1
|
Jestilä JS, Wu N, Priante F, Foster AS. Accelerated Lignocellulosic Molecule Adsorption Structure Determination. J Chem Theory Comput 2024; 20:2297-2312. [PMID: 38408381 PMCID: PMC10939001 DOI: 10.1021/acs.jctc.3c01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Here, we present a study combining Bayesian optimization structural inference with the machine learning interatomic potential Neural Equivariant Interatomic Potential (NequIP) to accelerate and enable the study of the adsorption of the conformationally flexible lignocellulosic molecules β-d-xylose and 1,4-β-d-xylotetraose on a copper surface. The number of structure evaluations needed to map out the relevant potential energy surfaces are reduced by Bayesian optimization, while NequIP minimizes the time spent on each evaluation, ultimately resulting in cost-efficient and reliable sampling of large systems and configurational spaces. Although the applicability of Bayesian optimization for the conformational analysis of the more flexible xylotetraose molecule is restricted by the sample complexity bottleneck, the latter can be effectively bypassed with external conformer search tools, such as the Conformer-Rotamer Ensemble Sampling Tool, facilitating the subsequent lower-dimensional global minimum adsorption structure determination. Finally, we demonstrate the applicability of the described approach to find adsorption structures practically equivalent to the density functional theory counterparts at a fraction of the computational cost.
Collapse
Affiliation(s)
- Joakim S. Jestilä
- Department
of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
| | - Nian Wu
- Department
of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
| | - Fabio Priante
- Department
of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
| | - Adam S. Foster
- Department
of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, 920-1192 Kanazawa, Japan
| |
Collapse
|
2
|
Nin-Hill A, Ardevol A, Biarnés X, Planas A, Rovira C. Control of Substrate Conformation by Hydrogen Bonding in a Retaining β-Endoglycosidase. Chemistry 2023; 29:e202302555. [PMID: 37804517 DOI: 10.1002/chem.202302555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Bacterial β-glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β-cellulose, β-glucans and β-xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4 C1 conformation to a distorted 1 S3 /1,4 B conformation of the reactive sugar, is necessary for catalysis. However, the molecular determinants that stabilize the substrate's distortion are poorly understood. Here we use quantum mechanics/molecular mechanics (QM/MM)-based molecular dynamics methods to assess the impact of the interaction between the reactive sugar, i. e. the one at subsite -1, and the catalytic nucleophile (a glutamate) on substrate conformation. We show that the hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation: its presence preserves sugar distortion, whereas its absence (e.g. in an enzyme mutant) knocks it out. We also show that 2-deoxy-2-fluoro derivatives, widely used to trap the reaction intermediates by X-ray crystallography, reproduce the conformation of the hydrolysable substrate at the experimental conditions. These results highlight the importance of the 2-OH⋅⋅⋅nucleophile interaction in substrate recognition and catalysis in endo-glycosidases and can inform mutational campaigns aimed to search for more efficient enzymes.
Collapse
Affiliation(s)
- Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) &, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028, Barcelona, Spain
- present address: Toulouse Biotechnology Institute, TBI, Universite de Toulouse, CNRS, INRAE, INSA Toulouse, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Albert Ardevol
- CSIRO Manufacturing, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) &, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020, Barcelona, Spain
| |
Collapse
|
3
|
Morais MAB, Nin-Hill A, Rovira C. Glycosidase mechanisms: Sugar conformations and reactivity in endo- and exo-acting enzymes. Curr Opin Chem Biol 2023; 74:102282. [PMID: 36931022 DOI: 10.1016/j.cbpa.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 03/17/2023]
Abstract
The enzymatic breakdown of carbohydrates plays a critical role in several biological events and enables the development of sustainable processes to obtain bioproducts and biofuels. In this scenario, the design of efficient inhibitors for glycosidases that can act as drug targets and the engineering of carbohydrate-active enzymes with tailored catalytic properties is of remarkable importance. To guide rational approaches, it is necessary to elucidate enzyme molecular mechanisms, in particular understanding how the microenvironment modulates the conformational space explored by the substrate. Computer simulations, especially those based on ab initio methods, have provided a suitable atomic description of carbohydrate conformations and catalytic reactions in several glycosidase families. In this review, we will focus on how the active-site topology (pocket or cleft) and mode of cleavage (endo or exo) can affect the catalytic mechanisms adopted by glycosidases, in particular the substrate conformations along the reaction coordinate.
Collapse
Affiliation(s)
- Mariana Abrahão Bueno Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil
| | - Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
4
|
Alfonso-Prieto M, Cuxart I, Potocki-Véronèse G, André I, Rovira C. Substrate-Assisted Mechanism for the Degradation of N-Glycans by a Gut Bacterial Mannoside Phosphorylase. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Mercedes Alfonso-Prieto
- Departament de Química Inorgànica i Orgànica and Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Irene Cuxart
- Departament de Química Inorgànica i Orgànica and Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Gabrielle Potocki-Véronèse
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Isabelle André
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica and Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
J N C, Mallajosyula SS. Impact of Polarization on the Ring Puckering Dynamics of Hexose Monosaccharides. J Chem Inf Model 2023; 63:208-223. [PMID: 36475659 DOI: 10.1021/acs.jcim.2c01286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of crystal structures of hexose monosaccharides α-d-mannose (α-MAN), β-d-mannose (β-MAN), α-d-glucose (α-GLC), β-d-glucose (β-GLC), α-d-galactose (α-GAL), β-d-galactose (β-GAL), α-d-altrose (α-ALT), β-d-altrose (β-ALT), α-d-idose (α-IDO), and β-d-idose (β-IDO) reveals that the monosaccharide ring adopts multiple ring conformations. These ring conformations can be broadly classified as chair, half-chair, envelope, boat, and skew-boat conformations. The ability of the monosaccharide ring to adopt multiple conformations has been closely tied with their bioactivity. However, it has been difficult to capture the dynamic information of these conformations from experimental studies. Even from simulations, capturing these different conformations is challenging because of the energy barriers involved in the transitions between the stable 4C1 and 1C4 chair forms. In this study, we analyze the influence of the polarizable force field on the ring dynamics of five major types of unsubstituted aldohexoses─glucose, mannose, galactose, altrose, and idose─and their anomers. We simulate microsecond trajectories to capture the influence of the CHARMM36 additive and polarizable carbohydrate force fields on the ring dynamics. The microsecond trajectories allow us to comment on the issues associated with equilibrium molecular dynamics simulations. Further, we use the extended system adaptive biasing force (eABF) method to compare the conformational sampling efficiencies of the additive and polarizable force fields. Our studies reveal that inclusion of polarization enhances the sampling of ring conformations and lowers the energy barriers between the 4C1 and 1C4 conformations. Overall, the CHARMM36 additive force field is observed to be rigid and favor the 4C1 conformations. Although the inclusion of polarizability results in enhancing ring flexibility, we observe sampling that does not agree with experimental results, warranting a revision of the polarizable Drude parameters.
Collapse
Affiliation(s)
- Chythra J N
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat382355, India
| | - Sairam S Mallajosyula
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat382355, India
| |
Collapse
|
6
|
Sakirler F, Wong HW. Cellulose Fast Pyrolysis Activated by Intramolecular Hydrogen Bonds. J Phys Chem A 2022; 126:7806-7819. [PMID: 36263959 DOI: 10.1021/acs.jpca.2c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conversion of inedible biomass by fast pyrolysis is a promising route for sustainable production of renewable fuels and value-added chemicals, but low selectivity toward desired products hampers its economic viability. Understanding the molecular-level reaction pathways of biomass fast pyrolysis could be the key to overcoming this challenge. However, the effects of intramolecular and interchain hydrogen bonds near the reaction center have not been thoroughly explored. In this work, the reaction pathways and kinetics of fast pyrolysis of cellulose, a major component of biomass, were investigated using the density functional theory. A new intramolecular hydroxyl-activated mechanism is presented for cellulose activation. Our calculations incorporating noncovalent interactions accurately captured the activation energy of 50.8 kcal mol-1, agreeable with the apparent activation energy measured experimentally. The findings of cellulose pyrolysis provide insights into the investigation of interactions during real-life biomass pyrolysis.
Collapse
Affiliation(s)
- Fuat Sakirler
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Hsi-Wu Wong
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| |
Collapse
|
7
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
8
|
Griesbach CE, Peczuh MW. Characterization of the low energy conformations and differential reactivities of D-glucose and D-mannose based oxepines. Org Biomol Chem 2021; 19:10635-10646. [PMID: 34850804 DOI: 10.1039/d1ob01900g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbohydrate-based oxepines are valuable intermediates for the synthesis of septanose carbohydrates. Here we report the characterization of the preferred conformations of D-glucose and D-mannose based oxepines 1 and 2 using computational chemistry and NMR spectroscopy. Monte Carlo conformational searches on 1 and 2 were performed, followed by DFT optimization and single-point energy calculations on the low energy conformations of each oxepine. Coupling constants were computed for all unique conformations at a B3LYP/6-31G(d,p)u+1s level of theory and weighted based on a Boltzmann distribution. These values were then compared to the experimental values collected using 3JH,H values collected from 1H NMR spectra. Information from the MC/DFT approach was then used in a least squares method that correlated DFT calculated and observed 3JH,H coupling constants. The conformations of 1 and 2 are largely governed by a combination of the rigidifying enol ether element in combination with the reduction of unfavorable interactions. The vinylogous anomeric effect (VAE) emerged as a consequence, rather than a driver of conformations. Oxepine 1 showed greater reactivity in Ferrier rearrangement reactions relative to oxepine 2, in line with its greater %VAE.
Collapse
Affiliation(s)
- Caleb E Griesbach
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269-3060, USA.
| | - Mark W Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269-3060, USA.
| |
Collapse
|
9
|
Franconetti A, Ardá A, Asensio JL, Blériot Y, Thibaudeau S, Jiménez-Barbero J. Glycosyl Oxocarbenium Ions: Structure, Conformation, Reactivity, and Interactions. Acc Chem Res 2021; 54:2552-2564. [PMID: 33930267 PMCID: PMC8173606 DOI: 10.1021/acs.accounts.1c00021] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Carbohydrates (glycans, saccharides, and sugars) are essential molecules in all domains of life. Research on glycoscience spans from chemistry to biomedicine, including material science and biotechnology. Access to pure and well-defined complex glycans using synthetic methods depends on the success of the employed glycosylation reaction. In most cases, the mechanism of the glycosylation reaction is believed to involve the oxocarbenium ion. Understanding the structure, conformation, reactivity, and interactions of this glycosyl cation is essential to predict the outcome of the reaction. In this Account, building on our contributions on this topic, we discuss the theoretical and experimental approaches that have been employed to decipher the key features of glycosyl cations, from their structures to their interactions and reactivity.We also highlight that, from a chemical perspective, the glycosylation reaction can be described as a continuum, from unimolecular SN1 with naked oxocarbenium cations as intermediates to bimolecular SN2-type mechanisms, which involve the key role of counterions and donors. All these factors should be considered and are discussed herein. The importance of dissociative mechanisms (involving contact ion pairs, solvent-separated ion pairs, solvent-equilibrated ion pairs) with bimolecular features in most reactions is also highlighted.The role of theoretical calculations to predict the conformation, dynamics, and reactivity of the oxocarbenium ion is also discussed, highlighting the advances in this field that now allow access to the conformational preferences of a variety of oxocarbenium ions and their reactivities under SN1-like conditions.Specifically, the ground-breaking use of superacids to generate these cations is emphasized, since it has permitted characterization of the structure and conformation of a variety of glycosyl oxocarbenium ions in superacid solution by NMR spectroscopy.We also pay special attention to the reactivity of these glycosyl ions, which depends on the conditions, including the counterions, the possible intra- or intermolecular participation of functional groups that may stabilize the cation and the chemical nature of the acceptor, either weak or strong nucleophile. We discuss recent investigations from different experimental perspectives, which identified the involved ionic intermediates, estimating their lifetimes and reactivities and studying their interactions with other molecules. In this context, we also emphasize the relationship between the chemical methods that can be employed to modulate the sensitivity of glycosyl cations and the way in which glycosyl modifying enzymes (glycosyl hydrolases and transferases) build and cleave glycosidic linkages in nature. This comparison provides inspiration on the use of molecules that regulate the stability and reactivity of glycosyl cations.
Collapse
Affiliation(s)
- Antonio Franconetti
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Ana Ardá
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
- lkerbasque,
Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
| | - Juan Luis Asensio
- Instituto
de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Yves Blériot
- Université
de Poitiers, IC2MP, UMR CNRS
7285, Equipe “OrgaSynth”, 4 rue Michel Brunet, 86073 cedex 9 Poitiers, France
| | - Sébastien Thibaudeau
- Université
de Poitiers, IC2MP, UMR CNRS
7285, Equipe “OrgaSynth”, 4 rue Michel Brunet, 86073 cedex 9 Poitiers, France
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
- lkerbasque,
Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
- Department
of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
10
|
McGregor NGS, Artola M, Nin-Hill A, Linzel D, Haon M, Reijngoud J, Ram A, Rosso MN, van der Marel GA, Codée JDC, van Wezel GP, Berrin JG, Rovira C, Overkleeft HS, Davies GJ. Rational Design of Mechanism-Based Inhibitors and Activity-Based Probes for the Identification of Retaining α-l-Arabinofuranosidases. J Am Chem Soc 2020; 142:4648-4662. [PMID: 32053363 PMCID: PMC7068720 DOI: 10.1021/jacs.9b11351] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Identifying
and characterizing the enzymes responsible for an observed
activity within a complex eukaryotic catabolic system remains one
of the most significant challenges in the study of biomass-degrading
systems. The debranching of both complex hemicellulosic and pectinaceous
polysaccharides requires the production of α-l-arabinofuranosidases
among a wide variety of coexpressed carbohydrate-active enzymes. To
selectively detect and identify α-l-arabinofuranosidases
produced by fungi grown on complex biomass, potential covalent inhibitors
and probes which mimic α-l-arabinofuranosides were
sought. The conformational free energy landscapes of free α-l-arabinofuranose and several rationally designed covalent α-l-arabinofuranosidase inhibitors were analyzed. A synthetic
route to these inhibitors was subsequently developed based on a key
Wittig–Still rearrangement. Through a combination of kinetic
measurements, intact mass spectrometry, and structural experiments,
the designed inhibitors were shown to efficiently label the catalytic
nucleophiles of retaining GH51 and GH54 α-l-arabinofuranosidases.
Activity-based probes elaborated from an inhibitor with an aziridine
warhead were applied to the identification and characterization of
α-l-arabinofuranosidases within the secretome of A. niger grown on arabinan. This method was extended to
the detection and identification of α-l-arabinofuranosidases
produced by eight biomass-degrading basidiomycete fungi grown on complex
biomass. The broad applicability of the cyclophellitol-derived activity-based
probes and inhibitors presented here make them a valuable new tool
in the characterization of complex eukaryotic carbohydrate-degrading
systems and in the high-throughput discovery of α-l-arabinofuranosidases.
Collapse
Affiliation(s)
- Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, U.K
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Alba Nin-Hill
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Daniël Linzel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Mireille Haon
- INRA, Aix Marseille University, Biodiversité et Biotechnologie Fongiques (BBF), UMR1163, F-13009 Marseille, France
| | - Jos Reijngoud
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Arthur Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Marie-Noëlle Rosso
- INRA, Aix Marseille University, Biodiversité et Biotechnologie Fongiques (BBF), UMR1163, F-13009 Marseille, France
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Jean-Guy Berrin
- INRA, Aix Marseille University, Biodiversité et Biotechnologie Fongiques (BBF), UMR1163, F-13009 Marseille, France
| | - Carme Rovira
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
11
|
Coines J, Alfonso‐Prieto M, Biarnés X, Planas A, Rovira C. Oxazoline or Oxazolinium Ion? The Protonation State and Conformation of the Reaction Intermediate of Chitinase Enzymes Revisited. Chemistry 2018; 24:19258-19265. [DOI: 10.1002/chem.201803905] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/29/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Joan Coines
- Departament de Química Inorgànica i Orgànica, (secció de Química Orgànica) and Institut de Química Teòrica i, Computacional (IQTCUB)Universitat de Barcelona, Martí i Franquès 1 08028 Barcelona Spain
| | - Mercedes Alfonso‐Prieto
- Departament de Química Inorgànica i Orgànica, (secció de Química Orgànica) and Institut de Química Teòrica i, Computacional (IQTCUB)Universitat de Barcelona, Martí i Franquès 1 08028 Barcelona Spain
- Current address: INM-9/IAS-5Forschungszentrum Jülich, 52425 Jülich (Germany) and C. and O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf 40225 Düsseldorf Germany
| | - Xevi Biarnés
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull Via Augusta, 390 08017 Barcelona Spain
| | - Antoni Planas
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull Via Augusta, 390 08017 Barcelona Spain
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica, (secció de Química Orgànica) and Institut de Química Teòrica i, Computacional (IQTCUB)Universitat de Barcelona, Martí i Franquès 1 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
12
|
Del Vigo EA, Marino C, Stortz CA. Exhaustive rotamer search of the 4C1 conformation of α- and β-d-galactopyranose. Carbohydr Res 2017; 448:136-147. [DOI: 10.1016/j.carres.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/03/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
|
13
|
Agirre J. Strategies for carbohydrate model building, refinement and validation. Acta Crystallogr D Struct Biol 2017; 73:171-186. [PMID: 28177313 PMCID: PMC5297920 DOI: 10.1107/s2059798316016910] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Sugars are the most stereochemically intricate family of biomolecules and present substantial challenges to anyone trying to understand their nomenclature, reactions or branched structures. Current crystallographic programs provide an abstraction layer allowing inexpert structural biologists to build complete protein or nucleic acid model components automatically either from scratch or with little manual intervention. This is, however, still not generally true for sugars. The need for carbohydrate-specific building and validation tools has been highlighted a number of times in the past, concomitantly with the introduction of a new generation of experimental methods that have been ramping up the production of protein-sugar complexes and glycoproteins for the past decade. While some incipient advances have been made to address these demands, correctly modelling and refining carbohydrates remains a challenge. This article will address many of the typical difficulties that a structural biologist may face when dealing with carbohydrates, with an emphasis on problem solving in the resolution range where X-ray crystallography and cryo-electron microscopy are expected to overlap in the next decade.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| |
Collapse
|
14
|
Production, properties, and applications of endo-β-mannanases. Biotechnol Adv 2017; 35:1-19. [DOI: 10.1016/j.biotechadv.2016.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022]
|
15
|
Cosenza VA, Navarro DA, Stortz CA. DFT/PCM theoretical study of the conversion of methyl 4-O-methyl-α-d-galactopyranoside 6-sulfate and its 2-sulfated derivative into their 3,6-anhydro counterparts. Carbohydr Res 2016; 426:15-25. [PMID: 27043470 DOI: 10.1016/j.carres.2016.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/19/2022]
Abstract
Modeling of the conversion of methyl 4-O-methyl-α-d-galactopyranoside 6-sulfate (2) and 2,6-disulfate (1) into methyl 3,6-anhydro-4-O-methyl-α-d-galactopyranoside (4) and its 2-sulfate (3), respectively (Scheme 1) has been carried out using DFT at the M06-2X/6-311 + G(d,p)//M06-2X/6-31 + G(d,p) level with the polarizable continuum model (PCM) in water. The three steps necessary for the alkaline transformation of 6-sulfated (and 2,6-disulfated) galactose units into 3,6-anhydro derivatives were evaluated. The final substitution step appears to be the rate limiting, involving an activation energy of ca. 23 kcal/mol. The other two steps (deprotonation and chair inversion) combined involve lower activation energies (9-12 kcal/mol). Comparison of the thermodynamics and kinetics of the reactions suggest that if the deprotonation step precedes the chair inversion, the reaction should be faster for both compounds. No major differences in reaction rate can be theoretically predicted to be caused by the presence of sulfate on O-2, although one experimental result suggested that O-2 sulfation should increase the reaction rate. The conformational pathways are complex, given the large number of rotamers available for each compound, and the way that some of these rotamers combine into some of the pathways. In any case, the conformation (O)S2 appears as a common intermediate for the chair inversion processes.
Collapse
Affiliation(s)
- Vanina A Cosenza
- Departamento de Química Orgánica-CIHIDECAR, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Diego A Navarro
- Departamento de Química Orgánica-CIHIDECAR, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Carlos A Stortz
- Departamento de Química Orgánica-CIHIDECAR, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina.
| |
Collapse
|
16
|
Kumagai Y, Yamashita K, Tagami T, Uraji M, Wan K, Okuyama M, Yao M, Kimura A, Hatanaka T. The loop structure of Actinomycete glycoside hydrolase family 5 mannanases governs substrate recognition. FEBS J 2015; 282:4001-14. [PMID: 26257335 DOI: 10.1111/febs.13401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/23/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023]
Abstract
Endo-β-1,4-mannanases from Streptomyces thermolilacinus (StMan) and Thermobifida fusca (TfMan) demonstrated different substrate specificities. StMan hydrolyzed galactosylmannooligosaccharide (GGM5; 6(III) ,6(IV) -α-d-galactosyl mannopentaose) to GGM3 and M2, whereas TfMan hydrolyzed GGM5 to GGM4 and M1. To determine the region involved in the substrate specificity, we constructed chimeric enzymes of StMan and TfMan and evaluated their substrate specificities. Moreover, the crystal structure of the catalytic domain of StMan (StMandC) and the complex structure of the inactive mutant StE273AdC with M6 were solved at resolutions of 1.60 and 1.50 Å, respectively. Structural comparisons of StMandC and the catalytic domain of TfMan lead to the identification of a subsite around -1 in StMandC that could accommodate a galactose branch. These findings demonstrate that the two loops (loop7 and loop8) are responsible for substrate recognition in GH5 actinomycete mannanases. In particular, Trp281 in loop7 of StMan, which is located in a narrow and deep cleft, plays an important role in its affinity toward linear substrates. Asp310 in loop8 of StMan specifically bound to the galactosyl unit in the -1 subsite.
Collapse
Affiliation(s)
- Yuya Kumagai
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, Japan.,Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Keitaro Yamashita
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Misugi Uraji
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, Japan
| | - Kun Wan
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, Japan
| |
Collapse
|
17
|
Tankrathok A, Iglesias-Fernández J, Williams RJ, Pengthaisong S, Baiya S, Hakki Z, Robinson RC, Hrmova M, Rovira C, Williams SJ, Ketudat Cairns JR. A Single Glycosidase Harnesses Different Pyranoside Ring Transition State Conformations for Hydrolysis of Mannosides and Glucosides. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anupong Tankrathok
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Department of Biotechnology, Faculty of Agro-Industrial
Technology, Rajamangala University of Technology, Isan, Kalasin Campus, Kalasin 46000, Thailand
| | - Javier Iglesias-Fernández
- Departament de Quı́mica
Orgànica/Institut de Quı́mica Teòrica i
Computacional (IQTCUB), Universitat de Barcelona, Martı́ i Franquès
1, 08028 Barcelona, Spain
| | - Rohan J. Williams
- School of Chemistry and Bio21 Molecular
Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Salila Pengthaisong
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Supaporn Baiya
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zalihe Hakki
- School of Chemistry and Bio21 Molecular
Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robert C. Robinson
- Institute of Molecular
and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597
| | - Maria Hrmova
- School of Agriculture, Food and Wine, Australian
Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glenn
Osmond, Australia
| | - Carme Rovira
- Departament de Quı́mica
Orgànica/Institut de Quı́mica Teòrica i
Computacional (IQTCUB), Universitat de Barcelona, Martı́ i Franquès
1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluı́s Companys, 23, 08018 Barcelona, Spain
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular
Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James R. Ketudat Cairns
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
18
|
Abstract
The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS, University Grenoble-Alpes, Grenoble, France.
| | - Igor Tvaroška
- Department of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Nitra, Slovak Republic.
| |
Collapse
|
19
|
Mishra SK, Calabró G, Loeffler HH, Michel J, Koča J. Evaluation of Selected Classical Force Fields for Alchemical Binding Free Energy Calculations of Protein-Carbohydrate Complexes. J Chem Theory Comput 2015; 11:3333-45. [PMID: 26575767 DOI: 10.1021/acs.jctc.5b00159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Protein-carbohydrate recognition is crucial in many vital biological processes including host-pathogen recognition, cell-signaling, and catalysis. Accordingly, computational prediction of protein-carbohydrate binding free energies is of enormous interest for drug design. However, the accuracy of current force fields (FFs) for predicting binding free energies of protein-carbohydrate complexes is not well understood owing to technical challenges such as the highly polar nature of the complexes, anomerization, and conformational flexibility of carbohydrates. The present study evaluated the performance of alchemical predictions of binding free energies with the GAFF1.7/AM1-BCC and GLYCAM06j force fields for modeling protein-carbohydrate complexes. Mean unsigned errors of 1.1 ± 0.06 (GLYCAM06j) and 2.6 ± 0.08 (GAFF1.7/AM1-BCC) kcal·mol(-1) are achieved for a large data set of monosaccharide ligands for Ralstonia solanacearum lectin (RSL). The level of accuracy provided by GLYCAM06j is sufficient to discriminate potent, moderate, and weak binders, a goal that has been difficult to achieve through other scoring approaches. Accordingly, the protocols presented here could find useful applications in carbohydrate-based drug and vaccine developments.
Collapse
Affiliation(s)
- Sushil K Mishra
- Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University , Kamenice-5, 625 00 Brno, Czech Republic
| | - Gaetano Calabró
- EaStCHEM School of Chemistry, Joseph Black Building , King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| | - Hannes H Loeffler
- Scientific Computing Department, STFC Daresbury , Warrington, WA4 4AD, United Kingdom
| | - Julien Michel
- EaStCHEM School of Chemistry, Joseph Black Building , King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University , Kamenice-5, 625 00 Brno, Czech Republic
| |
Collapse
|
20
|
Unione L, Xu B, Díaz D, Martín-Santamaría S, Poveda A, Sardinha J, Rauter AP, Blériot Y, Zhang Y, Cañada FJ, Sollogoub M, Jiménez-Barbero J. Conformational Plasticity in Glycomimetics: Fluorocarbamethyl-L-idopyranosides Mimic the Intrinsic Dynamic Behaviour of Natural Idose Rings. Chemistry 2015; 21:10513-21. [PMID: 26096911 DOI: 10.1002/chem.201501249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/08/2015] [Indexed: 11/06/2022]
Abstract
Sugar function, structure and dynamics are intricately correlated. Ring flexibility is intrinsically related to biological activity; actually plasticity in L-iduronic rings modulates their interactions with biological receptors. However, the access to the experimental values of the energy barriers and free-energy difference for conformer interconversion in water solution has been elusive. Here, a new generation of fluorine-containing glycomimetics is presented. We have applied a combination of organic synthesis, NMR spectroscopy and computational methods to investigate the conformational behaviour of idose- and glucose-like rings. We have used low-temperature NMR spectroscopic experiments to slow down the conformational exchange of the idose-like rings. Under these conditions, the exchange rate becomes slow in the (19) F NMR spectroscopic chemical shift timescale and allows shedding light on the thermodynamic and kinetic features of the equilibrium. Despite the minimal structural differences between these compounds, a remarkable difference in their dynamic behaviour indeed occurs. The importance of introducing fluorine atoms in these sugars mimics is also highlighted. Only the use of (19) F NMR spectroscopic experiments has permitted the unveiling of key features of the conformational equilibrium that would have otherwise remained unobserved.
Collapse
Affiliation(s)
- Luca Unione
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain).,Infectious Disease Programme, CIC bioGUNE, 48160 Derio, Bizkaia (Spain)
| | - Bixue Xu
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France).,Present address: The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 202 Shachong South Road, Guiyang, 550002 (P. R. China)
| | - Dolores Díaz
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Sonsoles Martín-Santamaría
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Ana Poveda
- Infectious Disease Programme, CIC bioGUNE, 48160 Derio, Bizkaia (Spain)
| | - João Sardinha
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France).,Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, 1749-016 Lisboa (Portugal)
| | - Amelia Pilar Rauter
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, 1749-016 Lisboa (Portugal)
| | - Yves Blériot
- Université de Poitiers, UMR CNRS 7285, IC2MP, Equipe Synthèse organique, Groupe Glycochimie, 4, avenue Michel Brunet, 86022 Poitiers Cedex (France)
| | - Yongmin Zhang
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France)
| | - F Javier Cañada
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Matthieu Sollogoub
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France).
| | - Jesus Jiménez-Barbero
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain). .,Infectious Disease Programme, CIC bioGUNE, 48160 Derio, Bizkaia (Spain). .,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain).
| |
Collapse
|
21
|
Ardèvol A, Rovira C. Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations. J Am Chem Soc 2015; 137:7528-47. [DOI: 10.1021/jacs.5b01156] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Albert Ardèvol
- Departament
de Química Orgànica and Institut de Química Teòrica
i Computacional (IQTCUB), Universitat de Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
| | - Carme Rovira
- Departament
de Química Orgànica and Institut de Química Teòrica
i Computacional (IQTCUB), Universitat de Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| |
Collapse
|
22
|
Iglesias-Fernández J, Raich L, Ardèvol A, Rovira C. The complete conformational free energy landscape of β-xylose reveals a two-fold catalytic itinerary for β-xylanases. Chem Sci 2015; 6:1167-1177. [PMID: 29560204 PMCID: PMC5811086 DOI: 10.1039/c4sc02240h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/27/2014] [Indexed: 01/28/2023] Open
Abstract
Unraveling the conformational catalytic itinerary of glycoside hydrolases (GHs) is a growing topic of interest in glycobiology, with major impact in the design of GH inhibitors. β-xylanases are responsible for the hydrolysis of glycosidic bonds in β-xylans, a group of hemicelluloses of high biotechnological interest that are found in plant cell walls. The precise conformations followed by the substrate during catalysis in β-xylanases have not been unambiguously resolved, with three different pathways being proposed from structural analyses. In this work, we compute the conformational free energy landscape (FEL) of β-xylose to predict the most likely catalytic itineraries followed by β-xylanases. The calculations are performed by means of ab initio metadynamics, using the Cremer-Pople puckering coordinates as collective variables. The computed FEL supports only two of the previously proposed itineraries, 2SO → [2,5B]ǂ → 5S1 and 1S3 → [4H3]ǂ → 4C1, which clearly appear in low energy regions of the FEL. Consistently, 2SO and 1S3 are conformations preactivated for catalysis in terms of free energy/anomeric charge and bond distances. The results however exclude the OE → [OS2]ǂ → B2,5 itinerary that has been recently proposed for a family 11 xylanase. Classical and ab initio QM/MM molecular dynamics simulations reveal that, in this case, the observed OE conformation has been enforced by enzyme mutation. These results add a word of caution on using modified enzymes to inform on catalytic conformational itineraries of glycoside hydrolases.
Collapse
Affiliation(s)
- Javier Iglesias-Fernández
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain .
| | - Lluís Raich
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain .
| | - Albert Ardèvol
- Department of Chemistry and Applied Biosciences , ETH Zürich , USI Campus , 6900 Lugano , Switzerland
| | - Carme Rovira
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain .
- Institució Catalana de Recerca i Estudis Avançats (ICREA) , Passeig Lluís Companys , 23 , 08018 Barcelona , Spain
| |
Collapse
|
23
|
Thiery E, Reniers J, Wouters J, Vincent SP. Stereoselective Synthesis of Boat-Locked Glycosides Designed as Glycosyl Hydrolase Conformational Probes. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Mulet-Gas M, Abella L, Dunk PW, Rodríguez-Fortea A, Kroto HW, Poblet JM. Small endohedral metallofullerenes: exploration of the structure and growth mechanism in the Ti@C 2n (2 n = 26-50) family. Chem Sci 2014; 6:675-686. [PMID: 28936315 PMCID: PMC5590485 DOI: 10.1039/c4sc02268h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/12/2014] [Indexed: 12/02/2022] Open
Abstract
Analysis of the structure and the bottom-up growth mechanism in the family of small endohedral metallofullerenes Ti@C2n (2n = 26–50).
The formation of the smallest fullerene, C28, was recently reported using gas phase experiments combined with high-resolution FT-ICR mass spectrometry. An internally located group IV metal stabilizes the highly strained non-IPR C28 cage by charge transfer (IPR = isolated pentagon rule). Ti@C44 also appeared as a prominent peak in the mass spectra, and U@C28 was demonstrated to form by a bottom-up growth mechanism. We report here a computational analysis using standard DFT calculations and Car–Parrinello MD simulations for the family of the titled compounds, aiming to identify the optimal cage for each endohedral fullerene and to unravel key aspects of the intriguing growth mechanisms of fullerenes. We show that all the optimal isomers from C26 to C50 are linked by a simple C2 insertion, with the exception of a few carbon cages that require an additional C2 rearrangement. The ingestion of a C2 unit is always an exergonic/exothermic process that can occur through a rather simple mechanism, with the most energetically demanding step corresponding to the closure of the carbon cage. The large formation abundance observed in mass spectra for Ti@C28 and Ti@C44 can be explained by the special electronic properties of these cages and their higher relative stabilities with respect to C2 reactivity. We further verify that extrusion of C atoms from an already closed fullerene is much more energetically demanding than forming the fullerene by a bottom-up mechanism. Independent of the formation mechanism, the present investigations strongly support that, among all the possible isomers, the most stable, smaller non-IPR carbon cages are formed, a conclusion that is also valid for medium and large cages.
Collapse
Affiliation(s)
- Marc Mulet-Gas
- Departament de Química Física i Inorgànica , Universitat Rovira i Virgili , Marcellí Domingo s/n , 43007 Tarragona , Spain . ;
| | - Laura Abella
- Departament de Química Física i Inorgànica , Universitat Rovira i Virgili , Marcellí Domingo s/n , 43007 Tarragona , Spain . ;
| | - Paul W Dunk
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , USA .
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica , Universitat Rovira i Virgili , Marcellí Domingo s/n , 43007 Tarragona , Spain . ;
| | - Harold W Kroto
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , USA .
| | - Josep M Poblet
- Departament de Química Física i Inorgànica , Universitat Rovira i Virgili , Marcellí Domingo s/n , 43007 Tarragona , Spain . ;
| |
Collapse
|
25
|
Demo G, Horská V, Fliedrová B, Stěpán J, Koča J, Weignerová L, Křen V, Wimmerová M. Protein engineering study of β-mannosidase to set up a potential chemically efficient biocatalyst. Glycobiology 2014; 24:1301-11. [PMID: 25049237 DOI: 10.1093/glycob/cwu074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study is focused on the analysis and mutagenesis of β-mannosidase from Bacteroides thetaiotaomicron with the aim of broadening its substrate specificity to 2-acetamido-2-deoxy-β-d-mannopyranosyl (β-ManNAc) derivatives. Various conformations ((4)C1, (4)H5 and (1)S5) of native and modified ligands were docked to the binding site of the protein to determine the most suitable conformation of sugars for further hydrolysis. Key amino acid residues were mutated in silico focusing on stabilizing the acetamido group of β-ManNAc as well as forming the oxazoline intermediate needed for hydrolysis. The results of large set of 5 ns molecular dynamic simulations showed that the majority of the active site residues are involved in substrate interaction and do not exhibit a higher flexibility except for Asn178. Mutations of Asn178 to alanine and Asp199 to serine could lead to a stabilization of the acetamido group in the binding site. So far, in vitro mutagenesis and the screen of a large variety of biological sources were unable to extend β-mannosidase's activity to include β-ManNAc derivatives.
Collapse
Affiliation(s)
- Gabriel Demo
- National Centre for Biomolecular Research, Faculty of Science Central European Institute of Technology, Masaryk University, Kamenice 5/A4, Brno 62500, Czech Republic
| | - Veronika Horská
- National Centre for Biomolecular Research, Faculty of Science
| | - Barbora Fliedrová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 142 20, Czech Republic
| | - Jakub Stěpán
- National Centre for Biomolecular Research, Faculty of Science Central European Institute of Technology, Masaryk University, Kamenice 5/A4, Brno 62500, Czech Republic
| | - Jaroslav Koča
- National Centre for Biomolecular Research, Faculty of Science Central European Institute of Technology, Masaryk University, Kamenice 5/A4, Brno 62500, Czech Republic
| | - Lenka Weignerová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 142 20, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 142 20, Czech Republic
| | - Michaela Wimmerová
- National Centre for Biomolecular Research, Faculty of Science Central European Institute of Technology, Masaryk University, Kamenice 5/A4, Brno 62500, Czech Republic Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5/A5, Brno 62500, Czech Republic
| |
Collapse
|
26
|
Cantu DC, Ardèvol A, Rovira C, Reilly PJ. Molecular mechanism of a hotdog-fold acyl-CoA thioesterase. Chemistry 2014; 20:9045-51. [PMID: 24894958 DOI: 10.1002/chem.201304228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/22/2014] [Indexed: 11/10/2022]
Abstract
Thioesterases are enzymes that hydrolyze thioester bonds between a carbonyl group and a sulfur atom. They catalyze key steps in fatty acid biosynthesis and metabolism, as well as polyketide biosynthesis. The reaction molecular mechanism of most hotdog-fold acyl-CoA thioesterases remains unknown, but several hypotheses have been put forward in structural and biochemical investigations. The reaction of a human thioesterase (hTHEM2), representing a thioesterase family with a hotdog fold where a coenzyme A moiety is cleaved, was simulated by quantum mechanics/molecular mechanics metadynamics techniques to elucidate atomic and electronic details of its mechanism, its transition-state conformation, and the free energy landscape of the process. A single-displacement acid-base-like mechanism, in which a nucleophilic water molecule is activated by an aspartate residue acting as a base, was found, confirming previous experimental proposals. The results provide unambiguous evidence of the formation of a tetrahedral-like transition state. They also explain the roles of other conserved active-site residues during the reaction, especially that of a nearby histidine/serine pair that protonates the thioester sulfur atom, the participation of which could not be elucidated from mutation analyses alone.
Collapse
Affiliation(s)
- David C Cantu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011-2230 (USA)
| | | | | | | |
Collapse
|
27
|
Rönnols J, Manner S, Siegbahn A, Ellervik U, Widmalm G. Exploration of conformational flexibility and hydrogen bonding of xylosides in different solvents, as a model system for enzyme active site interactions. Org Biomol Chem 2014; 11:5465-72. [PMID: 23857412 DOI: 10.1039/c3ob40991k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The predominantly populated conformation of carbohydrates in solution does not necessarily represent the biologically active species; rather, any conformer accessible without too large an energy penalty may be present in a biological pathway. Thus, the conformational preferences of a naphthyl xyloside, which initiates in vivo synthesis of antiproliferative glycosaminoglycans, have been studied by using NMR spectroscopy in a variety of solvents. Equilibria comprising the conformations (4)C1, (2)SO and (1)C4 were found, with a strong dependence on the hydrogen bonding ability of the solvent. Studies of fluorinated analogues revealed a direct hydrogen bond from the hydroxyl group at C2 to the fluorine atom at C4 by a (1h)JF4,HO2 coupling. Hydrogen bond directionality was further established via comparisons of fluorinated levoglucosan molecules.
Collapse
Affiliation(s)
- Jerk Rönnols
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
28
|
Williams RJ, Iglesias-Fernández J, Stepper J, Jackson A, Thompson AJ, Lowe EC, White JM, Gilbert HJ, Rovira C, Davies GJ, Williams SJ. Combined inhibitor free-energy landscape and structural analysis reports on the mannosidase conformational coordinate. Angew Chem Int Ed Engl 2014; 53:1087-91. [PMID: 24339341 PMCID: PMC4138987 DOI: 10.1002/anie.201308334] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 12/03/2022]
Abstract
Mannosidases catalyze the hydrolysis of a diverse range of polysaccharides and glycoconjugates, and the various sequence-based mannosidase families have evolved ingenious strategies to overcome the stereoelectronic challenges of mannoside chemistry. Using a combination of computational chemistry, inhibitor design and synthesis, and X-ray crystallography of inhibitor/enzyme complexes, it is demonstrated that mannoimidazole-type inhibitors are energetically poised to report faithfully on mannosidase transition-state conformation, and provide direct evidence for the conformational itinerary used by diverse mannosidases, including β-mannanases from families GH26 and GH113. Isofagomine-type inhibitors are poor mimics of transition-state conformation, owing to the high energy barriers that must be crossed to attain mechanistically relevant conformations, however, these sugar-shaped heterocycles allow the acquisition of ternary complexes that span the active site, thus providing valuable insight into active-site residues involved in substrate recognition.
Collapse
Affiliation(s)
- Rohan J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010 (Australia)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mayes HB, Broadbelt LJ, Beckham GT. How Sugars Pucker: Electronic Structure Calculations Map the Kinetic Landscape of Five Biologically Paramount Monosaccharides and Their Implications for Enzymatic Catalysis. J Am Chem Soc 2014; 136:1008-22. [DOI: 10.1021/ja410264d] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- National
Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Linda J. Broadbelt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
30
|
Williams RJ, Iglesias-Fernández J, Stepper J, Jackson A, Thompson AJ, Lowe EC, White JM, Gilbert HJ, Rovira C, Davies GJ, Williams SJ. Combined Inhibitor Free-Energy Landscape and Structural Analysis Reports on the Mannosidase Conformational Coordinate. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Tankrathok A, Iglesias-Fernández J, Luang S, Robinson RC, Kimura A, Rovira C, Hrmova M, Ketudat Cairns JR. Structural analysis and insights into the glycon specificity of the rice GH1 Os7BGlu26 β-D-mannosidase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2124-35. [DOI: 10.1107/s0907444913020568] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022]
Abstract
Rice Os7BGlu26 is a GH1 family glycoside hydrolase with a threefold higherkcat/Kmvalue for 4-nitrophenyl β-D-mannoside (4NPMan) compared with 4-nitrophenyl β-D-glucoside (4NPGlc). To investigate its selectivity for β-D-mannoside and β-D-glucoside substrates, the structures of apo Os7BGlu26 at a resolution of 2.20 Å and of Os7BGlu26 with mannose at a resolution of 2.45 Å were elucidated from isomorphous crystals in space groupP212121. The (β/α)8-barrel structure is similar to other GH1 family structures, but with a narrower active-site cleft. The Os7BGlu26 structure with D-mannose corresponds to a product complex, with β-D-mannose in the1S5skew-boat conformation. Docking of the1S3,1S5,2SOand3S1pyranose-ring conformations of 4NPMan and 4NPGlc substrates into the active site of Os7BGlu26 indicated that the lowest energies were in the1S5and1S3skew-boat conformations. Comparison of these docked conformers with other rice GH1 structures revealed differences in the residues interacting with the catalytic acid/base between enzymes with and without β-D-mannosidase activity. The mutation of Tyr134 to Trp in Os7BGlu26 resulted in similarkcat/Kmvalues for 4NPMan and 4NPGlc, while mutation of Tyr134 to Phe resulted in a 37-fold higherkcat/Kmfor 4NPMan than 4NPGlc. Mutation of Cys182 to Thr decreased both the activity and the selectivity for β-D-mannoside. It was concluded that interactions with the catalytic acid/base play a significant role in glycon selection.
Collapse
|
32
|
Branduardi D, Faraldo-Gómez JD. String method for calculation of minimum free-energy paths in Cartesian space in freely-tumbling systems. J Chem Theory Comput 2013; 9:4140-4154. [PMID: 24729762 PMCID: PMC3981481 DOI: 10.1021/ct400469w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β-D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string.
Collapse
Affiliation(s)
- Davide Branduardi
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, DE-60438, Frankfurt-am-Main, Germany
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, DE-60438, Frankfurt-am-Main, Germany
| |
Collapse
|
33
|
Walvoort MTC, van der Marel GA, Overkleeft HS, Codée JDC. On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology: trapped covalent intermediates. Chem Sci 2013. [DOI: 10.1039/c2sc21610h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Thompson AJ, Dabin J, Iglesias-Fernández J, Ardèvol A, Dinev Z, Williams SJ, Bande O, Siriwardena A, Moreland C, Hu TC, Smith DK, Gilbert HJ, Rovira C, Davies GJ. The Reaction Coordinate of a Bacterial GH47 α-Mannosidase: A Combined Quantum Mechanical and Structural Approach. Angew Chem Int Ed Engl 2012; 51:10997-1001. [DOI: 10.1002/anie.201205338] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Indexed: 11/10/2022]
|
35
|
Thompson AJ, Dabin J, Iglesias-Fernández J, Ardèvol A, Dinev Z, Williams SJ, Bande O, Siriwardena A, Moreland C, Hu TC, Smith DK, Gilbert HJ, Rovira C, Davies GJ. The Reaction Coordinate of a Bacterial GH47 α-Mannosidase: A Combined Quantum Mechanical and Structural Approach. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Tripathi R, Nair NN. Thermodynamic and Kinetic Stabilities of Active Site Protonation States of Class C β-Lactamase. J Phys Chem B 2012; 116:4741-53. [DOI: 10.1021/jp212186q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry, Indian Institute of Technology, Kanpur, 208016 Kanpur,
India
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology, Kanpur, 208016 Kanpur,
India
| |
Collapse
|
37
|
Davies GJ, Planas A, Rovira C. Conformational analyses of the reaction coordinate of glycosidases. Acc Chem Res 2012; 45:308-16. [PMID: 21923088 DOI: 10.1021/ar2001765] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzymatic hydrolysis of the glycosidic bond is catalyzed by diverse enzymes generically termed glycoside hydrolases (hereafter GHs) or glycosidases. The many sequence-based families of glycosidases have served as a rich hunting ground for enzymologists for years. Not only are these enzymes of fundamental interest, providing paradigms for enzymatic catalysis that extend beyond the bounds of carbohydrate chemistry, but the enzymes themselves play myriad essential roles in diverse biological processes. The wide utility of glycosidases, from their industrial harnessing in the hydrolysis of plant biomass to their roles in human physiology and disease, has engendered a large scientific constituency with an interest in glycosidase chemistry. A fascinating thread of this research, and one with major impact on the design of enzyme inhibitors, is the conformational analysis of reaction pathways within the diverse families. These GH families provide a large pallet of enzymes with which chemists have attempted to depict the conformational landscape of glycosidase action. In this Account, we review three-dimensional insight into the conformational changes directed by glycosidases, primarily from structural observations of the stable enzyme-ligand species adjacent to the transition state (or states) and of enzyme-inhibitor complexes. We further show how recent computational advances dovetail with structural insight to provide a quantum mechanical basis for glycosidase action. The glycosidase-mediated hydrolysis of the acetal or ketal bond in a glycoside may occur with either inversion or retention of the configuration of the anomeric carbon. Inversion involves a single step and transition state, whereas retention, often referred to as the double displacement, is a two-step process with two transition states. The single transition state for the inverting enzymes and the two transition states (those flanking the covalent intermediate) in the double displacement have been shown to have substantial oxocarbenium ion character. The dissociative nature of these transition states results in significant relative positive charge accumulation on the pyranose ring. The delocalization of lone-pair electrons from the ring oxygen that stabilizes the cationic transition state implies that at, or close to, the transition states the pyranose will be distorted away from its lowest energy conformation to one that favors orbital overlap. Over the preceding decade, research has highlighted the harnessing of noncovalent interactions to aid this distortion of the sugar substrates from their lowest energy chair conformation to a variety of different boat, skew boat, and half-chair forms, each of which favors catalysis with a given enzyme and substrate. Crystallographic observation of stable species that flank the transition state (or states), of both retaining and inverting glycosidases, has allowed a description of their conformational itineraries, illustrating how enzymes facilitate the "electrophilic migration" of the anomeric center along the reaction coordinate. The blossoming of computational approaches, such as ab initio metadynamics, has underscored the quantum mechanical basis for glycoside hydrolysis. Conformational analyses highlight not only the itineraries used by enzymes, enabling their inhibition, but are also reflected in the nonenzymatic synthesis of glycosides, wherein chemists mimic strategies found in nature.
Collapse
Affiliation(s)
- Gideon J. Davies
- Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD, United Kingdom
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, c/Via Augusta 390, 08017 Barcelona, Spain
| | - Carme Rovira
- Computer Simulation & Modeling and Institut de Química Teòrica i Computacional (IQTCUB), Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08018 Barcelona, Spain
| |
Collapse
|
38
|
Talancé VLD, Massinon O, Baati R, Wagner A, Vincent SP. First steps towards conformationally selective artificial lectins: the chair-boat discrimination by molecularly imprinted polymers. Chem Commun (Camb) 2012; 48:10684-6. [DOI: 10.1039/c2cc35386e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Cumpstey I. On a so-called “kinetic anomeric effect” in chemical glycosylation. Org Biomol Chem 2012; 10:2503-8. [DOI: 10.1039/c2ob06696c] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
R. Ketudat Cairns J, Pengthaisong S, Luang S, Sansenya S, Tankrathok A, Svasti J. Protein-carbohydrate Interactions Leading to Hydrolysis and Transglycosylation in Plant Glycoside Hydrolase Family 1 Enzymes. J Appl Glycosci (1999) 2012. [DOI: 10.5458/jag.jag.jag-2011_022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
41
|
Sattelle BM, Almond A. Is N-acetyl-D-glucosamine a rigid 4C1 chair? Glycobiology 2011; 21:1651-62. [PMID: 21807769 PMCID: PMC3219419 DOI: 10.1093/glycob/cwr101] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 06/28/2011] [Accepted: 07/19/2011] [Indexed: 12/17/2022] Open
Abstract
Understanding microsecond-timescale dynamics is crucial to establish three-dimensional (3D) structure-activity relationships in sugars but has been intractable to experiments and simulations. As a consequence, whether arguably the most important chemical scaffold in glycobiology, N-acetyl-d-glucosamine (GlcNAc), deviates from a rigid (4)C(1) chair is unknown. Here, conformer populations and exchange kinetics were quantified from the longest aqueous carbohydrate simulations to date (0.2 ms total) of GlcNAc, four derivatives from heparan sulfate and their methylglycosides. Unmodified GlcNAc took 3-5 μs to reach a conformational equilibrium, which comprised a metastable (4)C(1) chair that underwent (4)C(1) ↔ (1)C(4) transitions at a predicted forward rate of 0.8 μs(-1) with an average (1)C(4)-chair lifetime of 3 ns. These predictions agree with high-resolution crystallography and nuclear magnetic resonance but not with the hypothesis that GlcNAc is a rigid (4)C(1) chair, concluded from previous experimental analyses and non-aqueous modeling. The methylglycoside was calculated to have a slower forward rate (0.3 μs(-1)) and a more stable (4)C(1) conformer (0.2 kcal mol(-1)), suggesting that pivotal 3D intermediates (particularly (2)S(O), (1)S(5) and B(2,5)) increased in energy, and water was implicated as a major cause. Sulfonation (N-, 3-O and 6-O) significantly augmented this effect by blocking pseudorotation, but did not alter the rotational preferences of hydroyxl or hydroxymethyl groups. We therefore propose that GlcNAc undergoes puckering exchange that is dependent on polymerization and sulfo substituents. Our analyses, and 3D model of the equilibrium GlcNAc conformer in water, can be used as dictionary data and present new opportunities to rationally modify puckering and carbohydrate bioactivity, with diverse applications from improving crop yields to disease amelioration.
Collapse
Affiliation(s)
| | - Andrew Almond
- Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
42
|
Biarnés X, Ardèvol A, Iglesias-Fernández J, Planas A, Rovira C. Catalytic Itinerary in 1,3-1,4-β-Glucanase Unraveled by QM/MM Metadynamics. Charge Is Not Yet Fully Developed at the Oxocarbenium Ion-like Transition State. J Am Chem Soc 2011; 133:20301-9. [DOI: 10.1021/ja207113e] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Carme Rovira
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| |
Collapse
|
43
|
Rönnols J, Burkhardt A, Cumpstey I, Widmalm G. pKa-Determination and Conformational Studies by NMR Spectroscopy of D-Altrose-Containing and other Pseudodisaccharides as Glycosidase Inhibitor Candidates. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|