1
|
Cai P, Disraeli C, Sauter B, Zhanybekova S, Gillingham D. A method to identify small molecule/protein pairs susceptible to protein ubiquitination by the CRBN E3 ligase. Chem Sci 2025; 16:7730-7738. [PMID: 40191122 PMCID: PMC11966536 DOI: 10.1039/d5sc01251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025] Open
Abstract
Although using DNA-encoded libraries (DELs) to find small molecule binders of target proteins is well-established, identifying molecules with functions beyond binding remains challenging in pooled screens. Here, we develop an approach for multiplexing functional screens that simultaneously evaluates encoded small molecules and encoded collections of protein targets in functional selections. We focus on ubiquitin (Ub) transfer with the cereblon-bound CRL4 E3 ligase because of its proven versatility in drug discovery. The functional selections recover small molecule/G-hairpin loop pairs based on their ability to promote Ub-transfer onto the G-hairpin loop. As Ub-transfer is the first step in tagging proteins for proteasomal destruction, finding small molecules capable of selectively reprogramming it is a significant challenge in contemporary drug development. Our work lays the foundation for functional DEL selections that match small molecule Ub-transfer catalysts with their optimal protein substrates.
Collapse
Affiliation(s)
- Pinwen Cai
- Department of Chemistry, University of Basel 4056 Basel Switzerland
| | - Chiara Disraeli
- Department of Chemistry, University of Basel 4056 Basel Switzerland
| | - Basilius Sauter
- Department of Chemistry, University of Basel 4056 Basel Switzerland
| | | | | |
Collapse
|
2
|
Nie Q, Fang X, Huang J, Xu T, Li Y, Zhang G, Li Y. The Evolution of Nucleic Acid Nanotechnology: From DNA Assembly to DNA-Encoded Library. SMALL METHODS 2025:e2401631. [PMID: 39806846 DOI: 10.1002/smtd.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Deoxyribonucleic acid (DNA), a fundamental biomacromolecule in living organisms, serves as the carrier of genetic information. Beyond its role in encoding biological functions, DNA's inherent ability to hybridize through base pairing has opened new avenues for its application in biological sciences. This review introduces DNA nanotechnology and DNA-encoded library (DEL), and highlights their shared design principles related to DNA assembly. First, a foundational overview of structural DNA nanotechnology, including its design strategies and historical development is provided. Subsequently, various approaches are examined to dynamic DNA nanotechnology, from strand displacement reactions to DNA-templated polymer synthesis. Second, how the principle of DNA assembly has facilitated the development of diverse formats of self-assembly-based DEL synthesis, DNA-template reactions (DTS), and DNA template-mediated proximity induction effects are examined. These advancements are all underpinned by the unique property of DNA assembly. Finally, this review summarizes the common principles shared by DNA nanotechnology and DEL in terms of methodology and design. Additionally, the potential synergies are explored between these two technologies, envisioning future applications where they can be combined to create more versatile and exquisite functionalities.
Collapse
Affiliation(s)
- Qigui Nie
- Chongqing Fuling Hospital, Chongqing University, Chongqing, 40800, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, 404100, China
| | - Jiale Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Tingting Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
3
|
Furuhata T, Choi B, Uno T, Shinohara R, Sato Y, Okatsu K, Fukai S, Okamoto A. Chemical Diversification of Enzymatically Assembled Polyubiquitin Chains to Decipher the Ubiquitin Codes Programmed on the Branch Structure. J Am Chem Soc 2024. [PMID: 39361957 DOI: 10.1021/jacs.4c11279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The multimerization of ubiquitins at different positions of lysine residues to form heterotypic polyubiquitin chains is a post-translational modification that is essential for the precise regulation of protein functions and degradative fates in living cells. The understanding of structure-activity relationships underlying their diverse properties has been seriously impeded by difficulties in the preparation of a series of folded heterotypic chains appropriately functionalized with different chemical tags for the systematic evaluation of their multifaceted functions. Here, we report a chemical diversification of enzymatically assembled polyubiquitin chains that enables the facile preparation of folded heterotypic chains with different functionalities. By introducing an acyl hydrazide at the C terminus of the proximal ubiquitin, polyubiquitin chains were readily diversified from the same starting materials with a variety of molecules, ranging from small molecules to biopolymers, under nondenaturing conditions. This chemical diversification allowed the systematic study of the functional differences of K63/K48 heterotypic chains based on the position of the branch point during enzymatic deubiquitination and proteasomal proteolysis, thus demonstrating critical roles of the branch position in both the positive and negative control of ubiquitin-mediated reactions. The chemical diversification of the heterotypic chains provides a robust chemical platform to reframe the understanding of how the ubiquitin codes are regulated from the viewpoint of the branch structure for the precise control of cell functions, which has not been deciphered solely on the basis of the linkage types.
Collapse
Affiliation(s)
- Takafumi Furuhata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bumkyu Choi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taiki Uno
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryota Shinohara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Sato
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552, Japan
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
5
|
Ma P, Zhang S, Huang Q, Gu Y, Zhou Z, Hou W, Yi W, Xu H. Evolution of chemistry and selection technology for DNA-encoded library. Acta Pharm Sin B 2024; 14:492-516. [PMID: 38322331 PMCID: PMC10840438 DOI: 10.1016/j.apsb.2023.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 02/08/2024] Open
Abstract
DNA-encoded chemical library (DEL) links the power of amplifiable genetics and the non-self-replicating chemical phenotypes, generating a diverse chemical world. In analogy with the biological world, the DEL world can evolve by using a chemical central dogma, wherein DNA replicates using the PCR reactions to amplify the genetic codes, DNA sequencing transcripts the genetic information, and DNA-compatible synthesis translates into chemical phenotypes. Importantly, DNA-compatible synthesis is the key to expanding the DEL chemical space. Besides, the evolution-driven selection system pushes the chemicals to evolve under the selective pressure, i.e., desired selection strategies. In this perspective, we summarized recent advances in expanding DEL synthetic toolbox and panning strategies, which will shed light on the drug discovery harnessing in vitro evolution of chemicals via DEL.
Collapse
Affiliation(s)
- Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qianping Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Hou R, Xie C, Gui Y, Li G, Li X. Machine-Learning-Based Data Analysis Method for Cell-Based Selection of DNA-Encoded Libraries. ACS OMEGA 2023; 8:19057-19071. [PMID: 37273617 PMCID: PMC10233830 DOI: 10.1021/acsomega.3c02152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is a powerful ligand discovery technology that has been widely adopted in the pharmaceutical industry. DEL selections are typically performed with a purified protein target immobilized on a matrix or in solution phase. Recently, DELs have also been used to interrogate the targets in the complex biological environment, such as membrane proteins on live cells. However, due to the complex landscape of the cell surface, the selection inevitably involves significant nonspecific interactions, and the selection data are much noisier than the ones with purified proteins, making reliable hit identification highly challenging. Researchers have developed several approaches to denoise DEL datasets, but it remains unclear whether they are suitable for cell-based DEL selections. Here, we report the proof-of-principle of a new machine-learning (ML)-based approach to process cell-based DEL selection datasets by using a Maximum A Posteriori (MAP) estimation loss function, a probabilistic framework that can account for and quantify uncertainties of noisy data. We applied the approach to a DEL selection dataset, where a library of 7,721,415 compounds was selected against a purified carbonic anhydrase 2 (CA-2) and a cell line expressing the membrane protein carbonic anhydrase 12 (CA-12). The extended-connectivity fingerprint (ECFP)-based regression model using the MAP loss function was able to identify true binders and also reliable structure-activity relationship (SAR) from the noisy cell-based selection datasets. In addition, the regularized enrichment metric (known as MAP enrichment) could also be calculated directly without involving the specific machine-learning model, effectively suppressing low-confidence outliers and enhancing the signal-to-noise ratio. Future applications of this method will focus on de novo ligand discovery from cell-based DEL selections.
Collapse
Affiliation(s)
- Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology LimitedHealth@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology LimitedHealth@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| |
Collapse
|
7
|
Dockerill M, Winssinger N. DNA-Encoded Libraries: Towards Harnessing their Full Power with Darwinian Evolution. Angew Chem Int Ed Engl 2023; 62:e202215542. [PMID: 36458812 DOI: 10.1002/anie.202215542] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
DNA-encoded library (DEL) technologies are transforming the drug discovery process, enabling the identification of ligands at unprecedented speed and scale. DEL makes use of libraries that are orders of magnitude larger than traditional high-throughput screens. While a DNA tag alludes to a genotype-phenotype connection that is exploitable for molecular evolution, most of the work in the field is performed with libraries where the tag serves as an amplifiable barcode but does not allow "translation" into the synthetic product it is linked to. In this Review, we cover technologies that enable the "translation" of the genetic tag into synthetic molecules, both biochemically and chemically, and explore how it can be used to harness Darwinian evolutionary pressure.
Collapse
Affiliation(s)
- Millicent Dockerill
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
8
|
Cai B, Mhetre AB, Krusemark CJ. Selection methods for proximity-dependent enrichment of ligands from DNA-encoded libraries using enzymatic fusion proteins. Chem Sci 2023; 14:245-250. [PMID: 36687357 PMCID: PMC9811540 DOI: 10.1039/d2sc05495g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we report a selection approach to enrich ligands from DNA-encoded libraries (DELs) based on proximity to an enzymatic tag on the target protein. This method involves uncaging or installation of a biotin purification tag on the DNA construct either through photodeprotection of a protected biotin group using a light emitting protein tag (nanoluciferase) or by acylation using an engineered biotin ligase (UltraID). This selection does not require purification of the target protein and results in improved recovery and enrichment of DNA-linked ligands. This approach should serve as a general and convenient tool for molecular discovery with DELs.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue UniversityWest LafayetteIN 47907USA
| | - Amol B. Mhetre
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue UniversityWest LafayetteIN 47907USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue UniversityWest LafayetteIN 47907USA
| |
Collapse
|
9
|
Watson EE, Winssinger N. Synthesis of Protein-Oligonucleotide Conjugates. Biomolecules 2022; 12:biom12101523. [PMID: 36291732 PMCID: PMC9599799 DOI: 10.3390/biom12101523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids and proteins form two of the key classes of functional biomolecules. Through the ability to access specific protein-oligonucleotide conjugates, a broader range of functional molecules becomes accessible which leverages both the programmability and recognition potential of nucleic acids and the structural, chemical and functional diversity of proteins. Herein, we summarize the available conjugation strategies to access such chimeric molecules and highlight some key case study examples within the field to showcase the power and utility of such technology.
Collapse
Affiliation(s)
- Emma E. Watson
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (E.E.W.); (N.W.)
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, CH-1205 Geneva, Switzerland
- Correspondence: (E.E.W.); (N.W.)
| |
Collapse
|
10
|
Ramos De Dios SM, Tiwari VK, McCune CD, Dhokale RA, Berkowitz DB. Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chem Rev 2022; 122:13800-13880. [PMID: 35904776 DOI: 10.1021/acs.chemrev.2c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction discovery and catalyst screening lie at the heart of synthetic organic chemistry. While there are efforts at de novo catalyst design using computation/artificial intelligence, at its core, synthetic chemistry is an experimental science. This review overviews biomacromolecule-assisted screening methods and the follow-on elaboration of chemistry so discovered. All three types of biomacromolecules discussed─enzymes, antibodies, and nucleic acids─have been used as "sensors" to provide a readout on product chirality exploiting their native chirality. Enzymatic sensing methods yield both UV-spectrophotometric and visible, colorimetric readouts. Antibody sensors provide direct fluorescent readout upon analyte binding in some cases or provide for cat-ELISA (Enzyme-Linked ImmunoSorbent Assay)-type readouts. DNA biomacromolecule-assisted screening allows for templation to facilitate reaction discovery, driving bimolecular reactions into a pseudo-unimolecular format. In addition, the ability to use DNA-encoded libraries permits the barcoding of reactants. All three types of biomacromolecule-based screens afford high sensitivity and selectivity. Among the chemical transformations discovered by enzymatic screening methods are the first Ni(0)-mediated asymmetric allylic amination and a new thiocyanopalladation/carbocyclization transformation in which both C-SCN and C-C bonds are fashioned sequentially. Cat-ELISA screening has identified new classes of sydnone-alkyne cycloadditions, and DNA-encoded screening has been exploited to uncover interesting oxidative Pd-mediated amido-alkyne/alkene coupling reactions.
Collapse
Affiliation(s)
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christopher D McCune
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ranjeet A Dhokale
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
11
|
Dakhel S, Galbiati A, Migliorini F, Comacchio C, Oehler S, Prati L, Scheuermann J, Cazzamalli S, Neri D, Bassi G, Favalli N. Isolation of a Natural Killer Group 2D Small-Molecule Ligand from DNA-Encoded Chemical Libraries. ChemMedChem 2022; 17:e202200350. [PMID: 35929380 DOI: 10.1002/cmdc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/11/2022]
Abstract
Natural Killer Group 2D (NKG2D) is a homo-dimeric transmembrane protein which is typically expressed on the surface of natural killer (NK) cells, natural killer T (NKT) cells, gamma delta T (γδT) cells, activated CD8 positive T-cells and activated macrophages. Bispecific molecules, capable of bridging NKG2D with a target protein expressed on the surface of tumor cells, may be used to redirect the cytotoxic activity of NK-cells towards antigen-positive malignanT-cells. In this work, we report the discovery of a novel NKG2D small molecule binder [K D = (410±60) nM], isolated from a DNA-Encoded Chemical Library (DEL). The discovery of small organic NKG2D ligands may facilitate the generation of fully synthetic bispecific adaptors, which may serve as an alternative to bispecific antibody products and which may benefit from better tumor targeting properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Luca Prati
- Philogen SpA, R&D (Philochem), SWITZERLAND
| | - Jörg Scheuermann
- ETH Zürich: Eidgenossische Technische Hochschule Zurich, chemistry and applied biosciences, SWITZERLAND
| | | | | | | | - Nicholas Favalli
- Philogen SpA, R&D (Philochem), Libernstrasse 3, 8112, Otelfingen, SWITZERLAND
| |
Collapse
|
12
|
Melsen PRA, Yoshisada R, Jongkees SAK. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Chembiochem 2022; 23:e202100685. [PMID: 35100479 PMCID: PMC9306583 DOI: 10.1002/cbic.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 11/07/2022]
Abstract
DNA-encoded small-molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide-tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the 'drug-likeness' of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA-encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA-encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA-displayed peptide library to allow a more diversity-oriented approach to library modification. Finally, we outline alternate approaches for enriching target-binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA-display based approach could be used to discover new 'drug-like' modified small peptides.
Collapse
Affiliation(s)
- Paddy R. A. Melsen
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
13
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
14
|
Chemiluminescent screening of specific hybridoma cells via a proximity-rolling circle activated enzymatic switch. Commun Biol 2022; 5:308. [PMID: 35379898 PMCID: PMC8979942 DOI: 10.1038/s42003-022-03283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/16/2022] [Indexed: 11/12/2022] Open
Abstract
The mass-production capability of hybridoma technology is bottlenecked by the routine screening procedure which is time-consuming and laborious as the requirement of clonal expansion. Here, we describe a 1-day chemiluminescent screening protocol for specific hybridoma cells on conventional 96-well plate via a proximity-rolling circle activated enzymatic switch (P-RCAES) strategy. The P-RCAES uses a pair of antigen-DNA probes to recognize secreted specific antibody and proximity-induce rolling circle amplification for mass-production of pyrophosphate to activate Cu(II) inhibited horseradish peroxidase and generate a strong chemiluminescent signal. The P-RCAES based homogeneous chemiluminescent assay can detect antibody down to 18 fM, and enables the screening of specific hybridoma cells secreting PCSK9 antibody at single-cell level without tedious cloning process. The proposed fast screening protocol has good expansibility without need of sophisticated instruments, and provides a screening method for greatly improving the efficiency of hybridoma technology. In order to realize fast screening of specific hybridoma cells in hybridoma technology, a 1-day chemiluminescent screening method is reported on common 96-well plate via a proximity-rolling circle activated enzymatic switch strategy.
Collapse
|
15
|
Yang S, Zhao G, Gao Y, Sun Y, Zhang G, Fan X, Li Y, Li Y. In-solution direct oxidative coupling for the integration of sulfur/selenium into DNA-encoded chemical libraries. Chem Sci 2022; 13:2604-2613. [PMID: 35340849 PMCID: PMC8890091 DOI: 10.1039/d1sc06268a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 12/27/2022] Open
Abstract
Sulfur/selenium-containing electron-rich arenes (ERAs) exist in a wide range of both approved and investigational drugs with diverse pharmacological activities. These unique chemical structures and bioactive properties, if combined with the emerging DNA-encoded chemical library (DEL) technique, would facilitate drug and chemical probe discovery. However, it remains challenging, as there is no general DNA-compatible synthetic methodology available for the formation of C-S and C-Se bonds in aqueous solution. Herein, an in-solution direct oxidative coupling procedure that could efficiently integrate sulfur/selenium into the ERA under mild conditions is presented. This method features simple DNA-conjugated electron-rich arenes with a broad substrate scope and a transition-metal free process. Furthermore, this synthetic methodology, examined by a scale-up reaction test and late-stage precise modification in a mock peptide-like DEL synthesis, will enable its utility for the synthesis of sulfur/selenium-containing DNA-encoded libraries and the discovery of bioactive agents.
Collapse
Affiliation(s)
- Shilian Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Chongqing 404100 P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
16
|
Colorimetric detection of thrombin based on signal amplification by transcription-reverse transcription concerted reaction using non-crosslinking aggregation of gold nanoparticles. ANAL SCI 2022; 38:3-7. [DOI: 10.1007/s44211-022-00050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
|
17
|
Gironda-Martínez A, Donckele EJ, Samain F, Neri D. DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges. ACS Pharmacol Transl Sci 2021; 4:1265-1279. [PMID: 34423264 PMCID: PMC8369695 DOI: 10.1021/acsptsci.1c00118] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/27/2022]
Abstract
DNA-encoded chemical libraries (DELs) represent a versatile and powerful technology platform for the discovery of small-molecule ligands to protein targets of biological and pharmaceutical interest. DELs are collections of molecules, individually coupled to distinctive DNA tags serving as amplifiable identification barcodes. Thanks to advances in DNA-compatible reactions, selection methodologies, next-generation sequencing, and data analysis, DEL technology allows the construction and screening of libraries of unprecedented size, which has led to the discovery of highly potent ligands, some of which have progressed to clinical trials. In this Review, we present an overview of diverse approaches for the generation and screening of DEL molecular repertoires. Recent success stories are described, detailing how novel ligands were isolated from DEL screening campaigns and were further optimized by medicinal chemistry. The goal of the Review is to capture some of the most recent developments in the field, while also elaborating on future challenges to further improve DEL technology as a therapeutic discovery platform.
Collapse
Affiliation(s)
| | | | - Florent Samain
- Philochem
AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology, CH-8093 Zürich, Switzerland
- Philogen
S.p.A, 53100 Siena, Italy
| |
Collapse
|
18
|
Huang Y, Li X. Recent Advances on the Selection Methods of DNA-Encoded Libraries. Chembiochem 2021; 22:2384-2397. [PMID: 33891355 DOI: 10.1002/cbic.202100144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Indexed: 12/15/2022]
Abstract
DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
19
|
Muto Y, Hirao G, Zako T. Transcription-Based Amplified Colorimetric Thrombin Sensor Using Non-Crosslinking Aggregation of DNA-Modified Gold Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2021; 21:4318. [PMID: 34202605 PMCID: PMC8272040 DOI: 10.3390/s21134318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022]
Abstract
Gold nanoparticles (AuNPs) have been employed as colorimetric biosensors due to the color difference between their dispersed (red) and aggregated (blue) states. Although signal amplification reactions triggered by structural changes of the ligands on AuNPs have been widely used to improve measurement sensitivity, the use of ligands is limited. In this study, we designed a AuNP-based signal-amplifying sandwich biosensor, which does not require a conformational change in the ligands. Thrombin was used as a model target, which is recognized by two different probes. In the presence of the target, an extension reaction occurs as a result of hybridization of the two probes. Then RNA synthesis is started by RNA polymerase activation due to RNA promoter duplex formation. The amplified RNA drives aggregation or dispersion of the AuNPs, and a difference of the color if the AuNP solution is observed. As this detection system does not require a conformational change in the ligand, it can be generically applied to a wide range ligands.
Collapse
Affiliation(s)
- Yu Muto
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama 790-8577, Japan; (Y.M.); (G.H.)
- Tokyo Research Center, TOSOH Corporation, 2743-1 Hayakawa, Ayase 252-1123, Japan
| | - Gen Hirao
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama 790-8577, Japan; (Y.M.); (G.H.)
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama 790-8577, Japan; (Y.M.); (G.H.)
| |
Collapse
|
20
|
Yun W, Zhu H, Wu H, Zhuo L, Wang R, Ha X, Wang X, Zhang J, Chen H, Yang L. A "turn-on" and proximity ligation assay dependent DNA tweezer for one-step amplified fluorescent detection of DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119292. [PMID: 33348097 DOI: 10.1016/j.saa.2020.119292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
A "turn-on" and proximity ligation assay dependent DNA tweezer was proposed for one-step amplified fluorescent detection of DNA. Target DNA can anneal with capture probe to form an entire long sequence. The formed long sequence can circularly open the hairpin, resulting the "turn-on" of DNA tweezers. A good linear relationship was shown from 40 pM to 20 nM with limit of detection of 10 pM. In addition, it has been successfully utilized to analysis DNA in human serum, representing a great and practical application future.
Collapse
Affiliation(s)
- Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Hanhong Zhu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Hong Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Lin Zhuo
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ruiqi Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xia Ha
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xingmin Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jiafeng Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hong Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 803 Zhongshan North 1st Road, Shanghai 200083, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
21
|
Conole D, H Hunter J, J Waring M. The maturation of DNA encoded libraries: opportunities for new users. Future Med Chem 2021; 13:173-191. [PMID: 33275046 DOI: 10.4155/fmc-2020-0285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA-encoded combinatorial libraries (DECLs) represent an exciting new technology for high-throughput screening, significantly increasing its capacity and cost-effectiveness. Historically, DECLs have been the domain of specialized academic groups and industry; however, there has recently been a shift toward more drug discovery academic centers and institutes adopting this technology. Key to this development has been the simplification, characterization and standardization of various DECL subprotocols, such as library design, affinity screening and data analysis of hits. This review examines the feasibility of implementing DECL screening technology as a first-time user, particularly in academia, exploring the some important considerations for this, and outlines some applications of the technology that academia could contribute to the field.
Collapse
Affiliation(s)
- Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London, W12 0BZ, UK
| | - James H Hunter
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural & Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Michael J Waring
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural & Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
22
|
Bassi G, Favalli N, Vuk M, Catalano M, Martinelli A, Trenner A, Porro A, Yang S, Tham CL, Moroglu M, Yue WW, Conway SJ, Vogt PK, Sartori AA, Scheuermann J, Neri D. A Single-Stranded DNA-Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand Discovery by Modular Assembly of Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001970. [PMID: 33240760 PMCID: PMC7675038 DOI: 10.1002/advs.202001970] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Indexed: 06/11/2023]
Abstract
A versatile and Lipinski-compliant DNA-encoded library (DEL), comprising 366 600 glutamic acid derivatives coupled to oligonucleotides serving as amplifiable identification barcodes is designed, constructed, and characterized. The GB-DEL library, constructed in single-stranded DNA format, allows de novo identification of specific binders against several pharmaceutically relevant proteins. Moreover, hybridization of the single-stranded DEL with a set of known protein ligands of low to medium affinity coupled to a complementary DNA strand results in self-assembled selectable chemical structures, leading to the identification of affinity-matured compounds.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Miriam Vuk
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Anika Trenner
- Institute of Molecular Cancer ResearchUniversity of ZürichZürich8006Switzerland
| | - Antonio Porro
- Institute of Molecular Cancer ResearchUniversity of ZürichZürich8006Switzerland
| | - Su Yang
- Scripps Research InstituteDepartment of Molecular MedicineLa JollaCA92037USA
| | - Chuin Lean Tham
- Structural Genomic Consortium (SGC)Nuffield Department of MedicineUniversity of OxfordOxfordOX1 2JDUK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Wyatt W. Yue
- Structural Genomic Consortium (SGC)Nuffield Department of MedicineUniversity of OxfordOxfordOX1 2JDUK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Peter K. Vogt
- Scripps Research InstituteDepartment of Molecular MedicineLa JollaCA92037USA
| | | | - Jörg Scheuermann
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Dario Neri
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| |
Collapse
|
23
|
Catalano M, Moroglu M, Balbi P, Mazzieri F, Clayton J, Andrews KH, Bigatti M, Scheuermann J, Conway SJ, Neri D. Selective Fragments for the CREBBP Bromodomain Identified from an Encoded Self-assembly Chemical Library. ChemMedChem 2020; 15:1752-1756. [PMID: 32686307 DOI: 10.1002/cmdc.202000528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/21/2022]
Abstract
DNA-encoded chemical libraries (DECLs) are collections of chemical moieties individually coupled to distinctive DNA barcodes. Compounds can be displayed either at the end of a single DNA strand (i. e., single-pharmacophore libraries) or at the extremities of two complementary DNA strands (i. e., dual-pharmacophore libraries). In this work, we describe the use of a dual-pharmacophore encoded self-assembly chemical (ESAC) library for the affinity maturation of a known 4,5-dihydrobenzodiazepinone ring (THBD) acetyl-lysine (KAc) mimic for the cyclic-AMP response element binding protein (CREB) binding protein (CREBBP or CBP) bromodomain. The new pair of fragments discovered from library selection showed a sub-micromolar affinity for the CREBBP bromodomain in fluorescence polarization and ELISA assays, and selectivity against BRD4(1).
Collapse
Affiliation(s)
- Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Petra Balbi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Federica Mazzieri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - James Clayton
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Katrina H Andrews
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Stuart J Conway
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
24
|
Bassi G, Favalli N, Oehler S, Martinelli A, Catalano M, Scheuermann J, Neri D. Comparative evaluation of DNA-encoded chemical selections performed using DNA in single-stranded or double-stranded format. Biochem Biophys Res Commun 2020; 533:223-229. [PMID: 32386812 DOI: 10.1016/j.bbrc.2020.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
DNA-encoded chemical libraries (DEL) are increasingly being used for the discovery and optimization of small organic ligands to proteins of biological or pharmaceutical interest. The DNA fragments, that serve as amplifiable identification barcodes for individual compounds in the library, are typically used in double-stranded DNA format. To the best of our knowledge, a direct comparison of DEL selections featuring DNA in either single- or double-stranded DNA format has not yet been reported. In this article, we describe a comparative evaluation of selections with two DEL libraries (named GB-DEL and NF-DEL), based on different chemical designs and produced in both single- and double-stranded DNA format. The libraries were selected in identical conditions against multiple protein targets, revealing comparable and reproducible fingerprints for both types of DNA formats. Surprisingly, selections performed with single-stranded DNA barcodes exhibited improved enrichment factors compared to double-stranded DNA. Using high-affinity ligands to carbonic anhydrase IX as benchmarks for selection performance, we observed an improved selectivity for the NF-DEL library (on average 2-fold higher enrichment factors) in favor of single-stranded DNA. The enrichment factors were even higher for the GB-DEL selections (approximately 5-fold), compared to the same library in double-stranded DNA format. Collectively, these results indicate that DEL libraries can conveniently be synthesized and screened in both single- and double-stranded DNA format, but single-stranded DNA barcodes typically yield enhanced enrichment factors.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
25
|
Madsen D, Azevedo C, Micco I, Petersen LK, Hansen NJV. An overview of DNA-encoded libraries: A versatile tool for drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:181-249. [PMID: 32362328 DOI: 10.1016/bs.pmch.2020.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.
Collapse
|
26
|
Sannino A, Gironda-Martínez A, Gorre ÉMD, Prati L, Piazzi J, Scheuermann J, Neri D, Donckele EJ, Samain F. Critical Evaluation of Photo-cross-linking Parameters for the Implementation of Efficient DNA-Encoded Chemical Library Selections. ACS COMBINATORIAL SCIENCE 2020; 22:204-212. [PMID: 32109359 DOI: 10.1021/acscombsci.0c00023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The growing importance of DNA-encoded chemical libraries (DECLs) as tools for the discovery of protein binders has sparked an interest for the development of efficient screening methodologies, capable of discriminating between high- and medium-affinity ligands. Here, we present a systematic investigation of selection methodologies, featuring a library displayed on single-stranded DNA, which could be hybridized to a complementary oligonucleotide carrying a diazirine photoreactive group. Model experiments, performed using ligands of different affinity to carbonic anhydrase IX, revealed a recovery of preferential binders up to 10%, which was mainly limited by the highly reactive nature of carbene intermediates generated during the photo-cross-linking process. Ligands featuring acetazolamide or p-phenylsulfonamide exhibited a higher recovery compared to their counterparts based on 3-sulfamoyl benzoic acid, which had a lower affinity toward the target. A systematic evaluation of experimental parameters revealed conditions that were ideally suited for library screening, which were used for the screening of a combinatorial DECL library, featuring 669 240 combinations of two sets of building blocks. Compared to conventional affinity capture procedures on protein immobilized on solid supports, photo-cross-linking provided a better discrimination of low-affinity CAIX ligands over the background signal and therefore can be used as a tandem methodology with the affinity capture procedures.
Collapse
Affiliation(s)
| | | | | | - Luca Prati
- Philochem AG, 8112 Otelfingen, Switzerland
| | | | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
27
|
Zhao G, Huang Y, Zhou Y, Li Y, Li X. Future challenges with DNA-encoded chemical libraries in the drug discovery domain. Expert Opin Drug Discov 2019; 14:735-753. [DOI: 10.1080/17460441.2019.1614559] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guixian Zhao
- Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yiran Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yizhou Li
- Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
28
|
Nicholas F, Bassi G, Zanetti T, Scheuermann J, Neri D. Screening of copper and palladium-mediated reactions compatible with DNA-encoded chemical libraries. Helv Chim Acta 2019; 102. [PMID: 32292208 DOI: 10.1002/hlca.201900033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The construction of DNA-encoded chemical libraries (DECLs) crucially relies on the availability of chemical reactions, which are DNA-compatible and which exhibit high conversion rates for a large number of diverse substrates. In this work, we present our optimization and validation procedures for three copper and palladium-catalyzed reactions (Suzuki cross-coupling, Sonogashira cross-coupling and copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC)), which have been successfully used by our group for the construction of large encoded libraries.
Collapse
Affiliation(s)
- Favalli Nicholas
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Gabriele Bassi
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Tania Zanetti
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| |
Collapse
|
29
|
Kunig V, Potowski M, Gohla A, Brunschweiger A. DNA-encoded libraries - an efficient small molecule discovery technology for the biomedical sciences. Biol Chem 2019; 399:691-710. [PMID: 29894294 DOI: 10.1515/hsz-2018-0119] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.
Collapse
Affiliation(s)
- Verena Kunig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Marco Potowski
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Anne Gohla
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Andreas Brunschweiger
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| |
Collapse
|
30
|
Neri D, Lerner RA. DNA-Encoded Chemical Libraries: A Selection System Based on Endowing Organic Compounds with Amplifiable Information. Annu Rev Biochem 2018; 87:479-502. [PMID: 29328784 PMCID: PMC6080696 DOI: 10.1146/annurev-biochem-062917-012550] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of organic ligands that bind specifically to proteins is a central problem in chemistry, biology, and the biomedical sciences. The encoding of individual organic molecules with distinctive DNA tags, serving as amplifiable identification bar codes, allows the construction and screening of combinatorial libraries of unprecedented size, thus facilitating the discovery of ligands to many different protein targets. Fundamentally, one links powers of genetics and chemical synthesis. After the initial description of DNA-encoded chemical libraries in 1992, several experimental embodiments of the technology have been reduced to practice. This review provides a historical account of important milestones in the development of DNA-encoded chemical libraries, a survey of relevant ongoing research activities, and a glimpse into the future.
Collapse
Affiliation(s)
- Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zürich, Switzerland;
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA;
| |
Collapse
|
31
|
Favalli N, Bassi G, Scheuermann J, Neri D. DNA-encoded chemical libraries - achievements and remaining challenges. FEBS Lett 2018; 592:2168-2180. [PMID: 29683493 PMCID: PMC6126621 DOI: 10.1002/1873-3468.13068] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 11/10/2022]
Abstract
DNA-encoded chemical libraries (DECLs) are collections of compounds, individually coupled to DNA tags serving as amplifiable identification barcodes. Since individual compounds can be identified by the associated DNA tag, they can be stored as a mixture, allowing the synthesis and screening of combinatorial libraries of unprecedented size, facilitated by the implementation of split-and-pool synthetic procedures or other experimental methodologies. In this review, we briefly present relevant concepts and technologies, which are required for the implementation and interpretation of screening procedures with DNA-encoded chemical libraries. Moreover, we illustrate some success stories, detailing how novel ligands were discovered from encoded libraries. Finally, we critically review what can realistically be achieved with the technology at the present time, highlighting challenges and opportunities for the future.
Collapse
Affiliation(s)
- Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| |
Collapse
|
32
|
Yang D, Tang Y, Guo Z, Chen X, Miao P. Proximity aptasensor for protein detection based on an enzyme-free amplification strategy. MOLECULAR BIOSYSTEMS 2018; 13:1936-1939. [PMID: 28796267 DOI: 10.1039/c7mb00458c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel electrochemical aptasensor for the detection of trace protein is proposed based on proximity binding-induced strand displacement and hybridization chain reaction. This method is proven to be highly selective and has potential practical utility, and offers new opportunities for the convenient detection of proteins with an enzyme-free amplification process.
Collapse
Affiliation(s)
- Dawei Yang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.
| | | | | | | | | |
Collapse
|
33
|
Xu J, Shi M, Chen W, Huang Y, Fang L, Yao L, Zhao S, Chen ZF, Liang H. A gold nanoparticle-based four-color proximity immunoassay for one-step, multiplexed detection of protein biomarkers using ribonuclease H signal amplification. Chem Commun (Camb) 2018; 54:2719-2722. [DOI: 10.1039/c7cc09404c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A gold nanoparticle-based four-color fluorescence proximity immunoassay was developed for multiplexed analysis of protein biomarkers using ribonuclease H signal amplification.
Collapse
Affiliation(s)
- Jiayao Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Ming Shi
- Department of Chemistry and Pharmacy
- Guilin Normal College
- Guilin
- China
| | - Wenting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Lina Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Lifang Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
34
|
Shi B, Deng Y, Zhao P, Li X. Selecting a DNA-Encoded Chemical Library against Non-immobilized Proteins Using a “Ligate–Cross-Link–Purify” Strategy. Bioconjug Chem 2017; 28:2293-2301. [PMID: 28742329 DOI: 10.1021/acs.bioconjchem.7b00343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bingbing Shi
- Key
Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yuqing Deng
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Peng Zhao
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Institute
of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, China
| | - Xiaoyu Li
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
35
|
Yang J, Dou B, Yuan R, Xiang Y. Aptamer/Protein Proximity Binding-Triggered Molecular Machine for Amplified Electrochemical Sensing of Thrombin. Anal Chem 2017; 89:5138-5143. [PMID: 28393515 DOI: 10.1021/acs.analchem.7b00827] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of convenient and sensitive methods without involving any enzymes or complex nanomaterials for the monitoring of proteins is of great significance in disease diagnostics. In this work, we describe the validation of a new aptamer/protein proximity binding-triggered molecular machinery amplification strategy for sensitive electrochemical assay of thrombin in complex serum samples. The sensing interface is prepared by self-assembly of three-stranded DNA complexes on the gold electrode. The association of two distinct functional aptamers with different sites of thrombin triggers proximity binding-induced displacement of one of the short single-stranded DNAs (ssDNAs) from the surface-immobilized three-stranded DNA complexes, exposing a prelocked toehold domain to hybridize with a methylene blue (MB)-tagged fuel ssDNA strand (MB-DNA). Subsequent toehold-mediated strand displacement by the MB-DNA leads to the release and recycling of the aptamer/protein complexes and the function of the molecular machine. Eventually, a large number of MB-DNA strands are captured by the sensor surface, generating drastically amplified electrochemical responses from the MB tags for sensitive detection of thrombin. Our signal amplified sensor is completely enzyme-free and shows a dynamic range from 5 pM to 1 nM with a detection limit of 1.7 pM. Such sensor also has a high specificity for thrombin assay in serum samples. By changing the affinity probe pairs, the developed sensor can be readily expanded as a more general platform for sensitive detection of different types of proteins.
Collapse
Affiliation(s)
- Jianmei Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Baoting Dou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| |
Collapse
|
36
|
Yuen LH, Franzini RM. Achievements, Challenges, and Opportunities in DNA-Encoded Library Research: An Academic Point of View. Chembiochem 2017; 18:829-836. [DOI: 10.1002/cbic.201600567] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| | - Raphael M. Franzini
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| |
Collapse
|
37
|
Abstract
DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods. Operation of this technology requires developing a range of capabilities including aqueous synthetic chemistry, building block acquisition, oligonucleotide conjugation, large-scale molecular biological transformations, selection methodologies, PCR, sequencing, sequence data analysis and the analysis of large chemistry spaces. This Review provides an overview of the development and applications of DNA-encoded chemistry, highlighting the challenges and future directions for the use of this technology.
Collapse
|
38
|
Recent advances on the encoding and selection methods of DNA-encoded chemical library. Bioorg Med Chem Lett 2016; 27:361-369. [PMID: 28011218 DOI: 10.1016/j.bmcl.2016.12.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/22/2022]
Abstract
DNA-encoded chemical library (DEL) has emerged as a powerful and versatile tool for ligand discovery in chemical biology research and in drug discovery. Encoding and selection methods are two of the most important technological aspects of DEL that can dictate the performance and utilities of DELs. In this digest, we have summarized recent advances on the encoding and selection strategies of DEL and also discussed the latest developments on DNA-encoded dynamic library, a new frontier in DEL research.
Collapse
|
39
|
Denton KE, Krusemark CJ. Crosslinking of DNA-linked ligands to target proteins for enrichment from DNA-encoded libraries. MEDCHEMCOMM 2016; 7:2020-2027. [PMID: 28948007 PMCID: PMC5609701 DOI: 10.1039/c6md00288a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Achieving sufficient enrichment of ligands from DNA-encoded libraries for detection can be difficult, particularly for low affinity ligands within highly complex libraries. To address this challenge, we present an approach for crosslinking DNA-linked ligands to target proteins using electrophilic or photoreactive groups. The approach involves the teathering of a ssDNA oligonucleotide to a DNA-encoded molecule to enable attachment of a reactive group post-synthetically via DNA hybridization. Crosslinking traps ligand-protein complexes while in solution and allows for stringent washing conditions to be applied in the subsequent purification. Five reactive groups (tosyl, NHS ester, sulfonyl fluoride, phenyl azide, and diazirine) were tested for crosslinking efficiency and specificity with three DNA-linked ligands to their target proteins. In a model selection, crosslinking resulted in improved enrichment of both high and a low affinity ligands in comparison to a selection with a solid-phase immobilized protein.
Collapse
Affiliation(s)
- Kyle E Denton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Dr., West Lafayette, IN, USA 47906
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Dr., West Lafayette, IN, USA 47906
| |
Collapse
|
40
|
Li F, Tang Y, Traynor SM, Li XF, Le XC. Kinetics of Proximity-Induced Intramolecular DNA Strand Displacement. Anal Chem 2016; 88:8152-7. [PMID: 27454138 DOI: 10.1021/acs.analchem.6b01900] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proximity-induced intramolecular DNA strand displacement (PiDSD) is one of the key mechanisms involved in many DNA-mediated proximity assays and protein-responsive DNA devices. However, the kinetic profile of PiDSD has never been systematically examined before. Herein, we report a systematic study to explore the kinetics of PiDSD by combining the uses of three DNA strand displacement techniques, including a binding-induced DNA strand displacement to generate PiDSD, an intermolecular DNA strand-exchange strategy to measure a set of key kinetic parameters for PiDSD, and a toehold-mediated DNA strand displacement to generate fluorescence signals for the real-time monitoring of PiDSD. By using this approach, we have successfully revealed the kinetic profiles of PiDSD, determined the enhanced local effective concentrations of DNA probes that are involved in PiDSD, and identified a number of key factors that influence the kinetics of PiDSD. Our study on PiDSD establishes knowledge and strategies that can be used to guide the design and operation of various DNA-mediated proximity assays and protein-triggered DNA devices.
Collapse
Affiliation(s)
- Feng Li
- Department of Chemistry and Center for Biotechnology, Brock University , St. Catharines, Ontario L2S 3A1, Canada
| | - Yanan Tang
- Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - Sarah M Traynor
- Department of Chemistry and Center for Biotechnology, Brock University , St. Catharines, Ontario L2S 3A1, Canada
| | - Xing-Fang Li
- Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
41
|
Zimmermann G, Neri D. DNA-encoded chemical libraries: foundations and applications in lead discovery. Drug Discov Today 2016; 21:1828-1834. [PMID: 27477486 DOI: 10.1016/j.drudis.2016.07.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/17/2016] [Accepted: 07/23/2016] [Indexed: 12/16/2022]
Abstract
DNA-encoded chemical libraries have emerged as a powerful tool for hit identification in the pharmaceutical industry and in academia. Similar to biological display techniques (such as phage display technology), DNA-encoded chemical libraries contain a link between the displayed chemical building block and an amplifiable genetic barcode on DNA. Using routine procedures, libraries containing millions to billions of compounds can be easily produced within a few weeks. The resulting compound libraries are screened in a single test tube against proteins of pharmaceutical interest and hits can be identified by PCR amplification of DNA barcodes and subsequent high-throughput sequencing.
Collapse
Affiliation(s)
- Gunther Zimmermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir Prelog Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir Prelog Weg 1-5/10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
42
|
Zhang L, Huang R, Liu W, Liu H, Zhou X, Xing D. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron 2016; 86:1-7. [PMID: 27318103 DOI: 10.1016/j.bios.2016.05.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/01/2023]
Abstract
Foodborne pathogens pose a significant threat to human health worldwide. The identification of foodborne pathogens needs to be rapid, accurate and convenient. Here, we constructed a nanoparticle cluster (NPC) catalyzed signal amplification biosensor for foodborne pathogens visual detection. In this work, vancomycin (Van), a glycopeptide antibiotic for Gram-positive bacteria, was used as the first molecular recognition agent to capture Listeria monocytogenes (L. monocytogenes). Fe3O4 NPC modified aptamer, was used as the signal amplification nanoprobe, specifically recognize to the cell wall of L. monocytogenes. As vancomycin and aptamer recognize L. monocytogenes at different sites, the sandwich recognition showed satisfied specificity. Compared to individual Fe3O4 nanoparticle (NP), NPC exhibit collective effect-enhanced catalytic activity for the color reaction of chromogenic substrate. The change in absorbance or color could represent the concentration of target. Using the Fe3O4 NPC-based signal amplification method, L. monocytogenes whole cells could be directly assayed within a linear range of 5.4×10(3)-10(8) cfu/mL and a visual limit of detection of 5.4×10(3) cfu/mL. Fe3O4 NPC-based method was more sensitive than the Fe3O4 NP-based method. All these attractive characteristics of highly sensitivity, visual and labor-saving, make the biosensor possess a potential application for foodborne pathogenic bacteria detection.
Collapse
Affiliation(s)
- Lisha Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Ru Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Weipeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Hongxing Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou CN 510631, China.
| |
Collapse
|
43
|
Decurtins W, Wichert M, Franzini RM, Buller F, Stravs MA, Zhang Y, Neri D, Scheuermann J. Automated screening for small organic ligands using DNA-encoded chemical libraries. Nat Protoc 2016; 11:764-80. [PMID: 26985574 DOI: 10.1038/nprot.2016.039] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA-encoded chemical libraries (DECLs) are collections of organic compounds that are individually linked to different oligonucleotides, serving as amplifiable identification barcodes. As all compounds in the library can be identified by their DNA tags, they can be mixed and used in affinity-capture experiments on target proteins of interest. In this protocol, we describe the screening process that allows the identification of the few binding molecules within the multiplicity of library members. First, the automated affinity selection process physically isolates binding library members. Second, the DNA codes of the isolated binders are PCR-amplified and subjected to high-throughput DNA sequencing. Third, the obtained sequencing data are evaluated using a C++ program and the results are displayed using MATLAB software. The resulting selection fingerprints facilitate the discrimination of binding from nonbinding library members. The described procedures allow the identification of small organic ligands to biological targets from a DECL within 10 d.
Collapse
Affiliation(s)
- Willy Decurtins
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Moreno Wichert
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Raphael M Franzini
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Fabian Buller
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Michael A Stravs
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Yixin Zhang
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
44
|
Petersen LK, Blakskjær P, Chaikuad A, Christensen AB, Dietvorst J, Holmkvist J, Knapp S, Kořínek M, Larsen LK, Pedersen AE, Röhm S, Sløk FA, Hansen NJV. Novel p38α MAP kinase inhibitors identified from yoctoReactor DNA-encoded small molecule library. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00241b] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DNA-encoded small-molecule library was prepared using yoctoReactor technology followed by binder trap enrichment to identify selective inhibitors with nanomolar potencies against p38α MAP kinase.
Collapse
Affiliation(s)
| | | | - A. Chaikuad
- Structural Genomic Consortium
- University of Oxford
- Old Road Campus Research Building
- Oxford
- UK
| | | | | | | | - S. Knapp
- Structural Genomic Consortium
- University of Oxford
- Old Road Campus Research Building
- Oxford
- UK
| | - M. Kořínek
- APIGENEX s.r.o
- 190 00 Prague
- Czech Republic
| | | | - A. E. Pedersen
- The Faculty of Health and Medical Sciences
- Department of Immunology and Microbiology
- University of Copenhagen
- DK-2200 Copenhagen N
- Denmark
| | - S. Röhm
- Institute for Pharmaceutical Chemistry and Buchmann Institute for life sciences
- Johann Wolfgang Goethe-University
- D-60438 Frankfurt am Main
- Germany
| | | | | |
Collapse
|
45
|
Li G, Zheng W, Chen Z, Zhou Y, Liu Y, Yang J, Huang Y, Li X. Design, preparation, and selection of DNA-encoded dynamic libraries. Chem Sci 2015; 6:7097-7104. [PMID: 28757982 PMCID: PMC5510007 DOI: 10.1039/c5sc02467f] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
We report a method for the preparation and selection of DNA-encoded dynamic libraries (DEDLs). The library is composed of two sets of DNA-linked small molecules that are under dynamic exchange through DNA hybridization. Addition of the protein target shifted the equilibrium, favouring the assembly of high affinity bivalent binders. Notably, we introduced a novel locking mechanism to stop the dynamic exchange and "freeze" the equilibrium, thereby enabling downstream hit isolation and decoding by PCR amplification and DNA sequencing. Our DEDL approach has circumvented the limitation of library size and realized the analysis and selection of large dynamic libraries. In addition, this method also eliminates the requirement for modified and immobilized target proteins.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Wenlu Zheng
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| | - Zitian Chen
- Biodynamic Optical Imaging Centre (BIOPIC) and College of Engineering , Peking University , Beijing , China 100871
| | - Yu Zhou
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| | - Yu Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Junrui Yang
- Biodynamic Optical Imaging Centre (BIOPIC) and College of Engineering , Peking University , Beijing , China 100871
| | - Yanyi Huang
- Biodynamic Optical Imaging Centre (BIOPIC) and College of Engineering , Peking University , Beijing , China 100871
| | - Xiaoyu Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 . .,Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| |
Collapse
|
46
|
DNA-Encoded Dynamic Combinatorial Chemical Libraries. Angew Chem Int Ed Engl 2015; 54:7924-8. [DOI: 10.1002/anie.201501775] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/21/2015] [Indexed: 12/20/2022]
|
47
|
Reddavide FV, Lin W, Lehnert S, Zhang Y. DNA-Encoded Dynamic Combinatorial Chemical Libraries. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501775] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Zhang L, Zhang K, Liu G, Liu M, Liu Y, Li J. Label-Free Nanopore Proximity Bioassay for Platelet-Derived Growth Factor Detection. Anal Chem 2015; 87:5677-82. [DOI: 10.1021/acs.analchem.5b00791] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ling Zhang
- Department of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Kaixiang Zhang
- Department of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Guangchao Liu
- Department of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Mengjia Liu
- Department of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
49
|
Wei Y, Zhou W, Liu J, Chai Y, Xiang Y, Yuan R. Label-free and homogeneous aptamer proximity binding assay for fluorescent detection of protein biomarkers in human serum. Talanta 2015; 141:230-4. [PMID: 25966407 DOI: 10.1016/j.talanta.2015.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 12/17/2022]
Abstract
By using the aptamer proximity binding assay strategy, the development of a label-free and homogeneous approach for fluorescent detection of human platelet-derived growth factor BB (PDGF-BB) is described. Two G-quadruplex forming sequence-linked aptamers bind to the PDGF-BB proteins, which leads to the increase in local concentration of the aptamers and promotes the formation of the G-quadruplex structures. Subsequently, the fluorescent dye, N-methylmesoporphyrin IX, binds to these G-quadruplex structures and generates enhanced fluorescence emission signal for sensitive detection of PDGF-BB. The association of the aptamers to the PDGF-BB proteins is characterized by using native polyacrylamide gel electrophoresis. The experimental conditions are optimized to reach an estimated detection limit of 3.2nM for PDGF-BB. The developed method is also selective and can be applied for monitoring PDGF-BB in human serum samples. With the advantages of label-free and homogeneous detection, the demonstrated approach can be potentially employed to detect other biomarkers in a relatively simple way.
Collapse
Affiliation(s)
- Yulian Wei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenjiao Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jun Liu
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
50
|
Blakskjaer P, Heitner T, Hansen NJV. Fidelity by design: Yoctoreactor and binder trap enrichment for small-molecule DNA-encoded libraries and drug discovery. Curr Opin Chem Biol 2015; 26:62-71. [PMID: 25732963 DOI: 10.1016/j.cbpa.2015.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 01/26/2023]
Abstract
DNA-encoded small-molecule library (DEL) technology allows vast drug-like small molecule libraries to be efficiently synthesized in a combinatorial fashion and screened in a single tube method for binding, with an assay readout empowered by advances in next generation sequencing technology. This approach has increasingly been applied as a viable technology for the identification of small-molecule modulators to protein targets and as precursors to drugs in the past decade. Several strategies for producing and for screening DELs have been devised by both academic and industrial institutions. This review highlights some of the most significant and recent strategies along with important results. A special focus on the production of high fidelity DEL technologies with the ability to eliminate screening noise and false positives is included: using a DNA junction called the Yoctoreactor, building blocks (BBs) are spatially confined at the center of the junction facilitating both the chemical reaction between BBs and encoding of the synthetic route. A screening method, known as binder trap enrichment, permits DELs to be screened robustly in a homogeneous manner delivering clean data sets and potent hits for even the most challenging targets.
Collapse
Affiliation(s)
| | - Tara Heitner
- Vipergen ApS, Gammel Kongevej 23A, 1610 Copenhagen V, Denmark
| | | |
Collapse
|