability by presenting the same functionalities to the major groove edge of the CG cbp. Thermodynamic contributions of this molecular mimicry were investigated using substitutions at the nucleobase and functional group levels. By either interrupting or deleting loop-cbp electrostatic interactions, which were identified by solving the nonlinear Poisson-Boltzmann (NLPB) equation, stability changed in a manner consistent with molecular mimicry. We also observed a linear relationship between DeltaG(o)(37) and log[Na(+)] for both families, and loops with a CG cbp had a decreased dependence of stability on salt. NLPB calculations revealed that, for both UUCG and GAAA tetraloops, the GC cbp form has a higher surface charge density, although it arises from changes in loop compaction for UUCG and changes in loop configuration for GAAA. Higher surface charge density leads to stronger interactions of GC cbp loops with solvent and salt, which explains the correlation between experimental and calculated trends of free energy with salt. Molecular mimicry as evidenced in these two stable but otherwise unrelated tetraloops may underlie common functional roles in other RNA and DNA motifs.
Collapse
Affiliation(s)
- Joshua M Blose
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
11
|
Siegfried NA, Bevilacqua PC. Thinking inside the box: designing, implementing, and interpreting thermodynamic cycles to dissect cooperativity in RNA and DNA folding. Methods Enzymol 2009; 455:365-93. [PMID: 19289213 DOI: 10.1016/s0076-6879(08)04213-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Double and triple mutant thermodynamic cycles provide a means to dissect the cooperativity of RNA and DNA folding at both the secondary and tertiary structural levels through use of the thermodynamic box or cube. In this article, we describe three steps for applying thermodynamic cycles to nucleic acid folding, with considerations of both conceptual and experimental features. The first step is design of an appropriate system and development of hypotheses regarding which residues might interact. Next is implementing this design in terms of a tractable experimental strategy, with an emphasis on UV melting. The final step, and the one we emphasize the most, is interpreting mutant cycles in terms of coupling between specific residues in the RNA or DNA. Coupling free energy in the absence and presence of changes elsewhere in the molecule is discussed in terms of specific folding models, including stepwise folding and concerted changes. Last, we provide a practical section on the use of commercially available software (KaleidaGraph) to fit melting data, along with a consideration of error propagation. Along the way, specific examples are chosen from the literature to illustrate the methods. This article is intended to be accessible to the biochemist or biologist without extensive thermodynamics background.
Collapse
Affiliation(s)
- Nathan A Siegfried
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
12
|
Antony J, Brüske B, Grimme S. Cooperativity in noncovalent interactions of biologically relevant molecules. Phys Chem Chem Phys 2009; 11:8440-7. [PMID: 19774274 DOI: 10.1039/b907260h] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jens Antony
- Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, D-48149 Münster, Germany
| | | | | |
Collapse
|
13
|
Bai LP, Cai Z, Zhao ZZ, Nakatani K, Jiang ZH. Site-specific binding of chelerythrine and sanguinarine to single pyrimidine bulges in hairpin DNA. Anal Bioanal Chem 2008; 392:709-16. [DOI: 10.1007/s00216-008-2302-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/02/2008] [Accepted: 07/17/2008] [Indexed: 11/30/2022]
|
14
|
Bevilacqua PC, Blose JM. Structures, kinetics, thermodynamics, and biological functions of RNA hairpins. Annu Rev Phys Chem 2008; 59:79-103. [PMID: 17937599 DOI: 10.1146/annurev.physchem.59.032607.093743] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most RNA comprises one strand and therefore can fold back on itself to form complex structures. At the heart of these structures is the hairpin, which is composed of a stem having Watson-Crick base pairing and a loop wherein the backbone changes directionality. First, we review the structure of hairpins including diversity in the stem, loop, and closing base pair. The function of RNA hairpins in biology is discussed next, including roles for isolated hairpins, as well as hairpins in the context of complex tertiary structures. We describe the kinetics and thermodynamics of hairpin folding including models for hairpin folding, folding transition states, and the cooperativity of folding. Lastly, we discuss some ways in which hairpins can influence the folding and function of tertiary structures, both directly and indirectly. RNA hairpins provide a simple means of controlling gene expression that can be understood in the language of physical chemistry.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
15
|
Sivaleela T, Kumar MR, Prabhakar S, Bhaskar G, Vairamani M. Chiral discrimination of alpha-amino acids by DNA tetranucleotides under electrospray ionization conditions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:204-210. [PMID: 18088066 DOI: 10.1002/rcm.3344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A set of DNA tetranucleotides, which are 3'- or 5'-end extended versions of GCA, was used as chiral selectors for the discrimination of enantiomers of alpha-amino acids. The [X+Y-2H](2-) ions of the 1:1 complexes were generated by electrospraying a mixture of tetranucleotide (X) and amino acid (Y) solution. Chiral discrimination was achieved by studying the collision-induced dissociation spectra of the [X+Y-2H](2-) ion and the ratio of relative abundance of precursor ion to that of the product ion was used to measure the extent of discrimination. Among the tetranucleotides used, GCAA and GGCA exhibited better discrimination, in which GCAA showed D-selectivity and GGCA showed L-selectivity for the studied amino acids. In addition, binding constants were measured for the 1:1 complexes of phenylalanine enantiomers with GCAA and GGCA. Ltd.
Collapse
Affiliation(s)
- T Sivaleela
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | | | | | | | | |
Collapse
|
16
|
Kuznetsov SV, Ren CC, Woodson SA, Ansari A. Loop dependence of the stability and dynamics of nucleic acid hairpins. Nucleic Acids Res 2007; 36:1098-112. [PMID: 18096625 PMCID: PMC2275088 DOI: 10.1093/nar/gkm1083] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hairpin loops are critical to the formation of nucleic acid secondary structure, and to their function. Previous studies revealed a steep dependence of single-stranded DNA (ssDNA) hairpin stability with length of the loop (L) as approximately L(8.5 +/- 0.5), in 100 mM NaCl, which was attributed to intraloop stacking interactions. In this article, the loop-size dependence of RNA hairpin stabilities and their folding/unfolding kinetics were monitored with laser temperature-jump spectroscopy. Our results suggest that similar mechanisms stabilize small ssDNA and RNA loops, and show that salt contributes significantly to the dependence of hairpin stability on loop size. In 2.5 mM MgCl2, the stabilities of both ssDNA and RNA hairpins scale as approximately L(4 +/- 0.5), indicating that the intraloop interactions are weaker in the presence of Mg2+. Interestingly, the folding times for ssDNA hairpins (in 100 mM NaCl) and RNA hairpins (in 2.5 mM MgCl2) are similar despite differences in the salt conditions and the stem sequence, and increase similarly with loop size, approximately L(2.2 +/- 0.5) and approximately L(2.6 +/- 0.5), respectively. These results suggest that hairpins with small loops may be specifically stabilized by interactions of the Na+ ions with the loops. The results also reinforce the idea that folding times are dominated by an entropic search for the correct nucleating conformation.
Collapse
Affiliation(s)
- Serguei V Kuznetsov
- Department of Physics (M/C 273), University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
17
|
Kannan S, Zacharias M. Folding of a DNA hairpin loop structure in explicit solvent using replica-exchange molecular dynamics simulations. Biophys J 2007; 93:3218-28. [PMID: 17660316 PMCID: PMC2025651 DOI: 10.1529/biophysj.107.108019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hairpin loop structures are common motifs in folded nucleic acids. The 5'-GCGCAGC sequence in DNA forms a characteristic and stable trinucleotide hairpin loop flanked by a two basepair stem helix. To better understand the structure formation of this hairpin loop motif in atomic detail, we employed replica-exchange molecular dynamics (RexMD) simulations starting from a single-stranded DNA conformation. In two independent 36 ns RexMD simulations, conformations in very close agreement with the experimental hairpin structure were sampled as dominant conformations (lowest free energy state) during the final phase of the RexMDs ( approximately 35% at the lowest temperature replica). Simultaneous compaction and accumulation of folded structures were observed. Comparison of the GCA trinucleotides from early stages of the simulations with the folded topology indicated a variety of central loop conformations, but arrangements close to experiment that are sampled before the fully folded structure also appeared. Most of these intermediates included a stacking of the C(2) and G(3) bases, which was further stabilized by hydrogen bonding to the A(5) base and a strongly bound water molecule bridging the C(2) and A(5) in the DNA minor groove. The simulations suggest a folding mechanism where these intermediates can rapidly proceed toward the fully folded hairpin and emphasize the importance of loop and stem nucleotide interactions for hairpin folding. In one simulation, a loop motif with G(3) in syn conformation (dihedral flip at N-glycosidic bond) accumulated, resulting in a misfolded hairpin. Such conformations may correspond to long-lived trapped states that have been postulated to account for the folding kinetics of nucleic acid hairpins that are slower than expected for a semiflexible polymer of the same size.
Collapse
|
18
|
|
19
|
Bevilacqua PC, Brown TS, Chadalavada D, Lecomte J, Moody E, Nakano SI. Linkage between proton binding and folding in RNA: implications for RNA catalysis. Biochem Soc Trans 2005; 33:466-70. [PMID: 15916542 DOI: 10.1042/bst0330466] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Small ribozymes use their nucleobases to catalyse phosphodiester bond cleavage. The hepatitis delta virus ribozyme employs C75 as a general acid to protonate the 5′-bridging oxygen leaving group, and to accomplish this task efficiently, it shifts its pKa towards neutrality. Simulations and thermodynamic experiments implicate linkage between folding and protonation in nucleobase pKa shifting. Even small oligonucleotides are shown to fold in a highly co-operative manner, although they do so in a context-specific fashion. Linkage between protonation and co-operativity of folding may drive pKa shifting and provide for enhanced function in RNA.
Collapse
Affiliation(s)
- P C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Moody EM, Lecomte JTJ, Bevilacqua PC. Linkage between proton binding and folding in RNA: a thermodynamic framework and its experimental application for investigating pKa shifting. RNA (NEW YORK, N.Y.) 2005; 11:157-72. [PMID: 15659356 PMCID: PMC1370705 DOI: 10.1261/rna.7177505] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 11/17/2004] [Indexed: 05/21/2023]
Abstract
Perturbation of pKa values can change the favored protonation states of the nucleobases at biological pH and thereby modulate the function of RNA and DNA molecules. In an effort to understand the driving forces for pKa shifting specific to nucleic acids, we developed a thermodynamic framework that relates proton binding to the nucleobases and the helix-coil transition. Key features that emerge from the treatment are a comprehensive description of all the actions of proton binding on RNA folding: acid and alkaline denaturation of the helix and pKa shifting in the folded state. Practical experimental approaches for measuring pKas from thermal denaturation experiments are developed. Microscopic pka values (where ka is the acid dissociation constant) for the unfolded state were determined directly by experiments on unstructured oligonucleotides, which led to a macroscopic pKa for the ensemble of unfolded states shifted toward neutrality. The formalism was then applied to pH-dependent UV melting data for model DNA oligonucleotides. Folded-state pka) values were in good agreement with the outcome of pH titrations, and the acid and alkaline denaturation regions were well described. The formalism developed here is similar to that of Draper and coworkers for Mg2+ binding to RNA, except that the unfolded state is described explicitly owing to the presence of specific proton-binding sites on the bases. A principal conclusion is that it should be possible to attain large pKa shifts by designing RNA molecules that fold cooperatively.
Collapse
Affiliation(s)
- Ellen M Moody
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|