1
|
Nakamura I, Amesaka H, Nagao S, Orito N, Negi S, Tanaka SI, Matsuo T. Binding mechanism of adenylate kinase-specific monobodies. FEBS Lett 2025. [PMID: 40400134 DOI: 10.1002/1873-3468.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/03/2025] [Accepted: 04/26/2025] [Indexed: 05/23/2025]
Abstract
Monobodies are synthetic antibody-mimetic proteins that regulate enzyme functions through protein-protein interactions. In this study, we investigated the binding mechanisms of monobodies to adenylate kinase (Adk). Calorimetric and X-ray crystallographic analyses revealed that CL-1, a monobody specific for the CLOSED form of Adk, binds to the CORE domain of Adk in an enthalpy-driven manner, forming several hydrogen bonds and a cation-π interaction at the protein interface, without perturbing the Adk backbone. In contrast, OP-4, an OPEN-form-specific monobody, exhibited entropy-driven binding. 1H-15N 2D nuclear magnetic resonance (NMR), 31P-NMR, and calorimetric studies revealed conformational perturbations to Adk by OP-4, while substrate access remained intact. The different thermodynamic and structural effects between the monobodies highlight the diverse binding mechanisms among monobodies.
Collapse
Affiliation(s)
- Ibuki Nakamura
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| | - Hiroshi Amesaka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan
| | - Satoshi Nagao
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo, Japan
| | - Naoki Orito
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| | - Shigeru Negi
- Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
| | - Shun-Ichi Tanaka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan
| | - Takashi Matsuo
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| |
Collapse
|
2
|
Zhang Z, Zhang Y, Ren W, Zhang W, Li W, Wang W. Allosteric Regulation of Enzymatic Catalysis through Mechanical Force. J Chem Theory Comput 2025; 21:4953-4963. [PMID: 40261816 DOI: 10.1021/acs.jctc.5c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Mechanical force has been increasingly recognized to play crucial roles in regulating various cellular processes, which has inspired wide interest in elucidating the biophysical mechanism underlying these mechanobiological processes. In this work, we investigate the mechanical regulation of enzyme catalysis by developing a residue-resolved computational model capable of describing the full catalytic cycle of enzymes under mechanical force. Intriguingly, for a model enzyme, adenylate kinase, we showed that applying tensile forces with biologically relevant strength can increase the enzymatic activity. Further analysis showed that mechanical tensile force allosterically modifies the global free energy landscape and conformational dynamics of the protein, which then promotes the rate-limiting product release step of the enzymatic cycle. The effect of mechanical allostery on enzyme catalysis depends on the intrinsic conformational propensity of the enzymes. The crucial role of mechanical allostery in enzymatic catalysis elucidated in this work sheds important insights into the biophysical principle of enzymatic regulation and suggests a possible strategy for fine-tuning the functioning dynamics of biological enzymes.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yangyang Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Weitong Ren
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Weiwei Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Scheerer D, Levy D, Casier R, Riven I, Mazal H, Haran G. Interplay between conformational dynamics and substrate binding regulates enzymatic activity: a single-molecule FRET study. Chem Sci 2025; 16:3066-3077. [PMID: 39877815 PMCID: PMC11770808 DOI: 10.1039/d4sc06819j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP. Surprisingly, the enzyme is activated by urea, a compound commonly acting as a denaturant. We utilize this phenomenon to decipher the involvement of conformational dynamics in the mechanism of action of the enzyme. Combining single-molecule FRET spectroscopy and enzymatic activity studies, we find that urea promotes the open conformation of the enzyme, aiding the proper positioning of the substrates. Further, urea decreases AMP affinity, paradoxically facilitating a more efficient progression towards the catalytically active complex. These results allow us to define a complete kinetic scheme that includes the open/close transitions of the enzyme and to unravel the important interplay between conformational dynamics and chemical steps, a general property of enzymes. State-of-the-art tools, such as single-molecule fluorescence spectroscopy, offer new insights into how enzymes balance different conformations to regulate activity.
Collapse
Affiliation(s)
- David Scheerer
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
| | - Dorit Levy
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
| | - Remi Casier
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
| | - Inbal Riven
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
- Max Planck Institute for the Science of Light Erlangen 91058 Germany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
| |
Collapse
|
4
|
Muir DF, Asper GPR, Notin P, Posner JA, Marks DS, Keiser MJ, Pinney MM. Evolutionary-Scale Enzymology Enables Biochemical Constant Prediction Across a Multi-Peaked Catalytic Landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619915. [PMID: 39484523 PMCID: PMC11526920 DOI: 10.1101/2024.10.23.619915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Quantitatively mapping enzyme sequence-catalysis landscapes remains a critical challenge in understanding enzyme function, evolution, and design. Here, we expand an emerging microfluidic platform to measure catalytic constants-k cat and K M-for hundreds of diverse naturally occurring sequences and mutants of the model enzyme Adenylate Kinase (ADK). This enables us to dissect the sequence-catalysis landscape's topology, navigability, and mechanistic underpinnings, revealing distinct catalytic peaks organized by structural motifs. These results challenge long-standing hypotheses in enzyme adaptation, demonstrating that thermophilic enzymes are not slower than their mesophilic counterparts. Combining the rich representations of protein sequences provided by deep-learning models with our custom high-throughput kinetic data yields semi-supervised models that significantly outperform existing models at predicting catalytic parameters of naturally occurring ADK sequences. Our work demonstrates a promising strategy for dissecting sequence-catalysis landscapes across enzymatic evolution and building family-specific models capable of accurately predicting catalytic constants, opening new avenues for enzyme engineering and functional prediction.
Collapse
Affiliation(s)
- Duncan F Muir
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Garrison P R Asper
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Pascal Notin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Jacob A Posner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael J Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Margaux M Pinney
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Valhalla Fellow, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Scheerer D, Levy D, Casier R, Riven I, Mazal H, Haran G. Enzyme activation by urea reveals the interplay between conformational dynamics and substrate binding: a single-molecule FRET study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610662. [PMID: 39257823 PMCID: PMC11384010 DOI: 10.1101/2024.09.01.610662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP. At high concentrations, AMP also operates as an allosteric inhibitor of the protein. Surprisingly, the enzyme is activated by urea, a compound commonly acting as a denaturant. Combining single-molecule FRET spectroscopy and enzymatic activity studies, we find that urea interferes with two key mechanisms that contribute to enzyme efficacy. First, urea promotes the open conformation of the enzyme, aiding the proper positioning of the substrates. Second, urea decreases AMP affinity, paradoxically facilitating a more efficient progression towards the catalytically active complex. These results signify the important interplay between conformational dynamics and chemical steps, including binding, in the activity of enzymes. State-of-the-art tools, such as single-molecule fluorescence spectroscopy, offer new insights into how enzymes balance different conformations to regulate activity.
Collapse
Affiliation(s)
- David Scheerer
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Dorit Levy
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Remi Casier
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Inbal Riven
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
- Max Planck Institute for the Science of Light, Erlangen 91058, Germany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| |
Collapse
|
6
|
Nam K, Thodika ARA, Tischlik S, Phoeurk C, Nagy TM, Schierholz L, Ådén J, Rogne P, Drescher M, Sauer-Eriksson AE, Wolf-Watz M. Magnesium induced structural reorganization in the active site of adenylate kinase. SCIENCE ADVANCES 2024; 10:eado5504. [PMID: 39121211 PMCID: PMC11313852 DOI: 10.1126/sciadv.ado5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Phosphoryl transfer is a fundamental reaction in cellular signaling and metabolism that requires Mg2+ as an essential cofactor. While the primary function of Mg2+ is electrostatic activation of substrates, such as ATP, the full spectrum of catalytic mechanisms exerted by Mg2+ is not known. In this study, we integrate structural biology methods, molecular dynamic (MD) simulations, phylogeny, and enzymology assays to provide molecular insights into Mg2+-dependent structural reorganization in the active site of the metabolic enzyme adenylate kinase. Our results demonstrate that Mg2+ induces a conformational rearrangement of the substrates (ATP and ADP), resulting in a 30° adjustment of the angle essential for reversible phosphoryl transfer, thereby optimizing it for catalysis. MD simulations revealed transitions between conformational substates that link the fluctuation of the angle to large-scale enzyme dynamics. The findings contribute detailed insight into Mg2+ activation of enzymes and may be relevant for reversible and irreversible phosphoryl transfer reactions.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | - Sonja Tischlik
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Chanrith Phoeurk
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Bio-Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | | | - Léon Schierholz
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Malte Drescher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | | | | |
Collapse
|
7
|
Brom JA, Petrikis RG, Nieukirk GE, Bourque J, Pielak GJ. Protecting Lyophilized Escherichia coli Adenylate Kinase. Mol Pharm 2024; 21:3634-3642. [PMID: 38805365 DOI: 10.1021/acs.molpharmaceut.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Drying protein-based drugs, usually via lyophilization, can facilitate storage at ambient temperature and improve accessibility but many proteins cannot withstand drying and must be formulated with protective additives called excipients. However, mechanisms of protection are poorly understood, precluding rational formulation design. To better understand dry proteins and their protection, we examine Escherichia coli adenylate kinase (AdK) lyophilized alone and with the additives trehalose, maltose, bovine serum albumin, cytosolic abundant heat soluble protein D, histidine, and arginine. We apply liquid-observed vapor exchange NMR to interrogate the residue-level structure in the presence and absence of additives. We pair these observations with differential scanning calorimetry data of lyophilized samples and AdK activity assays with and without heating. We show that the amino acids do not preserve the native structure as well as sugars or proteins and that after heating the most stable additives protect activity best.
Collapse
Affiliation(s)
- Julia A Brom
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), 3250 Genome Sciences Building, Chapel Hill, North Carolina 27599-3290, United States
| | - Ruta G Petrikis
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), 3250 Genome Sciences Building, Chapel Hill, North Carolina 27599-3290, United States
| | - Grace E Nieukirk
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), 3250 Genome Sciences Building, Chapel Hill, North Carolina 27599-3290, United States
| | - Joshua Bourque
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), 3250 Genome Sciences Building, Chapel Hill, North Carolina 27599-3290, United States
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), 3250 Genome Sciences Building, Chapel Hill, North Carolina 27599-3290, United States
- Department of Biochemistry & Biophysics, UNC-CH, Chapel Hill, North Carolina 27599, United States
- Lineberger Cancer Center, UNC-CH, Chapel Hill, North Carolina 27599, United States
- Integrative Program for Biological and Genome Sciences, UNC-CH, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
9
|
Nam K, Arattu Thodika AR, Grundström C, Sauer UH, Wolf-Watz M. Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release. J Chem Inf Model 2024; 64:150-163. [PMID: 38117131 PMCID: PMC10778088 DOI: 10.1021/acs.jcim.3c01618] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Abdul Raafik Arattu Thodika
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | | | - Uwe H. Sauer
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| | - Magnus Wolf-Watz
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| |
Collapse
|
10
|
Brom JA, Samsri S, Petrikis RG, Parnham S, Pielak GJ. 1H, 13C, 15N backbone resonance assignment of Escherichia coli adenylate kinase. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:235-238. [PMID: 37632688 DOI: 10.1007/s12104-023-10147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Adenylate kinase reversibly catalyzes the conversion of ATP plus AMP to two ADPs. This essential catalyst is present in every cell, and the Escherichia coli protein is often employed as a model enzyme. Our aim is to use the E. coli enzyme to understand dry protein structure and protection. Here, we report the expression, purification, steady-state assay, NMR conditions and 1H, 13C, 15N backbone resonance NMR assignments of its C77S variant. These data will also help others utilize this prototypical enzyme.
Collapse
Affiliation(s)
- Julia A Brom
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, 27599-3290, USA
| | - Sasiprapa Samsri
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruta G Petrikis
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, 27599-3290, USA
| | - Stuart Parnham
- Department of Biochemistry & Biophysics, UNC-CH, Chapel Hill, NC, 27599, USA
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, 27599-3290, USA.
- Department of Biochemistry & Biophysics, UNC-CH, Chapel Hill, NC, 27599, USA.
- Lineberger Cancer Center, UNC-CH, Chapel Hill, NC, 27599, USA.
- Integrative Program for Biological and Genome Sciences, UNC-CH, Chapel Hill, NC, 27599-7100, USA.
| |
Collapse
|
11
|
Dulko-Smith B, Ojeda-May P, Åden J, Wolf-Watz M, Nam K. Mechanistic Basis for a Connection between the Catalytic Step and Slow Opening Dynamics of Adenylate Kinase. J Chem Inf Model 2023; 63:1556-1569. [PMID: 36802243 PMCID: PMC11779523 DOI: 10.1021/acs.jcim.2c01629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Escherichia coli adenylate kinase (AdK) is a small, monomeric enzyme that synchronizes the catalytic step with the enzyme's conformational dynamics to optimize a phosphoryl transfer reaction and the subsequent release of the product. Guided by experimental measurements of low catalytic activity in seven single-point mutation AdK variants (K13Q, R36A, R88A, R123A, R156K, R167A, and D158A), we utilized classical mechanical simulations to probe mutant dynamics linked to product release, and quantum mechanical and molecular mechanical calculations to compute a free energy barrier for the catalytic event. The goal was to establish a mechanistic connection between the two activities. Our calculations of the free energy barriers in AdK variants were in line with those from experiments, and conformational dynamics consistently demonstrated an enhanced tendency toward enzyme opening. This indicates that the catalytic residues in the wild-type AdK serve a dual role in this enzyme's function─one to lower the energy barrier for the phosphoryl transfer reaction and another to delay enzyme opening, maintaining it in a catalytically active, closed conformation for long enough to enable the subsequent chemical step. Our study also discovers that while each catalytic residue individually contributes to facilitating the catalysis, R36, R123, R156, R167, and D158 are organized in a tightly coordinated interaction network and collectively modulate AdK's conformational transitions. Unlike the existing notion of product release being rate-limiting, our results suggest a mechanistic interconnection between the chemical step and the enzyme's conformational dynamics acting as the bottleneck of the catalytic process. Our results also suggest that the enzyme's active site has evolved to optimize the chemical reaction step while slowing down the overall opening dynamics of the enzyme.
Collapse
Affiliation(s)
- Beata Dulko-Smith
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Pedro Ojeda-May
- High Performance Computing Centre North (HPC2N), Umeå University, Umeå SE-90187, Sweden
| | - Jörgen Åden
- Department of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
12
|
Kumar A, Singh P, Kumar R, Yadav P, Jaiswal A, Kumar Tewari A. An Experimental and Theoretical Study of the Conformational Stability of Triazinone Fleximers: Quantitative Analysis for Intermolecular Interactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Akhilesh Kumar
- Department of Chemistry (Center of Advanced Studies) Institute of Science Banaras Hindu University Varanasi 221005
| | - Praveen Singh
- Department of Chemistry Dayanand Vedic College Orai Jaluan 285001
| | - Ranjeet Kumar
- Department of Chemistry C. M. P. Degree College Prayagraj 211002 India
| | - Priyanka Yadav
- Department of Chemistry (Center of Advanced Studies) Institute of Science Banaras Hindu University Varanasi 221005
| | - Amit Jaiswal
- Department of Chemistry C. M. P. Degree College Prayagraj 211002 India
| | - Ashish Kumar Tewari
- Department of Chemistry (Center of Advanced Studies) Institute of Science Banaras Hindu University Varanasi 221005
| |
Collapse
|
13
|
Verma A, Åberg-Zingmark E, Sparrman T, Mushtaq AU, Rogne P, Grundström C, Berntsson R, Sauer UH, Backman L, Nam K, Sauer-Eriksson E, Wolf-Watz M. Insights into the evolution of enzymatic specificity and catalysis: From Asgard archaea to human adenylate kinases. SCIENCE ADVANCES 2022; 8:eabm4089. [PMID: 36332013 PMCID: PMC9635829 DOI: 10.1126/sciadv.abm4089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic catalysis is critically dependent on selectivity, active site architecture, and dynamics. To contribute insights into the interplay of these properties, we established an approach with NMR, crystallography, and MD simulations focused on the ubiquitous phosphotransferase adenylate kinase (AK) isolated from Odinarchaeota (OdinAK). Odinarchaeota belongs to the Asgard archaeal phylum that is believed to be the closest known ancestor to eukaryotes. We show that OdinAK is a hyperthermophilic trimer that, contrary to other AK family members, can use all NTPs for its phosphorylation reaction. Crystallographic structures of OdinAK-NTP complexes revealed a universal NTP-binding motif, while 19F NMR experiments uncovered a conserved and rate-limiting dynamic signature. As a consequence of trimerization, the active site of OdinAK was found to be lacking a critical catalytic residue and is therefore considered to be "atypical." On the basis of discovered relationships with human monomeric homologs, our findings are discussed in terms of evolution of enzymatic substrate specificity and cold adaptation.
Collapse
Affiliation(s)
- Apoorv Verma
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Tobias Sparrman
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Ronnie Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Uwe H. Sauer
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Lars Backman
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | |
Collapse
|
14
|
Zhang Y, Chen M, Lu J, Li W, Wolynes PG, Wang W. Frustration and the Kinetic Repartitioning Mechanism of Substrate Inhibition in Enzyme Catalysis. J Phys Chem B 2022; 126:6792-6801. [PMID: 36044985 PMCID: PMC9483917 DOI: 10.1021/acs.jpcb.2c03832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Substrate inhibition, whereby enzymatic activity decreases
with
excess substrate after reaching a maximum turnover rate, is among
the most elusive phenomena in enzymatic catalysis. Here, based on
a dynamic energy landscape model, we investigate the underlying mechanism
by performing molecular simulations and frustration analysis for a
model enzyme adenylate kinase (AdK), which catalyzes the phosphoryl
transfer reaction ATP + AMP ⇋ ADP + ADP. Intriguingly, these
reveal a kinetic repartitioning mechanism of substrate inhibition,
whereby excess substrate AMP suppresses the population of an energetically
frustrated, but kinetically activated, catalytic pathway going through
a substrate (ATP)-product (ADP) cobound complex with steric incompatibility.
Such a frustrated pathway plays a crucial role in facilitating the
bottleneck product ADP release, and its suppression by excess substrate
AMP leads to a slow down of product release and overall turnover.
The simulation results directly demonstrate that substrate inhibition
arises from the rate-limiting product-release step, instead of the
steps for populating the catalytically competent complex as often
suggested in previous works. Furthermore, there is a tight interplay
between the enzyme conformational equilibrium and the extent of substrate
inhibition. Mutations biasing to more closed conformations tend to
enhance substrate inhibition. We also characterized the key features
of single-molecule enzyme kinetics with substrate inhibition effect.
We propose that the above molecular mechanism of substrate inhibition
may be relevant to other multisubstrate enzymes in which product release
is the bottleneck step.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Mingchen Chen
- Department of Research and Development, neoX Biotech, Beijing 102206, China.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Jiajun Lu
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
15
|
Rogne P, Dulko-Smith B, Goodman J, Rosselin M, Grundström C, Hedberg C, Nam K, Sauer-Eriksson AE, Wolf-Watz M. Structural Basis for GTP versus ATP Selectivity in the NMP Kinase AK3. Biochemistry 2020; 59:3570-3581. [PMID: 32822537 DOI: 10.1021/acs.biochem.0c00549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ATP and GTP are exceptionally important molecules in biology with multiple, and often discrete, functions. Therefore, enzymes that bind to either of them must develop robust mechanisms to selectively utilize one or the other. Here, this specific problem is addressed by molecular studies of the human NMP kinase AK3, which uses GTP to phosphorylate AMP. AK3 plays an important role in the citric acid cycle, where it is responsible for GTP/GDP recycling. By combining a structural biology approach with functional experiments, we present a comprehensive structural and mechanistic understanding of the enzyme. We discovered that AK3 functions by recruitment of GTP to the active site, while ATP is rejected and nonproductively bound to the AMP binding site. Consequently, ATP acts as an inhibitor with respect to GTP and AMP. The overall features with specific recognition of the correct substrate and nonproductive binding by the incorrect substrate bear a strong similarity to previous findings for the ATP specific NMP kinase adenylate kinase. Taken together, we are now able to provide the fundamental principles for GTP and ATP selectivity in the large NMP kinase family. As a side-result originating from nonlinearity of chemical shifts in GTP and ATP titrations, we find that protein surfaces offer a general and weak binding affinity for both GTP and ATP. These nonspecific interactions likely act to lower the available intracellular GTP and ATP concentrations and may have driven evolution of the Michaelis constants of NMP kinases accordingly.
Collapse
Affiliation(s)
- Per Rogne
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Beata Dulko-Smith
- Department of Chemistry and Biochemistry, University of Texas at Alington, Arlington, Texas 76019-0065, United States
| | - Jack Goodman
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Marie Rosselin
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Alington, Arlington, Texas 76019-0065, United States
| | | | - Magnus Wolf-Watz
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
16
|
Kong J, Li J, Lu J, Li W, Wang W. Role of substrate-product frustration on enzyme functional dynamics. Phys Rev E 2020; 100:052409. [PMID: 31869999 DOI: 10.1103/physreve.100.052409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 01/19/2023]
Abstract
Natural enzymes often have enormous catalytic power developed by evolution. Revealing the underlying physical strategy used by enzymes to achieve high catalysis efficiency is one of the central focuses in the field of biological physics. Our recent work demonstrated that multisubstrate enzymes can utilize steric frustration encountered in the substrate-product cobound complex to overcome the bottleneck of the enzymatic cycle [W. Li et al., Phys. Rev. Lett. 122, 238102 (2019)10.1103/PhysRevLett.122.238102]. However, the key atomic-level interactions by which the steric frustration contributes to the enzymatic cycle remain elusive. In this work we study the microscopic mechanism for the role of the substrate-product frustration on the key physical steps in the enzymatic cycle of adenylate kinase (AdK), a multisubstrate enzyme catalyzing the reversible phosphoryl transfer reaction ATP+AMP⇋ADP+ADP. By using atomistic molecular dynamics simulations with enhanced sampling, we showed that the competitive interactions from the phosphate groups of the substrate ATP and product ADP in the ATP-ADP cobound complex of the AdK lead to local frustration in the binding pockets. Such local frustration disrupts the hydrogen bond network around the binding pockets, which causes lowered barrier height for the opening of the enzyme conformations and expedited release of the bottleneck product ADP. Our results directly demonstrated from the atomistic level that the local frustration in the active sites of the enzyme can be utilized to facilitate the key physical steps of the enzymatic cycle, providing numerical evidence to the predictions of the previous theoretical work.
Collapse
Affiliation(s)
- Jianyang Kong
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jiachen Li
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jiajun Lu
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Yuan Y, Zhu Q, Song R, Ma J, Dong H. A Two-Ended Data-Driven Accelerated Sampling Method for Exploring the Transition Pathways between Two Known States of Protein. J Chem Theory Comput 2020; 16:4631-4640. [PMID: 32320614 DOI: 10.1021/acs.jctc.9b01184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conformational transitions of protein between different states are often associated with their biological functions. These dynamic processes, however, are usually not easy to be well characterized by experimental measurements, mainly because of inadequate temporal and spatial resolution. Meantime, sampling of configuration space with molecular dynamics (MD) simulations is still a challenge. Here we proposed a robust two-ended data-driven accelerated (teDA2) conformational sampling method, which drives the structural change in an adaptively updated feature space without introducing a bias potential. teDA2 was applied to explore adenylate kinase (ADK), a model with well characterized "open" and "closed" states. A single conformational transition event of ADK could be achieved within only a few or tens of nanoseconds sampled with teDA2. By analyzing hundreds of transition events, we reproduced different mechanisms and the associated pathways for domain motion of ADK reported in the literature. The multiroute characteristic of ADK was confirmed by the fact that some metastable states identified with teDA2 resemble available crystal structures determined at different conditions. This feature was further validated with Markov state modeling with independent MD simulations. Therefore, our work provides strong evidence for the conformational plasticity of protein, which is mainly due to the inherent degree of flexibility. As a reliable and efficient enhanced sampling protocol, teDA2 could be used to study the dynamics between functional states of various biomolecular machines.
Collapse
Affiliation(s)
- Yigao Yuan
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China
| | - Qiang Zhu
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China.,Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing China
| | - Ruiheng Song
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Iyer M, Li Z, Jaroszewski L, Sedova M, Godzik A. Difference contact maps: From what to why in the analysis of the conformational flexibility of proteins. PLoS One 2020; 15:e0226702. [PMID: 32163442 PMCID: PMC7067477 DOI: 10.1371/journal.pone.0226702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023] Open
Abstract
Protein structures, usually visualized in various highly idealized forms focusing on the three-dimensional arrangements of secondary structure elements, can also be described as lists of interacting residues or atoms and visualized as two-dimensional distance or contact maps. We show that contact maps provide an ideal tool to describe and analyze differences between structures of proteins in different conformations. Expanding functionality of the PDBFlex server and database developed previously in our group, we describe how analysis of difference contact maps (DCMs) can be used to identify critical interactions stabilizing alternative protein conformations, recognize residues and positions controlling protein functions and build hypotheses as to molecular mechanisms of disease mutations.
Collapse
Affiliation(s)
- Mallika Iyer
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States of America
| | - Zhanwen Li
- Biosciences Division, University of California Riverside School of Medicine, Riverside, CA, United States of America
| | - Lukasz Jaroszewski
- Biosciences Division, University of California Riverside School of Medicine, Riverside, CA, United States of America
| | - Mayya Sedova
- Biosciences Division, University of California Riverside School of Medicine, Riverside, CA, United States of America
| | - Adam Godzik
- Biosciences Division, University of California Riverside School of Medicine, Riverside, CA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Fucci IJ, Sinha K, Rule GS. Stabilization of Active Site Dynamics Leads to Increased Activity with 3'-Azido-3'-deoxythymidine Monophosphate for F105Y Mutant Human Thymidylate Kinase. ACS OMEGA 2020; 5:2355-2367. [PMID: 32064397 PMCID: PMC7017412 DOI: 10.1021/acsomega.9b03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/10/2020] [Indexed: 05/04/2023]
Abstract
Thymidylate kinases are essential enzymes with roles in DNA synthesis and repair and have been the target of drug development for antimalarials, antifungals, HIV treatment, and cancer therapeutics. Human thymidylate kinase (hTMPK) conversion of the anti-HIV prodrug 3'-azido-3'-deoxythymidine (AZT or zidovudine) monophosphate to diphosphate is the rate-limiting step in the activation of AZT. A point mutant (F105Y) has been previously reported with significantly increased activity for the monophosphate form of the drug [3'-azidothymidine-5'-monophosphate (AZTMP)]. Using solution nuclear magnetic resonance (NMR) techniques, we show that while the wild-type (WT) and F105Y hTMPK adopt the same structure in solution, significant changes in dynamics may explain their different activities toward TMP and AZTMP. 13C spin-relaxation measurements show that there is little change in dynamics on the ps to ns time scale. In contrast, methyl 1H relaxation dispersion shows that AZTMP alters adenosine nucleotide handling in the WT protein but not in the mutant. Additionally, the F105Y mutant has reduced conformational flexibility, leading to an increase in affinity for the product ADP and a slower rate of phosphorylation of TMP. The dynamics at the catalytic center for F105Y bound to AZTMP are tuned to the same frequency as WT bound to TMP, which may explain the mutant's catalytic efficiency toward the prodrug.
Collapse
|
20
|
Rogne P, Andersson D, Grundström C, Sauer-Eriksson E, Linusson A, Wolf-Watz M. Nucleation of an Activating Conformational Change by a Cation-π Interaction. Biochemistry 2019; 58:3408-3412. [PMID: 31339702 DOI: 10.1021/acs.biochem.9b00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a key molecule in biology, adenosine triphosphate (ATP) has numerous crucial functions in, for instance, energetics, post-translational modifications, nucleotide biosynthesis, and cofactor metabolism. Here, we have discovered an intricate interplay between the enzyme adenylate kinase and its substrate ATP. The side chain of an arginine residue was found to be an efficient sensor of the aromatic moiety of ATP through the formation of a strong cation-π interaction. In addition to recognition, the interaction was found to have dual functionality. First, it nucleates the activating conformational transition of the ATP binding domain and also affects the specificity in the distant AMP binding domain. In light of the functional consequences resulting from the cation-π interaction, it is possible that the mode of ATP recognition may be a useful tool in enzyme design.
Collapse
Affiliation(s)
- Per Rogne
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - David Andersson
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | | | | | - Anna Linusson
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Magnus Wolf-Watz
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| |
Collapse
|
21
|
Khan N, Shah PP, Ban D, Trigo-Mouriño P, Carneiro MG, DeLeeuw L, Dean WL, Trent JO, Beverly LJ, Konrad M, Lee D, Sabo TM. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. J Biol Chem 2019; 294:11920-11933. [PMID: 31201273 DOI: 10.1074/jbc.ra119.009251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Indexed: 01/13/2023] Open
Abstract
Human guanylate kinase (hGMPK) is the only known enzyme responsible for cellular GDP production, making it essential for cellular viability and proliferation. Moreover, hGMPK has been assigned a critical role in metabolic activation of antiviral and antineoplastic nucleoside-analog prodrugs. Given that hGMPK is indispensable for producing the nucleotide building blocks of DNA, RNA, and cGMP and that cancer cells possess elevated GTP levels, it is surprising that a detailed structural and functional characterization of hGMPK is lacking. Here, we present the first high-resolution structure of hGMPK in the apo form, determined with NMR spectroscopy. The structure revealed that hGMPK consists of three distinct regions designated as the LID, GMP-binding (GMP-BD), and CORE domains and is in an open configuration that is nucleotide binding-competent. We also demonstrate that nonsynonymous single-nucleotide variants (nsSNVs) of the hGMPK CORE domain distant from the nucleotide-binding site of this domain modulate enzymatic activity without significantly affecting hGMPK's structure. Finally, we show that knocking down the hGMPK gene in lung adenocarcinoma cell lines decreases cellular viability, proliferation, and clonogenic potential while not altering the proliferation of immortalized, noncancerous human peripheral airway cells. Taken together, our results provide an important step toward establishing hGMPK as a potential biomolecular target, from both an orthosteric (ligand-binding sites) and allosteric (location of CORE domain-located nsSNVs) standpoint.
Collapse
Affiliation(s)
- Nazimuddin Khan
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Parag P Shah
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Pablo Trigo-Mouriño
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marta G Carneiro
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lynn DeLeeuw
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - William L Dean
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - John O Trent
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Levi J Beverly
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Manfred Konrad
- Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - T Michael Sabo
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
22
|
Li W, Wang J, Zhang J, Takada S, Wang W. Overcoming the Bottleneck of the Enzymatic Cycle by Steric Frustration. PHYSICAL REVIEW LETTERS 2019; 122:238102. [PMID: 31298900 DOI: 10.1103/physrevlett.122.238102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/10/2019] [Indexed: 06/10/2023]
Abstract
The enormous catalytic power of natural enzymes relies on the ability to overcome the bottleneck event in the enzymatic cycle, yet the underlying physical mechanisms are not fully understood. Here, by performing molecular simulations of the whole enzymatic cycle for a model multisubstrate enzyme with a dynamic energy landscape model, we show that multisubstrate enzymes can utilize steric frustration to facilitate the rate-limiting product-release step. During the enzymatic cycles, the bottleneck product is actively squeezed out by the binding of a new substrate at the neighboring site through the population of a substrate-product cobound complex, in which the binding pockets are frustrated due to steric incompatibility. Such steric frustration thereby enables an active mechanism of product release driven by substrate-binding energy, facilitating the enzymatic cycle.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun Wang
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
23
|
Slochower DR, Gilson MK. Motor-like Properties of Nonmotor Enzymes. Biophys J 2019; 114:2174-2179. [PMID: 29742410 DOI: 10.1016/j.bpj.2018.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022] Open
Abstract
Molecular motors are thought to generate force and directional motion via nonequilibrium switching between energy surfaces. Because all enzymes can undergo such switching, we hypothesized that the ability to generate rotary motion and torque is not unique to highly adapted biological motor proteins but is instead a common feature of enzymes. We used molecular dynamics simulations to compute energy surfaces for hundreds of torsions in three enzymes-adenosine kinase, protein kinase A, and HIV-1 protease-and used these energy surfaces within a kinetic model that accounts for intersurface switching and intrasurface probability flows. When substrate is out of equilibrium with product, we find computed torsion rotation rates up ∼140 cycles s-1, with stall torques up to ∼2 kcal mol-1 cycle-1, and power outputs up to ∼50 kcal mol-1 s-1. We argue that these enzymes are instances of a general phenomenon of directional probability flows on asymmetric energy surfaces for systems out of equilibrium. Thus, we conjecture that cyclic probability fluxes, corresponding to rotations of torsions and higher-order collective variables, exist in any chiral molecule driven between states in a nonequilibrium manner; we call this the "Asymmetry-Directionality" conjecture. This is expected to apply as well to synthetic chiral molecules switched in a nonequilibrium manner between energy surfaces by light, redox chemistry, or catalysis.
Collapse
Affiliation(s)
- David R Slochower
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California.
| |
Collapse
|
24
|
The Inescapable Effects of Ribosomes on In-Cell NMR Spectroscopy and the Implications for Regulation of Biological Activity. Int J Mol Sci 2019; 20:ijms20061297. [PMID: 30875837 PMCID: PMC6471074 DOI: 10.3390/ijms20061297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022] Open
Abstract
The effects of RNA on in-cell NMR spectroscopy and ribosomes on the kinetic activity of several metabolic enzymes are reviewed. Quinary interactions between labelled target proteins and RNA broaden in-cell NMR spectra yielding apparent megadalton molecular weights in-cell. The in-cell spectra can be resolved by using cross relaxation-induced polarization transfer (CRINEPT), heteronuclear multiple quantum coherence (HMQC), transverse relaxation-optimized, NMR spectroscopy (TROSY). The effect is reproduced in vitro by using reconstituted total cellular RNA and purified ribosome preparations. Furthermore, ribosomal binding antibiotics alter protein quinary structure through protein-ribosome and protein-mRNA-ribosome interactions. The quinary interactions of Adenylate kinase, Thymidylate synthase and Dihydrofolate reductase alter kinetic properties of the enzymes. The results demonstrate that ribosomes may specifically contribute to the regulation of biological activity.
Collapse
|
25
|
Saavedra HG, Wrabl JO, Anderson JA, Li J, Hilser VJ. Dynamic allostery can drive cold adaptation in enzymes. Nature 2018; 558:324-328. [PMID: 29875414 PMCID: PMC6033628 DOI: 10.1038/s41586-018-0183-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/01/2018] [Indexed: 11/19/2022]
Abstract
Adaptation of organisms to environmental niches is a hallmark of evolution. One prevalent example is that of thermal adaptation, wherein two descendants evolve at different temperature extremes1,2. Underlying the physiological differences between such organisms are changes in enzymes catalyzing essential reactions3, with orthologues from each organism undergoing adaptive mutations that preserve similar catalytic rates at their respective physiological temperatures 4,5. The sequence changes responsible for these adaptive differences, however, are often at surface exposed sites distant from the substrate binding site, leaving the active site of the enzyme structurally unperturbed6,7. How such changes are allosterically propagated to the active site, to modulate activity, is not known. Here we show that entropy-tuning changes can be engineered into distal sites of Escherichia coli adenylate kinase (AK) to quantitatively assess the role of dynamics in determining affinity, turnover, and the role in driving adaptation. The results not only reveal a dynamics-based allosteric tuning mechanism, but also uncover a spatial separation of the control of key enzymatic parameters. Fluctuations in one mobile domain (i.e. the LID) control substrate affinity, while dynamic attenuation in the other (i.e. the AMPbd) affects rate-limiting conformational changes governing enzyme turnover. Dynamics-based regulation may thus represent an elegant, widespread, and previously unrealized evolutionary adaptation mechanism that fine-tunes biological function without altering the ground state structure. Furthermore, because rigid-body conformational changes in both domains were thought to be rate limiting for turnover8,9, these adaptation studies reveal a new paradigm for understanding the relationship between dynamics and turnover in AK.
Collapse
Affiliation(s)
- Harry G Saavedra
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - James O Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jing Li
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA. .,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Zheng Y, Cui Q. Multiple Pathways and Time Scales for Conformational Transitions in apo-Adenylate Kinase. J Chem Theory Comput 2018; 14:1716-1726. [PMID: 29378407 DOI: 10.1021/acs.jctc.7b01064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The open/close transition in adenylate kinase (AK) is regarded as a representative example for large-scale conformational transition in proteins, yet its mechanism remains unclear despite numerous experimental and computational studies. Using extensive (∼50 μs) explicit solvent atomistic simulations and Markov state analysis, we shed new lights on the mechanism of this transition in the apo form of AK. The closed basin of apo AK features an open NMP domain while the LID domain closes and rotates toward it. Therefore, although the computed structural properties of the closed ensemble are consistent with previously reported FRET and PRE measurements, our simulations suggest that NMP closure is likely to follow AMP binding, in contrast to the previous interpretation of FRET and PRE data that the apo state was able to sample the fully closed conformation for "ligand selection". The closed state ensemble is found to be kinetically heterogeneous; multiple pathways and time scales are associated with the open/close transition, providing new clues to the disparate time scales observed in different experiments. Besides interdomain interactions, a novel mutual information analysis identifies specific intradomain interactions that correlate strongly to transition kinetics, supporting observations from previous chimera experiments. While our results underscore the role of internal domain properties in determining the kinetics of open/close transition in apo AK, no evidence is observed for any significant degree of local unfolding during the transition. These observations about AK have general implications to our view of conformational states, transition pathways, and time scales of conformational changes in proteins. The key features and time scales of observed transition pathways are robust and similar from simulations using two popular fixed charge force fields.
Collapse
Affiliation(s)
- Yuqing Zheng
- Graduate Program in Biophysics and Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Qiang Cui
- Graduate Program in Biophysics and Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
27
|
Mehaffey MR, Cammarata MB, Brodbelt JS. Tracking the Catalytic Cycle of Adenylate Kinase by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2018; 90:839-846. [PMID: 29188992 PMCID: PMC5750083 DOI: 10.1021/acs.analchem.7b03591] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complex interplay of dynamic protein plasticity and specific side-chain interactions with substrate molecules that allows enzymes to catalyze reactions has yet to be fully unraveled. Top-down ultraviolet photodissociation (UVPD) mass spectrometry is used to track snapshots of conformational fluctuations in the phosphotransferase adenylate kinase (AK) throughout its active reaction cycle by characterization of complexes containing AK and each of four different adenosine phosphate ligands. Variations in efficiencies of UVPD backbone cleavages were consistently observed for three α-helices and the adenosine binding regions for AK complexes representing different steps of the catalytic cycle, implying that these stretches of the protein sample various structural microstates as the enzyme undergoes global open-to-closed transitions. Focusing on the conformational impact of recruiting or releasing the Mg2+ cofactor highlights two loop regions for which fragmentation increases upon UVPD, signaling an increase in loop flexibility as the metal cation disrupts the loop interactions with the substrate ligands. Additionally, the observation of holo ions and variations in UVPD backbone cleavage efficiency at R138 implicate this conserved active site residue in stabilizing the donor phosphoryl group during catalysis. This study showcases the utility of UVPD-MS to provide insight into conformational fluctuations of single residues for active enzymes.
Collapse
Affiliation(s)
- M. Rachel Mehaffey
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | | | | |
Collapse
|
28
|
Rogne P, Wolf-Watz M. Urea-Dependent Adenylate Kinase Activation following Redistribution of Structural States. Biophys J 2017; 111:1385-1395. [PMID: 27705762 DOI: 10.1016/j.bpj.2016.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/29/2022] Open
Abstract
Proteins are often functionally dependent on conformational changes that allow them to sample structural states that are sparsely populated in the absence of a substrate or binding partner. The distribution of such structural microstates is governed by their relative stability, and the kinetics of their interconversion is governed by the magnitude of associated activation barriers. Here, we have explored the interplay among structure, stability, and function of a selected enzyme, adenylate kinase (Adk), by monitoring changes in its enzymatic activity in response to additions of urea. For this purpose we used a 31P NMR assay that was found useful for heterogeneous sample compositions such as presence of urea. It was found that Adk is activated at low urea concentrations whereas higher urea concentrations unfolds and thereby deactivates the enzyme. From a quantitative analysis of chemical shifts, it was found that urea redistributes preexisting structural microstates, stabilizing a substrate-bound open state at the expense of a substrate-bound closed state. Adk is rate-limited by slow opening of substrate binding domains and the urea-dependent redistribution of structural states is consistent with a model where the increased activity results from an increased rate-constant for domain opening. In addition, we also detected a strong correlation between the catalytic free energy and free energy of substrate (ATP) binding, which is also consistent with the catalytic model for Adk. From a general perspective, it appears that urea can be used to modulate conformational equilibria of folded proteins toward more expanded states for cases where a sizeable difference in solvent-accessible surface area exists between the states involved. This effect complements the action of osmolytes, such as trimethylamine N-oxide, that favor more compact protein states.
Collapse
Affiliation(s)
- Per Rogne
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
29
|
Halder R, Manna RN, Chakraborty S, Jana B. Modulation of the Conformational Dynamics of Apo-Adenylate Kinase through a π–Cation Interaction. J Phys Chem B 2017; 121:5699-5708. [DOI: 10.1021/acs.jpcb.7b01736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ritaban Halder
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rabindra Nath Manna
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
30
|
Structural basis for ligand binding to an enzyme by a conformational selection pathway. Proc Natl Acad Sci U S A 2017; 114:6298-6303. [PMID: 28559350 DOI: 10.1073/pnas.1700919114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proteins can bind target molecules through either induced fit or conformational selection pathways. In the conformational selection model, a protein samples a scarcely populated high-energy state that resembles a target-bound conformation. In enzymatic catalysis, such high-energy states have been identified as crucial entities for activity and the dynamic interconversion between ground states and high-energy states can constitute the rate-limiting step for catalytic turnover. The transient nature of these states has precluded direct observation of their properties. Here, we present a molecular description of a high-energy enzyme state in a conformational selection pathway by an experimental strategy centered on NMR spectroscopy, protein engineering, and X-ray crystallography. Through the introduction of a disulfide bond, we succeeded in arresting the enzyme adenylate kinase in a closed high-energy conformation that is on-pathway for catalysis. A 1.9-Å X-ray structure of the arrested enzyme in complex with a transition state analog shows that catalytic sidechains are properly aligned for catalysis. We discovered that the structural sampling of the substrate free enzyme corresponds to the complete amplitude that is associated with formation of the closed and catalytically active state. In addition, we found that the trapped high-energy state displayed improved ligand binding affinity, compared with the wild-type enzyme, demonstrating that substrate binding to the high-energy state is not occluded by steric hindrance. Finally, we show that quenching of fast time scale motions observed upon ligand binding to adenylate kinase is dominated by enzyme-substrate interactions and not by intramolecular interactions resulting from the conformational change.
Collapse
|
31
|
Kumar R, Yadav P, Pal S, Kumar KR, Sridhar B, Tewari AK. Conformational Studies of Triazole Based Flexible Molecules: A Comparative Analysis of Crystal Structure and Optimized Structure for DNA Binding Ability. ChemistrySelect 2017. [DOI: 10.1002/slct.201700240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ranjeet Kumar
- Department of Chemistry (Centre of Advanced Studies); Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Pratima Yadav
- Department of Chemistry (Centre of Advanced Studies); Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Shiv Pal
- Indian Institute of Science Education and Research, Pune; Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Krishnan R. Kumar
- Laboratory of X-ray Crystallography; Indian Institute of Chemical Technology; Hyderabad 500 607 India
| | - Balasubramanian Sridhar
- Laboratory of X-ray Crystallography; Indian Institute of Chemical Technology; Hyderabad 500 607 India
| | - Ashish K. Tewari
- Department of Chemistry (Centre of Advanced Studies); Institute of Science; Banaras Hindu University; Varanasi 221005 India
| |
Collapse
|
32
|
Ozgur B, Ozdemir ES, Gursoy A, Keskin O. Relation between Protein Intrinsic Normal Mode Weights and Pre-Existing Conformer Populations. J Phys Chem B 2017; 121:3686-3700. [DOI: 10.1021/acs.jpcb.6b10401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beytullah Ozgur
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - E. Sila Ozdemir
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
33
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
34
|
Tükenmez H, Magnussen HM, Kovermann M, Byström A, Wolf-Watz M. Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis. PLoS One 2016; 11:e0163115. [PMID: 27642758 PMCID: PMC5028032 DOI: 10.1371/journal.pone.0163115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/03/2016] [Indexed: 01/08/2023] Open
Abstract
Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies.
Collapse
Affiliation(s)
- Hasan Tükenmez
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | | | | | - Anders Byström
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- * E-mail: (MWW); (AB)
| | - Magnus Wolf-Watz
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
- * E-mail: (MWW); (AB)
| |
Collapse
|
35
|
Li D, Liu MS, Ji B. Mapping the Dynamics Landscape of Conformational Transitions in Enzyme: The Adenylate Kinase Case. Biophys J 2016; 109:647-60. [PMID: 26244746 DOI: 10.1016/j.bpj.2015.06.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/19/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
Conformational transition describes the essential dynamics and mechanism of enzymes in pursuing their various functions. The fundamental and practical challenge to researchers is to quantitatively describe the roles of large-scale dynamic transitions for regulating the catalytic processes. In this study, we tackled this challenge by exploring the pathways and free energy landscape of conformational changes in adenylate kinase (AdK), a key ubiquitous enzyme for cellular energy homeostasis. Using explicit long-timescale (up to microseconds) molecular dynamics and bias-exchange metadynamics simulations, we determined at the atomistic level the intermediate conformational states and mapped the transition pathways of AdK in the presence and absence of ligands. There is clearly chronological operation of the functional domains of AdK. Specifically in the ligand-free AdK, there is no significant energy barrier in the free energy landscape separating the open and closed states. Instead there are multiple intermediate conformational states, which facilitate the rapid transitions of AdK. In the ligand-bound AdK, the closed conformation is energetically most favored with a large energy barrier to open it up, and the conformational population prefers to shift to the closed form coupled with transitions. The results suggest a perspective for a hybrid of conformational selection and induced fit operations of ligand binding to AdK. These observations, depicted in the most comprehensive and quantitative way to date, to our knowledge, emphasize the underlying intrinsic dynamics of AdK and reveal the sophisticated conformational transitions of AdK in fulfilling its enzymatic functions. The developed methodology can also apply to other proteins and biomolecular systems.
Collapse
Affiliation(s)
- Dechang Li
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China.
| | - Ming S Liu
- CSIRO - Digital Productivity Flagship, Clayton South, Victoria, Australia; Monash Institute of Medical Research, Clayton, Victoria, Australia.
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
36
|
Michielssens S, de Groot BL, Grubmüller H. Binding affinities controlled by shifting conformational equilibria: opportunities and limitations. Biophys J 2016; 108:2585-2590. [PMID: 25992736 PMCID: PMC4457000 DOI: 10.1016/j.bpj.2015.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/02/2023] Open
Abstract
Conformational selection is an established mechanism in molecular recognition. Despite its power to explain binding events, it is hardly used in protein/ligand design to modulate molecular recognition. Here, we explore the opportunities and limitations of design by conformational selection. Using appropriate thermodynamic cycles, our approach predicts the effects of a conformational shift on binding affinity and also allows one to disentangle the effects induced by a conformational shift from other effects influencing the binding affinity. The method is assessed and applied to explain the contribution of a conformational shift on the binding affinity of six ubiquitin mutants showing different conformational shifts in six different complexes.
Collapse
Affiliation(s)
- Servaas Michielssens
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
37
|
Vögeli B, Bibow S, Chi CN. Enzyme Selectivity Fine-Tuned through Dynamic Control of a Loop. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beat Vögeli
- Laboratory of Physical Chemistry; ETH Zurich, ETH-Hönggerberg; CH-8093 Zürich Switzerland
| | - Stefan Bibow
- Laboratory of Physical Chemistry; ETH Zurich, ETH-Hönggerberg; CH-8093 Zürich Switzerland
| | - Celestine N. Chi
- Laboratory of Physical Chemistry; ETH Zurich, ETH-Hönggerberg; CH-8093 Zürich Switzerland
| |
Collapse
|
38
|
Vögeli B, Bibow S, Chi CN. Enzyme Selectivity Fine-Tuned through Dynamic Control of a Loop. Angew Chem Int Ed Engl 2016; 55:3096-100. [PMID: 26822756 PMCID: PMC4760428 DOI: 10.1002/anie.201511476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 12/14/2022]
Abstract
Allostery has been revealed as an essential property of all proteins. For enzymes, shifting of the structural equilibrium distribution at one site can have substantial impacts on protein dynamics and selectivity. Promising sites of remotely shifting such a distribution by changing the dynamics would be at flexible loops because relatively large changes may be achieved with minimal modification of the protein. A ligand-selective change of binding affinity to the active site of cyclophilin is presented involving tuning of the dynamics of a highly flexible loop. Binding affinity is increased upon substitution of double Gly to Ala at the hinge regions of the loop. Quenching of the motional amplitudes of the loop slightly rearranges the active site. In particular, key residues for binding Phe60 and His126 adopt a more fixed orientation in the bound protein. Our system may serve as a model system for studying the effects of various time scales of loop motion on protein function tuned by mutations.
Collapse
Affiliation(s)
- Beat Vögeli
- Laboratory of Physical Chemistry, ETH Zurich, ETH-Hönggerberg, CH-8093, Zürich, Switzerland
| | - Stefan Bibow
- Laboratory of Physical Chemistry, ETH Zurich, ETH-Hönggerberg, CH-8093, Zürich, Switzerland
| | - Celestine N Chi
- Laboratory of Physical Chemistry, ETH Zurich, ETH-Hönggerberg, CH-8093, Zürich, Switzerland.
| |
Collapse
|
39
|
Hamdane D, Velours C, Cornu D, Nicaise M, Lombard M, Fontecave M. A chemical chaperone induces inhomogeneous conformational changes in flexible proteins. Phys Chem Chem Phys 2016; 18:20410-21. [DOI: 10.1039/c6cp03635j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Organic osmolytes are major cellular compounds that favor protein's compaction and stabilization of the native state. Here, we have examined the chaperone effect of the naturally occurring trimethylamine N-oxide (TMAO) osmolyte on a flexible protein.
Collapse
Affiliation(s)
- Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques
- CNRS-UMR 8229
- Collège De France
- 75231 Paris Cedex 05
- France
| | - Christophe Velours
- Macromolecular Interaction Platform of I2BC
- UMR 9198
- Centre de Recherche de Gif
- Centre National de la Recherche Scientifique
- 91191 Gif Sur Yvette
| | - David Cornu
- CNRS
- Centre de Recherche de Gif
- SICaPS
- F-91198 Gif-sur-Yvette Cedex
- France
| | - Magali Nicaise
- Macromolecular Interaction Platform of I2BC
- UMR 9198
- Centre de Recherche de Gif
- Centre National de la Recherche Scientifique
- 91191 Gif Sur Yvette
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques
- CNRS-UMR 8229
- Collège De France
- 75231 Paris Cedex 05
- France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques
- CNRS-UMR 8229
- Collège De France
- 75231 Paris Cedex 05
- France
| |
Collapse
|
40
|
Rogne P, Sparrman T, Anugwom I, Mikkola JP, Wolf-Watz M. Realtime (31)P NMR Investigation on the Catalytic Behavior of the Enzyme Adenylate kinase in the Matrix of a Switchable Ionic Liquid. CHEMSUSCHEM 2015; 8:3764-3768. [PMID: 26494201 DOI: 10.1002/cssc.201501104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 06/05/2023]
Abstract
The integration of highly efficient enzymatic catalysis with the solvation properties of ionic liquids for an environmentally friendly and efficient use of raw materials such as wood requires fundamental knowledge about the influence of relevant ionic liquids on enzymes. Switchable ionic liquids (SIL) are promising candidates for implementation of enzymatic treatments of raw materials. One industrially interesting SIL is constituted by monoethanol amine (MEA) and 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) formed with sulfur dioxide (SO2) as the coupling media (DBU-SO2-MEASIL). It has the ability to solubilize the matrix of lignocellulosic biomass while leaving the cellulose backbone intact. Using a novel (31)P NMR-based real-time assay we show that this SIL is compatible with enzymatic catalysis because a model enzyme, adenylate kinase, retains its activity in up to at least 25 wt % of DBU-SO2-MEASIL. Thus this SIL appears suitable for, for example, enzymatic degradation of hemicellulose.
Collapse
Affiliation(s)
- Per Rogne
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden
| | - Tobias Sparrman
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden
| | - Ikenna Anugwom
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden
| | - Jyri-Pekka Mikkola
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Åbo-Turku, 20500, Finland
| | - Magnus Wolf-Watz
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden.
| |
Collapse
|
41
|
Structural basis for catalytically restrictive dynamics of a high-energy enzyme state. Nat Commun 2015; 6:7644. [PMID: 26138143 PMCID: PMC4506515 DOI: 10.1038/ncomms8644] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/27/2015] [Indexed: 12/02/2022] Open
Abstract
An emerging paradigm in enzymology is that transient high-energy structural states play crucial roles in enzymatic reaction cycles. Generally, these high-energy or ‘invisible' states cannot be studied directly at atomic resolution using existing structural and spectroscopic techniques owing to their low populations or short residence times. Here we report the direct NMR-based detection of the molecular topology and conformational dynamics of a catalytically indispensable high-energy state of an adenylate kinase variant. On the basis of matching energy barriers for conformational dynamics and catalytic turnover, it was found that the enzyme's catalytic activity is governed by its dynamic interconversion between the high-energy state and a ground state structure that was determined by X-ray crystallography. Our results show that it is possible to rationally tune enzymes' conformational dynamics and hence their catalytic power—a key aspect in rational design of enzymes catalysing novel reactions. Adenylate kinase (AdK) plays a key role in cellular energy homeostasis by catalysing the reversible magnesium-dependent formation of ADP from AMP and ATP. Here the authors present a detailed analysis of adenylate kinase's conformational dynamics and characterize a high-energy state of AdK indispensable for catalysis.
Collapse
|
42
|
Unan H, Yildirim A, Tekpinar M. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field. J Comput Aided Mol Des 2015; 29:655-65. [DOI: 10.1007/s10822-015-9849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/22/2015] [Indexed: 11/29/2022]
|
43
|
Sikosek T, Chan HS. Biophysics of protein evolution and evolutionary protein biophysics. J R Soc Interface 2015; 11:20140419. [PMID: 25165599 DOI: 10.1098/rsif.2014.0419] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence-structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by 'hidden' conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.
Collapse
Affiliation(s)
- Tobias Sikosek
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
44
|
Majumder S, Xue J, DeMott CM, Reverdatto S, Burz DS, Shekhtman A. Probing protein quinary interactions by in-cell nuclear magnetic resonance spectroscopy. Biochemistry 2015; 54:2727-38. [PMID: 25894651 DOI: 10.1021/acs.biochem.5b00036] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Historically introduced by McConkey to explain the slow mutation rate of highly abundant proteins, weak protein (quinary) interactions are an emergent property of living cells. The protein complexes that result from quinary interactions are transient and thus difficult to study biochemically in vitro. Cross-correlated relaxation-induced polarization transfer-based in-cell nuclear magnetic resonance allows the characterization of protein quinary interactions with atomic resolution inside live prokaryotic and eukaryotic cells. We show that RNAs are an important component of protein quinary interactions. Protein quinary interactions are unique to the target protein and may affect physicochemical properties, protein activity, and interactions with drugs.
Collapse
Affiliation(s)
- Subhabrata Majumder
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jing Xue
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Christopher M DeMott
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Sergey Reverdatto
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
45
|
Buonfiglio R, Recanatini M, Masetti M. Protein Flexibility in Drug Discovery: From Theory to Computation. ChemMedChem 2015; 10:1141-8. [PMID: 25891095 DOI: 10.1002/cmdc.201500086] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 01/01/2023]
Abstract
Nowadays it is widely accepted that the mechanisms of biomolecular recognition are strongly coupled to the intrinsic dynamic of proteins. In past years, this evidence has prompted the development of theoretical models of recognition able to describe ligand binding assisted by protein conformational changes. On a different perspective, the need to take into account protein flexibility in structure-based drug discovery has stimulated the development of several and extremely diversified computational methods. Herein, on the basis of a parallel between the major recognition models and the simulation strategies used to account for protein flexibility in ligand binding, we sort out and describe the most innovative and promising implementations for structure-based drug discovery.
Collapse
Affiliation(s)
- Rosa Buonfiglio
- Computational Chemistry, Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, 43183 Mölndal (Sweden)
| | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna (Italy)
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna (Italy).
| |
Collapse
|
46
|
Giri Rao VVH, Gosavi S. In the multi-domain protein adenylate kinase, domain insertion facilitates cooperative folding while accommodating function at domain interfaces. PLoS Comput Biol 2014; 10:e1003938. [PMID: 25393408 PMCID: PMC4230728 DOI: 10.1371/journal.pcbi.1003938] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/25/2014] [Indexed: 12/30/2022] Open
Abstract
Having multiple domains in proteins can lead to partial folding and increased aggregation. Folding cooperativity, the all or nothing folding of a protein, can reduce this aggregation propensity. In agreement with bulk experiments, a coarse-grained structure-based model of the three-domain protein, E. coli Adenylate kinase (AKE), folds cooperatively. Domain interfaces have previously been implicated in the cooperative folding of multi-domain proteins. To understand their role in AKE folding, we computationally create mutants with deleted inter-domain interfaces and simulate their folding. We find that inter-domain interfaces play a minor role in the folding cooperativity of AKE. On further analysis, we find that unlike other multi-domain proteins whose folding has been studied, the domains of AKE are not singly-linked. Two of its domains have two linkers to the third one, i.e., they are inserted into the third one. We use circular permutation to modify AKE chain-connectivity and convert inserted-domains into singly-linked domains. We find that domain insertion in AKE achieves the following: (1) It facilitates folding cooperativity even when domains have different stabilities. Insertion constrains the N- and C-termini of inserted domains and stabilizes their folded states. Therefore, domains that perform conformational transitions can be smaller with fewer stabilizing interactions. (2) Inter-domain interactions are not needed to promote folding cooperativity and can be tuned for function. In AKE, these interactions help promote conformational dynamics limited catalysis. Finally, using structural bioinformatics, we suggest that domain insertion may also facilitate the cooperative folding of other multi-domain proteins. Most individual protein domains fold in an all or nothing fashion. This cooperative folding is important because it reduces the existence of partially folded proteins which can stick to each other and create disease causing aggregates. However, numerous proteins have multiple domains, independent units of folding, stability and/or function. Several such proteins also fold cooperatively. It is thought that strong interactions between individual domains allow the folding to propagate from a nucleating domain to neighbouring ones and this enables cooperative folding in multi-domain proteins. Here, we computationally study the folding of the three-domain protein AKE and find instead that the topology of the protein, wherein the two less stable domains are inserted into the more stable one, promotes folding cooperativity. When the more stable domain is folded, the ends of the inserted domains are constrained and this allows them to fold easily. In such a protein topology, strong inter-domain interactions are not needed to promote folding cooperativity. Interface amino acids which would have been involved in ensuring that the domains fit together correctly can now be tuned for binding or catalysis or conformational transitions. Thus, inserted domains may be present in multi-domain proteins to promote both function and folding.
Collapse
Affiliation(s)
- V. V. Hemanth Giri Rao
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shachi Gosavi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
47
|
Michielssens S, Peters JH, Ban D, Pratihar S, Seeliger D, Sharma M, Giller K, Sabo TM, Becker S, Lee D, Griesinger C, de Groot BL. A designed conformational shift to control protein binding specificity. Angew Chem Int Ed Engl 2014; 53:10367-71. [PMID: 25115701 PMCID: PMC4497613 DOI: 10.1002/anie.201403102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 11/08/2022]
Abstract
In a conformational selection scenario, manipulating the populations of binding-competent states should be expected to affect protein binding. We demonstrate how in silico designed point mutations within the core of ubiquitin, remote from the binding interface, change the binding specificity by shifting the conformational equilibrium of the ground-state ensemble between open and closed substates that have a similar population in the wild-type protein. Binding affinities determined by NMR titration experiments agree with the predictions, thereby showing that, indeed, a shift in the conformational equilibrium enables us to alter ubiquitin’s binding specificity and hence its function. Thus, we present a novel route towards designing specific binding by a conformational shift through exploiting the fact that conformational selection depends on the concentration of binding-competent substates.
Collapse
Affiliation(s)
- Servaas Michielssens
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen (Germany) http://www.mpibpc.mpg.de/groups/de_groot/
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Michielssens S, Peters JH, Ban D, Pratihar S, Seeliger D, Sharma M, Giller K, Sabo TM, Becker S, Lee D, Griesinger C, de Groot BL. A Designed Conformational Shift To Control Protein Binding Specificity. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Sinner C, Lutz B, John S, Reinartz I, Verma A, Schug A. Simulating Biomolecular Folding and Function by Native-Structure-Based/Go-Type Models. Isr J Chem 2014. [DOI: 10.1002/ijch.201400012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Seyler SL, Beckstein O. Sampling large conformational transitions: adenylate kinase as a testing ground. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.919497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|