1
|
Lin X, Long B, Lei H, Liu TX, Yuan Z. Environment of Solvent-Controlled Chemoselective Asymmetric Hydroperoxidation and Hydroxylation of 5-Pyrazolone Ketimines Catalyzed by Bifunctional Organocatalysts. ACS OMEGA 2025; 10:11225-11230. [PMID: 40160784 PMCID: PMC11947773 DOI: 10.1021/acsomega.4c10608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Chemoselectivity often garners significant attention in organic synthesis, serving as a primary strategy for producing a variety of functionalized products from the same substrate. The first environment of solvent-controlled chemoselective asymmetric hydroperoxidation and hydroxylation of 5-pyrazolone ketimines has been achieved, using an acid-base bifunctional chiral squaramide as the organocatalyst, affording a range of enantioenriched products of hydroperoxidation and hydroxylation with high stereoselectivities (up to 90% ee).
Collapse
Affiliation(s)
- Xiangfeng Lin
- College of
Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350108, China
| | - Bo Long
- College
of
Mechanical and Electrical Engineering, Fujian
Agriculture and Forestry University, Fuzhou 350108, China
| | - Hanhui Lei
- Department
of Mechanical and Construction Engineering, Northumbria University, Newcastle
upon Tyne NE1 8ST, United Kingdom
| | - Terence Xiaoteng Liu
- Department
of Mechanical and Construction Engineering, Northumbria University, Newcastle
upon Tyne NE1 8ST, United Kingdom
| | - Zhanhui Yuan
- College of
Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350108, China
| |
Collapse
|
2
|
Gao LN, Zheng K, Chen HY, Gao YN, Li ZZ, He C, Huang SH, Hong R, Bian M, Liu ZJ. o-Quinone methides in natural product synthesis: an update. Org Biomol Chem 2025; 23:2775-2792. [PMID: 39996397 DOI: 10.1039/d4ob01936a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
In recent years, ortho-quinone methides have emerged as indispensable reactive species for enhancing synthetic efficiency in accessing various bioactive natural products. Importantly, the emulation of nature's patterns and strategies has yielded numerous refined synthetic pathways for the construction of intricate molecules. o-Quinone methides (o-QMs) have demonstrated remarkable versatility in organic synthesis, especially in strategies guided by biomimetic logic. This review aims to delve into bio-inspired strategies employed over the past five years in the total synthesis of natural products involving ortho-quinone methides.
Collapse
Affiliation(s)
- Li-Na Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Kuan Zheng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Hui-Yu Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Yu-Ning Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Zhao-Zhao Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Chang He
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Sha-Hua Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Ran Hong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Ming Bian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| |
Collapse
|
3
|
Sharma M, Chauhan P. Asymmetric desymmetrization of 2,5-cyclohexadienones initiated by organocatalytic conjugate addition to 4-nitro-5-styrylisoxazoles. Chem Commun (Camb) 2025; 61:1455-1458. [PMID: 39716977 DOI: 10.1039/d4cc06145d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
A highly regio-, enantio- and diastereo-selective strategy involving initial enantioselective conjugate addition to 4-nitro-5-styrylisoxazoles serves as a key step for the desymmetrization of 2,5-cyclohexadienones has been disclosed. We have designed a new class of 2,5-cyclohexadienones appended with 4-nitro-5-styrylisoxazoles to undergo organocatalytic asymmetric double or triple conjugate addition in a domino sequence depending on the substrate type leading to desymmetrization of the 2,5-cyclohexadienone core. The developed protocol allows the construction of a valuable hydrophenanthrene core or a unique bridged scaffold bearing multiple chiral centers with excellent enantio- (up to >99.5 : 0.5 er) and diastereo-control for diverse substrates.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India.
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India.
| |
Collapse
|
4
|
Sennari G, Sato S, Kimishima A, Hirose T, Sunazuka T. Palladium-Catalyzed Reductive and Redox-Neutral Cyclization Approach to the Southern Core of Avermectins. Org Lett 2025; 27:328-333. [PMID: 39692625 DOI: 10.1021/acs.orglett.4c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The avermectins make up a biologically relevant class of complex natural products that continue to inspire the development of new strategies in chemical synthesis. Herein, we disclose a concise synthesis of the southern core of avermectin aglycon. The key hydrobenzofuran was forged by either reductive cyclization or cycloisomerization, both using a cationic palladium precatalyst. This hydropalladation strategy generated the hydrofuran ring under mild conditions, enabling the rapid construction of the tetra-substituted carbon stereocenter.
Collapse
Affiliation(s)
- Goh Sennari
- Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shogo Sato
- Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Aoi Kimishima
- Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
5
|
Do DT. One-Pot Synthesis of Chiral Spiro-Imidazolidinone Cyclohexenones. J Org Chem 2025; 90:529-536. [PMID: 39710980 DOI: 10.1021/acs.joc.4c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We have developed a simple and straightforward synthesis of chiral spiro-imidazolidinone cyclohexenones, featuring six contiguous stereocenters, from feedstock chemicals such as aminophenols, α,β-unsaturated aldehydes, and α-amino acids. Remarkably, this one-pot multicomponent reaction exhibits exceptional diastereoselectivity (>20:1 dr) and relies solely on an amino acid precursor as the chiral source, avoiding the use of transition metals or additional organocatalysts. This reaction is efficient and scalable, enabling synthesis on a gram-scale.
Collapse
Affiliation(s)
- Dung Tien Do
- Department of Chemistry, The Citadel, 171 Moultrie Street, Charleston, South Carolina 29409, United States
| |
Collapse
|
6
|
Tiwari MK, Goslinski T. Searching for the Holy Grail - Highly Potent Bridged Endoperoxides for Targeted Cancer Therapy. Bioorg Chem 2024; 153:107893. [PMID: 39454496 DOI: 10.1016/j.bioorg.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The International Agency for Research on Cancer (IARC) recently estimated the global cancer burden in 2050. The statistics are startling, with a 77% hike and 35 million new cancer cases per year. The present discoveries have recommended plant-derived bridged endoperoxides or artemisinin-based semisynthetic analogues as safe, well-tolerated and powerful substitutes that could be effectively utilized as a warhead to fight against global enemies like cancer. In addition, artemisinin-based drug repositioning crucially can reduce overriding drug development expenditures and establish accessibility of approved drugs with low risk to patients. Hence, the present review article provides a comprehensive account of the recent chemical and synthetic advancement of diverse cytotoxic artemisinin derivatives such as C(10)-O, C, N, S linked artemisinin analogues, artemisinin-derived metal complexes, artemisinin-derived hybrids/conjugates with other pharmaceutically active substances, and artemisinin-derived dimers, trimers and tetramers perceived during the last three decades (1997-2024). Moreover, the current preclinical and clinical anticancer application prospects of artemisinin derivatives with other defined drugs and their utilization in combination therapy and also nanoformulation approaches for targeted drug delivery have been discussed.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland.
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland
| |
Collapse
|
7
|
Handjaya JP, Patankar N, Reid JP. The Diversity and Evolution of Chiral Brønsted Acid Structures. Chemistry 2024; 30:e202400921. [PMID: 38706381 DOI: 10.1002/chem.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
The chemical space of chiral Brønsted acid catalysts is defined by quantity and complexity, reflecting the diverse synthetic challenges confronted and the innovative molecular designs introduced. Here, we detail how this successful outcome is a powerful demonstration of the benefits of utilizing both local structure searches and a comprehensive understanding of catalyst performance for effective and efficient exploration of Brønsted acid properties. In this concept article we provide an evolutionary overview of this field by summarizing the approaches to catalyst optimization, the resulting structures, and functions.
Collapse
Affiliation(s)
- Jasemine P Handjaya
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Niraja Patankar
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
8
|
Kamilya C, Gorad SS, Ghorai P. An Organocatalytic Highly Enantioselective Stereospecific Synthesis of 1,1-Disubstituted-1,3-Dihydroisobenzofurans. Chemistry 2024; 30:e202303980. [PMID: 38391113 DOI: 10.1002/chem.202303980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Herein, we disclosed the asymmetric construction of an oxa-quaternary stereocenter via an intramolecular oxa-Michael (IOM) reaction in β-substituted ortho-hydroxymethyl chalcone by the formation of 1,1-disubstituted-1,3-dihydroisobenzofuran using cinchona alkaloid-based chiral amino-squaramide catalyst. Both the (E- and Z)-β-substituted ortho-hydroxymethyl chalcone provide (S)- and (R)-enantiomers of the 1,1-disubstituted-1,3-dihydroisobenzofuran with excellent stereospecificity. In general, excellent yields (up to 95 %) and enantioselectivity (up to 98 % ee) were obtained. Furthermore, the resulting 1,1-disubstituted isobenzofuran or phthalan was converted to corresponding chiral 3,3-disubstituted phthalides without losing the enantioselectivity. This methodology provides the core moiety of the (S)-citalopram drug.
Collapse
Affiliation(s)
- Chandan Kamilya
- Department of Chemistry Indian Institute of Science Education and Research (IISER)Bhopal, Bhopal By-pass Road, Bhauri
| | - Sachin S Gorad
- Department of Chemistry Indian Institute of Science Education and Research (IISER)Bhopal, Bhopal By-pass Road, Bhauri
| | - Prasanta Ghorai
- Department of Chemistry Indian Institute of Science Education and Research (IISER)Bhopal, Bhopal By-pass Road, Bhauri
| |
Collapse
|
9
|
Shukla M, Rathi K, Hassam M, Yadav DK, Karnatak M, Rawat V, Verma VP. An overview on the antimalarial activity of 1,2,4-trioxanes, 1,2,4-trioxolanes and 1,2,4,5-tetraoxanes. Med Res Rev 2024; 44:66-137. [PMID: 37222435 DOI: 10.1002/med.21979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
The demand for novel, fast-acting, and effective antimalarial medications is increasing exponentially. Multidrug resistant forms of malarial parasites, which are rapidly spreading, pose a serious threat to global health. Drug resistance has been addressed using a variety of strategies, such as targeted therapies, the hybrid drug idea, the development of advanced analogues of pre-existing drugs, and the hybrid model of resistant strains control mechanisms. Additionally, the demand for discovering new potent drugs grows due to the prolonged life cycle of conventional therapy brought on by the emergence of resistant strains and ongoing changes in existing therapies. The 1,2,4-trioxane ring system in artemisinin (ART) is the most significant endoperoxide structural scaffold and is thought to be the key pharmacophoric moiety required for the pharmacodynamic potential of endoperoxide-based antimalarials. Several derivatives of artemisinin have also been found as potential treatments for multidrug-resistant strain in this area. Many 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes derivatives have been synthesised as a result, and many of these have shown promise antimalarial activity both in vivo and in vitro against Plasmodium parasites. As a consequence, efforts to develop a functionally straight-forward, less expensive, and vastly more effective synthetic pathway to trioxanes continue. This study aims to give a thorough examination of the biological properties and mode of action of endoperoxide compounds derived from 1,2,4-trioxane-based functional scaffolds. The present system of 1,2,4-trioxane, 1,2,4-trioxolane, and 1,2,4,5-tetraoxane compounds and dimers with potentially antimalarial activity will be highlighted in this systematic review (January 1963-December 2022).
Collapse
Affiliation(s)
- Monika Shukla
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Komal Rathi
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Mohammad Hassam
- Department of Chemistry, Chemveda Life Sciences Pvt Ltd, Hyderabad, Telangana, India
| | - Dinesh Kumar Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Manvika Karnatak
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Varun Rawat
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| |
Collapse
|
10
|
Kotwal N, Tamanna, Changotra A, Chauhan P. Organocatalytic Asymmetric Synthesis of Carbo- and Oxacyclic Seven-Membered Bridged Biaryls via Nucleophile-Dependent Switchable Domino Processes. Org Lett 2023; 25:7523-7528. [PMID: 37802100 DOI: 10.1021/acs.orglett.3c02832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
We disclose herein a highly diastereo- and enantioselective divergent synthesis of seven-membered biaryl-bridged carbo- and oxacyclic frameworks by utilizing the catalytic ability of bifunctional hydrogen-bonding squaramide organocatalysts. Starting with the same biaryl substrate bearing two distinct acceptor sites and by choosing soft or hard nucleophiles, we readily accessed the dibenzocycloheptanes or 5,7-dihydrodibenzo[c,e]oxepines bearing multiple elements of chirality via a domino 1,4/1,2-addition or 1,2/oxa-Michael addition sequence, respectively.
Collapse
Affiliation(s)
- Namrata Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, Jammu and Kashmir, India
| | - Tamanna
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, Jammu and Kashmir, India
| | - Avtar Changotra
- Department of Chemistry, Cluster University of Jammu, Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, Jammu and Kashmir, India
| |
Collapse
|
11
|
Tan TD, Qian GL, Su HZ, Zhu LJ, Ye LW, Zhou B, Hong X, Qian PC. Brønsted acid-catalyzed asymmetric dearomatization for synthesis of chiral fused polycyclic enone and indoline scaffolds. SCIENCE ADVANCES 2023; 9:eadg4648. [PMID: 36921050 PMCID: PMC10017053 DOI: 10.1126/sciadv.adg4648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In the past two decades, substantial advances have been made on the asymmetric alkyne functionalization by the activation of inert alkynes. However, these asymmetric transformations have so far been mostly limited to transition metal catalysis, and chiral Brønsted acid-catalyzed examples are rarely explored. Here, we report a chiral Brønsted acid-catalyzed dearomatization reaction of phenol- and indole-tethered homopropargyl amines, allowing the practical and atom-economical synthesis of a diverse array of valuable fused polycyclic enones and indolines bearing a chiral quaternary carbon stereocenter and two contiguous stereogenic centers in moderate to good yields with excellent diastereoselectivities and generally excellent enantioselectivities (up to >99% enantiomeric excess). This protocol demonstrates Brønsted acid-catalyzed asymmetric dearomatizations via vinylidene-quinone methides.
Collapse
Affiliation(s)
- Tong-De Tan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gan-Lu Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hao-Ze Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lu-Jing Zhu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Peng-Cheng Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials and Industry Technology, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
12
|
Thopate SB, Phanindrudu M, Jadhav SB, Chegondi R. Site-selective and stereoselective transformations on p-quinols & p-quinamines. Chem Commun (Camb) 2023; 59:3795-3811. [PMID: 36880888 DOI: 10.1039/d3cc00509g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The intermolecular transformation of simple substrates into highly functionalized scaffolds with multiple stereogenic centers is an attractive strategy in modern organic synthesis. Prochiral 2,5-cyclohexadienones, being stable and easily accessible, are privileged key building blocks for the synthesis of complex molecules and bioactive natural products. In particular, p-quinols and p-quinamines are important subclasses of cyclohexadienones, having both nucleophilic and electrophilic sites, and can undergo various intermolecular cascade annulations via formal cycloadditions and other transformations. This article highlights the recent developments of intermolecular transformations on p-quinols and p-quinamines along with plausible reaction mechanisms. We hope that this review will inspire the readers to explore the new potential applications of these unique prochiral molecules.
Collapse
Affiliation(s)
- Satish B Thopate
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. /.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mandalaparthi Phanindrudu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. /
| | - Sandip B Jadhav
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. /.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. /.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Carson MC, Orzolek BJ, Kozlowski MC. Photocatalytic Synthesis of para-Peroxyquinols: Total Synthesis of (±)-Stemenone B and (±)-Parvistilbine B. Org Lett 2022; 24:7250-7254. [PMID: 36094351 PMCID: PMC9673030 DOI: 10.1021/acs.orglett.2c02640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A photocatalytic method to selectively synthesize 4-hydroperoxy-2,5-cyclohexadienones from para-alkyl phenols is disclosed. This photosensitized singlet oxygen approach functionalized a variety of electronically diverse para-alkyl phenols in 27-99% isolated yields. Utilizing this dearomative oxidation, (±)-stemenone B and (±)-parvistilbine B were synthesized in 9 and 11 steps, respectively, from commercially available starting materials. Additional experiments revealed the dramatic influence of base and solvent on the selectivity while providing insight into the mechanism of this transformation.
Collapse
Affiliation(s)
- Matthew C. Carson
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Brandon J. Orzolek
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
14
|
Asano K, Matsubara S. Organocatalytic Access to Tetrasubstituted Chiral Carbons Integrating Functional Groups. CHEM REC 2022:e202200200. [PMID: 36163471 DOI: 10.1002/tcr.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Three-dimensional organic structures containing sp3 carbons bearing four non-hydrogen substituents can provide drug-like molecules. Although such complex structures are challenging targets in synthetic organic chemistry, efficient synthetic approaches will open a new chemical space for pharmaceutical candidates. This review provides an account of our recent achievements in developing organocatalytic approaches to attractive molecular platforms based on optically active sp3 carbons integrating four different functional groups. These methodologies include asymmetric cycloetherification and cyanation of multifunctional ketones, both of which take advantage of the mild characteristics of organocatalytic activation. Enzyme-like but non-enzymatic organocatalytic systems can be used to precisely manufacture molecules containing complex chiral structures without substrate specificity problems. In addition, these catalytic systems control not only stereoselectivity but also site-selectivity and do not induce side reactions even from substrates with rich functionality.
Collapse
Affiliation(s)
- Keisuke Asano
- Institute for Catalysis, Hokkaido University Sapporo, Hokkaido, 001-0021, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| |
Collapse
|
15
|
Coghi P, Yaremenko I, Prommana P, Wu JN, Zhang RL, Ng JPL, Belyakova YY, Law BYK, Radulov PS, Uthaipibull C, Wong VKW, Terent'ev AO. Antimalarial and anticancer activity evaluation of bridged ozonides, aminoperoxides and tetraoxanes. ChemMedChem 2022; 17:e202200328. [PMID: 36045616 DOI: 10.1002/cmdc.202200328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/30/2022] [Indexed: 11/05/2022]
Abstract
Bridged aminoperoxides, for the first time, were investigated for the in vitro antimalarial activity against the chloroquine-resistant Plasmodium falciparum strain K1 and for their cytotoxic activities against immortalized human normal liver (LO2) and lung (BEAS-2B) cell lines as well as human liver (HepG2) and lung (A549) cancer cell lines. Aminoperoxides exhibit good cytotoxicity against lung A549 cancer cells line. Synthetic ozonides were shown to have high activity against the chloroquine-resistant P. falciparum . A cyclic voltammetry study of peroxides was performed, and most of the compounds did not show a direct correlation in oxidative capacity-activity. Peroxides were analyzed for ROS production to understand their mechanism of action. However, none of the compounds has an impact on ROS generation, suggesting that ozonides induce apoptosis in HepG2 cells through ROS - independent dysfunction pathway.
Collapse
Affiliation(s)
- Paolo Coghi
- Macau University of Science and Technology, State Key Laboratory of Quality Research in Chinese Medicines, Avenida wai long, N/A, macau, MACAU
| | - Ivan Yaremenko
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Department of Chemistry, RUSSIAN FEDERATION
| | - Parichat Prommana
- Biotec: National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), THAILAND
| | - Jia Ning Wu
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Rui Long Zhang
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Jerome P L Ng
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Yulia Yu Belyakova
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, RUSSIAN FEDERATION
| | - Betty Yuen Kwan Law
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Peter S Radulov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, RUSSIAN FEDERATION
| | - Chairat Uthaipibull
- Biotec: National Center for Genetic Engineering and Biotechnology, ), National Science and Technology Development Agency (NSTDA), THAILAND
| | - Vincent K W Wong
- Macau University of Science and Technology, SKL, avenida wai long, n/a, Macau, MACAU
| | - Alexander O Terent'ev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, RUSSIAN FEDERATION
| |
Collapse
|
16
|
Mori T, Abe I. Structural basis for endoperoxide-forming oxygenases. Beilstein J Org Chem 2022; 18:707-721. [PMID: 35821691 PMCID: PMC9235837 DOI: 10.3762/bjoc.18.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Endoperoxide natural products are widely distributed in nature and exhibit various biological activities. Due to their chemical features, endoperoxide and endoperoxide-derived secondary metabolites have attracted keen attention in the field of natural products and organic synthesis. In this review, we summarize the structural analyses, mechanistic investigations, and proposed reaction mechanisms of endoperoxide-forming oxygenases, including cyclooxygenase, fumitremorgin B endoperoxidase (FtmOx1), and the asnovolin A endoperoxygenase NvfI.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Sandvoß A, Maag H, Daniliuc CG, Schollmeyer D, Wahl JM. Dynamic kinetic resolution of transient hemiketals: a strategy for the desymmetrisation of prochiral oxetanols. Chem Sci 2022; 13:6297-6302. [PMID: 35733901 PMCID: PMC9159106 DOI: 10.1039/d2sc01547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Identification of an electron poor trifluoroacetophenone allows the formation of uniquely stable hemiketals from prochiral oxetanols. When exposed to a cobalt(ii) catalyst, efficient ring-opening to densely functionalized dioxolanes is observed. Mechanistic studies suggest an unprecedented redox process between the cobalt(ii) catalyst and the hemiketal that initiates the oxetane-opening. Based on this observation, a dynamic kinetic resolution of the transient hemiketals is explored that uses a Katsuki-type ligand for stereoinduction (up to 99 : 1 dr and 96 : 4 er) and allows a variety of 1,3-dioxolanes to be accessed (20 examples up to 98% yield). Desymmetrization of prochiral oxetanols via an electron-deficient hemiketal intermediate is achieved. Key to this process is the catalyst's chiral recognition of one of the two hemiketal enantiomers enabling an efficient dynamic kinetic resolution.![]()
Collapse
Affiliation(s)
- Alexander Sandvoß
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraße 36 48149 Münster Germany.,Department Chemie, Johannes Gutenberg-Universität Duesbergweg 10-14 55128 Mainz Germany
| | - Henning Maag
- Department Chemie, Johannes Gutenberg-Universität Duesbergweg 10-14 55128 Mainz Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraße 36 48149 Münster Germany
| | - Dieter Schollmeyer
- Department Chemie, Johannes Gutenberg-Universität Duesbergweg 10-14 55128 Mainz Germany
| | - Johannes M Wahl
- Department Chemie, Johannes Gutenberg-Universität Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
18
|
Singh P, Peddinti RK. In situ generated superacid BF3–H2O catalyzed alkylation of p-quinols with diaryl carbinols leading to triarylmethanes. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Convergent total synthesis of (+)-calcipotriol: A scalable, modular approach to vitamin D analogs. Proc Natl Acad Sci U S A 2022; 119:e2200814119. [PMID: 35476519 DOI: 10.1073/pnas.2200814119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A convergent approach for the total synthesis of calcipotriol (brand name: Dovonex), a proven vitamin D analog used for the treatment of psoriasis, and medicinally relevant synthetic analogs is described. A complete approach, not wedded to semisynthesis, toward both the A-ring and CD-ring is reported. From a retrosynthetic standpoint, hidden symmetry within the decorated A-ring is disclosed, which allowed for scalable quantities of this advanced intermediate. In addition, a radical retrosynthetic approach is described, which highlights an electrochemical reductive coupling as well as an intramolecular hydrogen atom transfer Giese addition to establish the 6,5-transcarbon skeleton found in the vitamin D family. Finally, a late-stage decarboxylative cross-coupling approach allowed for the facile preparation of various C20-arylated derivatives that show promising biological activity in an initial bioassay.
Collapse
|
20
|
Tamanna, Hussain Y, Sharma D, Chauhan P. Asymmetric Synthesis of Cyclohexenone-Fused Isochromans via Quinidine-Catalyzed Domino Peroxyhemiacetalization/Oxa-Michael Addition/Desymmetrization Sequence. J Org Chem 2022; 87:6397-6402. [PMID: 35438500 DOI: 10.1021/acs.joc.2c00215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A highly enantio- and diastereoselective synthesis of highly functionalized isochromans was achieved through an organocatalyzed domino reaction. Quinidine as the catalyst initiates a peroxyhemiacetalization/oxa-Michael/desymmetrization domino sequence between various 2,5-cyclohexadienone-tethered aryl aldehydes with hydroperoxides to generate the single diastereomers of isochromans appended with a cyclohexenone ring bearing three vicinal stereocenters in good yields and high enantioselectivities under ambient reaction conditions.
Collapse
Affiliation(s)
- Tamanna
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Deepak Sharma
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India
| |
Collapse
|
21
|
Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Korlyukov AA, Alabugin IV, Terent Ev AO. Inverse α-Effect as the Ariadne's Thread on the Way to Tricyclic Aminoperoxides: Avoiding Thermodynamic Traps in the Labyrinth of Possibilities. J Am Chem Soc 2022; 144:7264-7282. [PMID: 35418230 DOI: 10.1021/jacs.2c00406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stable tricyclic aminoperoxides can be selectively assembled via a catalyst-free three-component condensation of β,δ'-triketones, H2O2, and an NH-group source such as aqueous ammonia or ammonium salts. This procedure is scalable and can produce gram quantities of tricyclic heterocycles, containing peroxide, nitrogen, and oxygen cycles in one molecule. Amazingly, such complex tricyclic molecules are selectively formed despite the multitude of alternative reaction routes, via equilibration of peroxide, hemiaminal, monoperoxyacetal, and peroxyhemiaminal functionalities! The reaction is initiated by the "stereoelectronic frustration" of H2O2 and combines elements of thermodynamic and kinetic control with a variety of mono-, bi-, and tricyclic structures evolving under the conditions of thermodynamic control until they reach a kinetic wall created by the inverse α-effect, that is, the stereoelectronic penalty for the formation of peroxycarbenium ions and related transition states. Under these conditions, the reaction stops before reaching the most thermodynamically stable products at a stage where three different heterocycles are assembled and fused at the acyclic precursor frame.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow 119991, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| | - Alexander O Terent Ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| |
Collapse
|
22
|
Ng JPL, Tiwari MK, Nasim AA, Zhang RL, Qu Y, Sharma R, Law BYK, Yadav DK, Chaudhary S, Coghi P, Wong VKW. Biological Evaluation in Resistant Cancer Cells and Study of Mechanism of Action of Arylvinyl-1,2,4-Trioxanes. Pharmaceuticals (Basel) 2022; 15:ph15030360. [PMID: 35337157 PMCID: PMC8955836 DOI: 10.3390/ph15030360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
1,2,4-trioxane is a pharmacophore, which possesses a wide spectrum of biological activities, including anticancer effects. In this study, the cytotoxic effect and anticancer mechanism of action of a set of 10 selected peroxides were investigated on five phenotypically different cancer cell lines (A549, A2780, HCT8, MCF7, and SGC7901) and their corresponding drug-resistant cancer cell lines. Among all peroxides, only 7 and 8 showed a better P-glycoprotein (P-gp) inhibitory effect at a concentration of 100 nM. These in vitro results were further validated by in silico docking and molecular dynamic (MD) studies, where compounds 7 and 8 exhibited docking scores of −7.089 and −8.196 kcal/mol, respectively, and remained generally stable in 100 ns during MD simulation. Further experiments revealed that peroxides 7 and 8 showed no significant effect on ROS accumulations and caspase-3 activity in A549 cells. Peroxides 7 and 8 were also found to decrease cell membrane potential. In addition, peroxides 7 and 8 were demonstrated to oxidize a flavin cofactor, possibly elucidating its mechanism of action. In conclusion, apoptosis induced by 1,2,4-trioxane was shown to undergo via a ROS- and caspase-3-independent pathway with hyperpolarization of cell membrane potential.
Collapse
Affiliation(s)
- Jerome P. L. Ng
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
| | - Mohit K. Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India; (M.K.T.); (R.S.)
| | - Ali Adnan Nasim
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
| | - Rui Long Zhang
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
| | - Yuanqing Qu
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
| | - Richa Sharma
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India; (M.K.T.); (R.S.)
| | - Betty Yuen Kwan Law
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
| | - Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon City 21924, Korea
- Correspondence: (D.K.Y.); (S.C.); (P.C.); (V.K.W.W.)
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India; (M.K.T.); (R.S.)
- Laboratory of Organic and Medicinal Chemistry (OMC Lab), National Institute of Pharmaceutical Education and Research (NIPER-R) Raebareli, Lucknow 226002, India
- Correspondence: (D.K.Y.); (S.C.); (P.C.); (V.K.W.W.)
| | - Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (D.K.Y.); (S.C.); (P.C.); (V.K.W.W.)
| | - Vincent Kam Wai Wong
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (A.A.N.); (R.L.Z.); (Y.Q.); (B.Y.K.L.)
- Correspondence: (D.K.Y.); (S.C.); (P.C.); (V.K.W.W.)
| |
Collapse
|
23
|
Development of Biodegradable Delivery Systems Containing Novel 1,2,4-Trioxolane Based on Bacterial Polyhydroxyalkanoates. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/6353909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, delivery systems in the form of microparticles and films containing 1,2,4-trioxolane (ozonide, OZ) based on polyhydroxyalkanoates (PHAs) were developed. Main systems’ characteristics were investigated: the particle yield, average diameter, zeta potential, surface morphology, loading capacity, and drug release profile of microparticles, as well as surface morphology and release profiles of OZ-containing films. PHA-based OZ-loaded microparticles have been found to have satisfactory size, zeta potential, and ozonide loading-release behavior. It was noted that OZ content influenced the surface morphology of obtained systems.
Collapse
|
24
|
Wicks C, Hudlicky T, Rinner U. Morphine alkaloids: History, biology, and synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:145-342. [PMID: 34565506 DOI: 10.1016/bs.alkal.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This chapter provides a short overview of the history of morphine since it's isolation by Sertürner in 1805. The biosynthesis of the title alkaloid as well as all total and formal syntheses of morphine and codeine published after 1996 are discussed in detail. The last section of this chapter provides a detailed overview of medicinally relevant derivatives of the title alkaloid.
Collapse
Affiliation(s)
- Christopher Wicks
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Tomas Hudlicky
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Uwe Rinner
- IMC Fachhochschule Krems/IMC University of Applied Sciences Krems, Krems, Austria.
| |
Collapse
|
25
|
Tiwari MK, Coghi P, Agrawal P, Yadav DK, Yang LJ, Congling Q, Sahal D, Wai Wong VK, Chaudhary S. Novel halogenated arylvinyl-1,2,4 trioxanes as potent antiplasmodial as well as anticancer agents: Synthesis, bioevaluation, structure-activity relationship and in-silico studies. Eur J Med Chem 2021; 224:113685. [PMID: 34303874 DOI: 10.1016/j.ejmech.2021.113685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Herein, we have synthesized a series of lipophilic, halogenated-arylvinyl-1,2,4-trioxanes 8a-g (28 compounds) and assessed for their in vitro anti-plasmodial activity in Plasmodium falciparum culture using SYBRgreen-I fluorescence assay against chloroquine-resistant Pf INDO and artemisinin-resistant Pf Cam 3.1R539T (MRA-1240) strains. Alongside, the cell cytotoxic potential of 8a-g has also been determined against the HEK293 cell line in vitro. Out of twenty-eight halogenated-arylvinyl-1,2,4-trioxanes; ten analogues (8a2, 8a4, 8b2, 8b4, 8d4, 8e1, 8e2, 8e4,8f2, and 8g4) have shown potent in vitro antiplasmodial activity with IC50 < 27 nM (IC50 range = 4.48-26.58 nM). Also, the selectivity index (SI) for these ten analogues were found in the range of 72.00-3972.50 which indicates their selective potential towards Plasmodium cells. Results of the cell cycle stage specificity with two of the most potent compounds 8a4 {(IC50 = 4.48 nM; SI = 3972.50) more potent than chloroquine (IC50 = 546 nM; SI = 36.64) and artesunate (IC50 = 6.6 nM; SI = 4333.33)} and 8e2 (IC50 = 9.69 nM; SI = 1348) against Pf INDO indicated all three stages to be the target of the action of 8e2 while only rings and trophozoites appeared to be targeted by 8a4. Ring stage survival assay against artemisinin-resistant Pf Cam 3.1R539T indicated that 8a4 may be well suited to replace artemisinin from current ACTs which are experiencing in vivo delayed parasite clearance. With intraperitoneal (i.p.) and oral (p.o.) route at the dose of 50 mg/kg/day × 4 days; 8a4 has also shown 100% suppression of parasitemia in P. berghei ANKA infected Balb C mice. Further, the in vitro anticancer activity of 8a-g performed against human lung (A549) and liver (HepG2) cancer cell lines as also against immortalized normal lung (BEAS-2B) and liver (LO2) cell lines has revealed that most of the derivatives are endowed also with promising anticancer activity (IC50 = 0.69-15 μM; SI = 1.02-20.61) in comparison with standard drugs such as chloroquine (IC50 = 100 μM; SI = 0.03), artemisinin (IC50 = 100 μM), and artesunic acid (IC50 = 9.85 μM; SI = 0.76), respectively. All the derivatives have shown moderate anticancer activity against liver (HepG2) cancer cell lines. Arylvinyl-1,2,4-trioxanes 8f2 (IC50 = 0.69 μM; SI = 16.66), the most active compound of the series, has shown ∼145 fold more cytotoxic potential with higher selectivity in comparison to reference drugs chloroquine (IC50 = 100 μM; SI = 0.03) and artemisinin (IC50 = 100 μM), respectively against the lung (A549) cancer cell line. Finally, the in-silico docking studies of the potent halogenated 1,2,4-trioxanes along with reference drug molecules against epidermal growth factor receptor (EGFR; PDB ID: 1M17) have demonstrated the strong virtual interaction.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur, 302017, India
| | - Paolo Coghi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida wai long, Taipa, Macau, China
| | - Prakhar Agrawal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067, New Delhi, India
| | - Dharmendra K Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon city, 406-799, South Korea
| | - Li Jun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiu Congling
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067, New Delhi, India.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur, 302017, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, U.P, 226 002, India.
| |
Collapse
|
26
|
Wu L, Abreu BL, Blake AJ, Taylor LJ, Lewis W, Argent SP, Poliakoff M, Boufroura H, George MW. Multigram Synthesis of Trioxanes Enabled by a Supercritical CO2 Integrated Flow Process. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingqiao Wu
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Bruna L. Abreu
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Alexander J. Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Laurence J. Taylor
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephen P. Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Martyn Poliakoff
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hamza Boufroura
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Michael W. George
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
27
|
Escolano M, Gaviña D, Torres J, Díaz‐Oltra S, Pozo C. Organocatalytic Enantioselective Intramolecular (Hetero)Michael Additions in Desymmetrization Processes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry University of Valencia Avda Vicente Andrés Estellés s/n 46100- Burjassot-Valencia Spain
| | - Daniel Gaviña
- Department of Organic Chemistry University of Valencia Avda Vicente Andrés Estellés s/n 46100- Burjassot-Valencia Spain
| | - Javier Torres
- Department of Organic Chemistry University of Valencia Avda Vicente Andrés Estellés s/n 46100- Burjassot-Valencia Spain
| | - Santiago Díaz‐Oltra
- Department of Organic Chemistry University of Valencia Avda Vicente Andrés Estellés s/n 46100- Burjassot-Valencia Spain
| | - Carlos Pozo
- Department of Organic Chemistry University of Valencia Avda Vicente Andrés Estellés s/n 46100- Burjassot-Valencia Spain
| |
Collapse
|
28
|
Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Korlyukov AA, Alabugin IV, Terent'ev AO. Marriage of Peroxides and Nitrogen Heterocycles: Selective Three-Component Assembly, Peroxide-Preserving Rearrangement, and Stereoelectronic Source of Unusual Stability of Bridged Azaozonides. J Am Chem Soc 2021; 143:6634-6648. [PMID: 33877842 DOI: 10.1021/jacs.1c02249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stable bridged azaozonides can be selectively assembled via a catalyst-free three-component condensation of 1,5-diketones, hydrogen peroxide, and an NH-group source such as aqueous ammonia or ammonium salts. This procedure is scalable and can produce gram quantities of bicyclic stereochemically rich heterocycles. The new azaozonides are thermally stable and can be stored at room temperature for several months without decomposition and for at least 1 year at -10 °C. The chemical stability of azaozonides was explored for their subsequent selective transformations including the first example of an aminoperoxide rearrangement that preserves the peroxide group. The amino group in aminoperoxides has remarkably low nucleophilicity and does not participate in the usual amine alkylation and acylation reactions. These observations and the 15 pKa units decrease in basicity in comparison with a typical dialkyl amine are attributed to the strong hyperconjugative nN→σ*C-O interaction with the two antiperiplanar C-O bonds. Due to the weakness of the complementary nO→σ*C-N donation from the peroxide oxygens (a consequence of "inverse α-effect"), this interaction depletes electron density from the NH moiety, protects it from oxidation, and makes it similar in properties to an amide.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, 119991 Moscow, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| |
Collapse
|
29
|
Lin X, Wang L, Han Z, Chen Z. Chiral Spirocyclic Phosphoric Acids and Their Growing Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Lei Wang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Zhao Han
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Zhouli Chen
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
30
|
Asano K. Multipoint Recognition of Molecular Conformations with Organocatalysts for Asymmetric Synthetic Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
31
|
Lv XJ, Ming YC, Wu HC, Liu YK. Brønsted acid-catalyzed dynamic kinetic resolution of in situ formed acyclic N,O-hemiaminals: cascade synthesis of chiral cyclic N,O-aminals. Org Chem Front 2021. [DOI: 10.1039/d1qo01135a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A H2O controlled dynamic kinetic resolution was involved in a Brønsted acid-catalyzed acyclic N,O-hemiaminal formation/oxa-Michael reaction cascade, leading to highly enantioenriched cis-2,6-disubstituted tetrahydropyrans bearing an exo amide group.
Collapse
Affiliation(s)
- Xue-Jiao Lv
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yong-Chao Ming
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hui-Chun Wu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
32
|
Varlet T, Masson G. Enamides and dienamides in phosphoric acid-catalysed enantioselective cycloadditions for the synthesis of chiral amines. Chem Commun (Camb) 2021; 57:4089-4105. [DOI: 10.1039/d1cc00590a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This feature article describes how enamides and dienamides can participate in chiral phosphoric acid catalyzed enantioselective cycloadditions to prepare a wide range of cyclic amines.
Collapse
Affiliation(s)
- Thomas Varlet
- Université Paris-Saclay
- Institut de Chimie des Substances Naturelles
- ICSN-CNRS UPR 2301
- 91198 Gif-sur-Yvette
- France
| | - Géraldine Masson
- Université Paris-Saclay
- Institut de Chimie des Substances Naturelles
- ICSN-CNRS UPR 2301
- 91198 Gif-sur-Yvette
- France
| |
Collapse
|
33
|
Li D, Zhang M, Yang Y, Peng T, Yang D, Gao W, Wang R. Desymmetrization Process by Mg(II)-Catalyzed Intramolecular Vinylogous Michael Reaction. Org Lett 2020; 22:9229-9233. [DOI: 10.1021/acs.orglett.0c03417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Minmin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Yuling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Wei Gao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
34
|
Chandra G, Patel S. Molecular Complexity from Aromatics: Recent Advances in the Chemistry of
para
Quinol and Masked
para
‐Quinone Monoketal. ChemistrySelect 2020. [DOI: 10.1002/slct.202003802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Girish Chandra
- Department of Chemistry School of Physical and Chemical Sciences Central University of South Bihar SH-7, Gaya-Panchanpur Road Gaya Bihar India 824236
| | - Samridhi Patel
- Department of Chemistry School of Physical and Chemical Sciences Central University of South Bihar SH-7, Gaya-Panchanpur Road Gaya Bihar India 824236
| |
Collapse
|
35
|
Kraszewski K, Tomczyk I, Drabinska A, Bienkowski K, Solarska R, Kalek M. Mechanism of Iodine(III)-Promoted Oxidative Dearomatizing Hydroxylation of Phenols: Evidence for a Radical-Chain Pathway. Chemistry 2020; 26:11584-11592. [PMID: 32608529 DOI: 10.1002/chem.202002026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/26/2020] [Indexed: 11/09/2022]
Abstract
The oxidative dearomatization of phenols with the addition of nucleophiles to the aromatic ring induced by hypervalent iodine(III) reagents and catalysts has emerged as a highly useful synthetic approach. However, experimental mechanistic studies of this important process have been extremely scarce. In this report, we describe systematic investigations of the dearomatizing hydroxylation of phenols using an array of experimental techniques. Kinetics, EPR spectroscopy, and reactions with radical probes demonstrate that the transformation proceeds by a radical-chain mechanism, with a phenoxyl radical being the key chain-carrying intermediate. Moreover, UV and NMR spectroscopy, high-resolution mass spectrometry, and cyclic voltammetry show that before reacting with the phenoxyl radical, the water molecule becomes activated by the interaction with the iodine(III) center, causing the Umpolung of this formally nucleophilic substrate. The radical-chain mechanism allows the rationalization of all existing observations regarding the iodine(III)-promoted oxidative dearomatization of phenols.
Collapse
Affiliation(s)
- Karol Kraszewski
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, L. Pasteura 1, 02-093, Warsaw, Poland
| | - Ireneusz Tomczyk
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, L. Pasteura 1, 02-093, Warsaw, Poland
| | - Aneta Drabinska
- Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093, Warsaw, Poland
| | - Krzysztof Bienkowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| | - Renata Solarska
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| | - Marcin Kalek
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| |
Collapse
|
36
|
Zdvizhkov AT, Radulov PS, Novikov RA, Tafeenko VA, Chernyshev VV, Ilovaisky AI, Terent’ev AO, Nikishin GI. Convenient synthesis of furo[2,3-c][1,2]dioxoles from 1-aryl-2-allylalkane-1,3-diones. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Yaremenko IA, Radulov PS, Medvedev MG, Krivoshchapov NV, Belyakova YY, Korlyukov AA, Ilovaisky AI, Terent Ev AO, Alabugin IV. How to Build Rigid Oxygen-Rich Tricyclic Heterocycles from Triketones and Hydrogen Peroxide: Control of Dynamic Covalent Chemistry with Inverse α-Effect. J Am Chem Soc 2020; 142:14588-14607. [PMID: 32787239 DOI: 10.1021/jacs.0c06294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe an efficient one-pot procedure that "folds" acyclic triketones into structurally complex, pharmaceutically relevant tricyclic systems that combine high oxygen content with unusual stability. In particular, β,γ'-triketones are converted into three-dimensional polycyclic peroxides in the presence of H2O2 under acid catalysis. These transformations are fueled by stereoelectronic frustration of H2O2, the parent peroxide, where the lone pairs of oxygen are not involved in strongly stabilizing orbital interactions. Computational analysis reveals how this frustration is relieved in the tricyclic peroxide products, where strongly stabilizing anomeric nO→σC-O* interactions are activated. The calculated potential energy surfaces for these transformations combine labile, dynamically formed cationic species with deeply stabilized intermediate structures that correspond to the introduction of one, two, or three peroxide moieties. Paradoxically, as the thermodynamic stability of the peroxide products increases along this reaction cascade, the kinetic barriers for their formation increase as well. This feature of the reaction potential energy surface, which allows separation of mono- and bis-peroxide tricyclic products, also explains why formation of the most stable tris-peroxide is the least kinetically viable and is not observed experimentally. Such unique behavior can be explained through the "inverse α-effect", a new stereoelectronic phenomenon with many conceptual implications for the development of organic functional group chemistry.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow 119991, Russia
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st, Moscow 119991, Russian Federation
| | - Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Alexander O Terent Ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
38
|
Tiwari MK, Coghi P, Agrawal P, Shyamlal BRK, Jun Yang L, Yadav L, Peng Y, Sharma R, Yadav DK, Sahal D, Kam Wai Wong V, Chaudhary S. Design, Synthesis, Structure‐Activity Relationship and Docking Studies of Novel Functionalized Arylvinyl‐1,2,4‐Trioxanes as Potent Antiplasmodial as well as Anticancer Agents. ChemMedChem 2020; 15:1216-1228. [DOI: 10.1002/cmdc.202000045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Mohit K. Tiwari
- Laboratory of Organic and Medicinal ChemistryDepartment of ChemistryMalaviya National Institute of Technology Jawaharlal Nehru Marg Jaipur 302017 India
| | - Paolo Coghi
- School of PharmacyMacau University of Science and Technology Avenida wai long Taipa Macau China
| | - Prakhar Agrawal
- Malaria Drug Discovery LaboratoryInternational Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg 110 067 New Delhi India
| | - Bharti Rajesh K. Shyamlal
- Laboratory of Organic and Medicinal ChemistryDepartment of ChemistryMalaviya National Institute of Technology Jawaharlal Nehru Marg Jaipur 302017 India
| | - Li Jun Yang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa Macau China
| | - Lalit Yadav
- Laboratory of Organic and Medicinal ChemistryDepartment of ChemistryMalaviya National Institute of Technology Jawaharlal Nehru Marg Jaipur 302017 India
| | - Yuzhong Peng
- School of PharmacyMacau University of Science and Technology Avenida wai long Taipa Macau China
| | - Richa Sharma
- Laboratory of Organic and Medicinal ChemistryDepartment of ChemistryMalaviya National Institute of Technology Jawaharlal Nehru Marg Jaipur 302017 India
| | - Dharmendra K. Yadav
- College of PharmacyGachon University of Medicine and Science Hambakmoeiro 191, Yeonsu-gu Incheon city 406-799 South Korea
| | - Dinkar Sahal
- Malaria Drug Discovery LaboratoryInternational Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg 110 067 New Delhi India
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa Macau China
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal ChemistryDepartment of ChemistryMalaviya National Institute of Technology Jawaharlal Nehru Marg Jaipur 302017 India
| |
Collapse
|
39
|
Yaremenko IA, Radulov PS, Belyakova YY, Demina AA, Fomenkov DI, Barsukov DV, Subbotina IR, Fleury F, Terent'ev AO. Catalyst Development for the Synthesis of Ozonides and Tetraoxanes Under Heterogeneous Conditions: Disclosure of an Unprecedented Class of Fungicides for Agricultural Application. Chemistry 2020; 26:4734-4751. [PMID: 31774931 DOI: 10.1002/chem.201904555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Indexed: 01/31/2023]
Abstract
The catalyst H3+x PMo12-x +6 Mox +5 O40 supported on SiO2 was developed for peroxidation of 1,3- and 1,5-diketones with hydrogen peroxide with the formation of bridged 1,2,4,5-tetraoxanes and bridged 1,2,4-trioxolanes (ozonides) with high yield based on isolated products (up to 86 and 90 %, respectively) under heterogeneous conditions. Synthesis of peroxides under heterogeneous conditions is a rare process and represents a challenge for this field of chemistry, because peroxides tend to decompose on the surface of a catalyst . A new class of antifungal agents for crop protection, that is, cyclic peroxides: bridged 1,2,4,5-tetraoxanes and bridged ozonides, was discovered. Some ozonides and tetraoxanes exhibit a very high antifungal activity and are superior to commercial fungicides, such as Triadimefon and Kresoxim-methyl. It is important to note that none of the fungicides used in agricultural chemistry contains a peroxide fragment.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| | - Peter S Radulov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| | - Yulia Y Belyakova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Arina A Demina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow, 119991, Russia
| | - Dmitriy I Fomenkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia
| | - Denis V Barsukov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Irina R Subbotina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Fabrice Fleury
- Mechanism and regulation of DNA repair team, UFIP CNRS UMR 6286 Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Alexander O Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| |
Collapse
|
40
|
Odagi M, Okuda K, Ishizuka H, Adachi K, Nagasawa K. Synthesis of Spiroguanidine Derivatives by Dearomative Oxidative Cyclization using Hypervalent Iodine Reagent. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Minami Odagi
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Kazuma Okuda
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Hayate Ishizuka
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Kanna Adachi
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| |
Collapse
|
41
|
Huang B, He Y, Levin MD, Coelho JAS, Bergman RG, Toste FD. Enantioselective Kinetic Resolution/Desymmetrization of Para-Quinols: A Case Study in Boronic-Acid-Directed Phosphoric Acid Catalysis. Adv Synth Catal 2020; 362:295-301. [PMID: 34093103 DOI: 10.1002/adsc.201900816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A chiral phosphoric acid-catalyzed kinetic resolution and desymmetrization of para-quinols operating via oxa-Michael addition was developed and subsequently subjected to mechanistic study. Good to excellent s-factors/enantioselectivities were obtained over a broad range of substrates. Kinetic studies were performed, and DFT studies favor a hydrogen bonding activation mode. The mechanistic studies provide insights to previously reported chiral anion phase transfer reactions involving chiral phosphate catalysts in combination with boronic acids.
Collapse
Affiliation(s)
- Banruo Huang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| | - Ying He
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| | - Mark D Levin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| | - Jaime A S Coelho
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA).,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| |
Collapse
|
42
|
Al-Tel TH, Srinivasulu V, Ramanathan M, Soares NC, Sebastian A, Bolognesi ML, Abu-Yousef IA, Majdalawieh A. Stereocontrolled transformations of cyclohexadienone derivatives to access stereochemically rich and natural product-inspired architectures. Org Biomol Chem 2020; 18:8526-8571. [PMID: 33043327 DOI: 10.1039/d0ob01550d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The last two decades or so have witnessed an upsurge in defining the art of designing complex natural products and nature-inspired molecules. Throughout these decades, fundamental insights into stereocontrolled, step-economic and atom-economical synthesis principles were achieved by the numerous synthetic accomplishments particularly in diversity-oriented synthesis (DOS). This has empowered the visualization of the third dimension in synthetic design and thus has resulted in a dramatic increase with today's diversity-oriented synthesis (DOS) at the forefront enabling access to diverse scaffolds with a high degree of stereochemical and skeletal complexity. To this end, a starting material-based approach is one of the powerful tools utilized in DOS that allows rapid access to molecular architectures with a high sp3 content. Skeletal and stereochemical diversity is often paramount for the selective modulation of the biological function of a complementary protein in the biological space. In this context, stereocontrolled transformation of cyclohexadienone scaffolds has positioned itself as a powerful platform for the rapid generation of stereochemically enriched and natural product-inspired compound collections. In this review, we cover multidirectional synthetic strategies that utilized cyclohexadienone derivatives as pluripotent building blocks en route for the construction of novel chemical space.
Collapse
Affiliation(s)
- Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Mani Ramanathan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Anusha Sebastian
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Maria L Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - Università di Bologna, Via Belmeloro, 6, 40126 Bologna, Italy
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Amin Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
43
|
Zhang Y, Zhang Y, Ramström O. Dynamic Covalent Kinetic Resolution. CATALYSIS REVIEWS, SCIENCE AND ENGINEERING 2019; 62:66-95. [PMID: 33716355 PMCID: PMC7953846 DOI: 10.1080/01614940.2019.1664031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Implemented with the highly efficient concept of Dynamic Kinetic Resolution (DKR), dynamic covalent chemistry can be a useful strategy for the synthesis of enantioenriched compounds. This gives rise to dynamic covalent kinetic resolution (DCKR), a subset of DKR that over the last decades has emerged as increasingly fruitful, with many applications in asymmetric synthesis and catalysis. All DKR protocols are composed of two important parts: substrate racemization and asymmetric transformation, which can lead to yields of >50% with good enantiomeric excesses (ee) of the products. In DCKR systems, by utilizing reversible covalent reactions as the racemization strategy, the substrate enantiomers can be easily interconverted without the presence of any racemase or transition metal catalyst. Enzymes or other chiral catalysts can then be adopted for the resolution step, leading to products with high enantiopurities. This tutorial review focuses on the development of DCKR systems, based on different reversible reactions, and their applications in asymmetric synthesis.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yang Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., MA, 01854 Lowell, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
44
|
Radulov PS, Belyakova YY, Demina AA, Nikishin GI, Yaremenko IA, Terent’ev AO. Selective synthesis of cyclic triperoxides from 1,1′-dihydroperoxydi(cycloalkyl)peroxides and acetals using SnCl4. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2555-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Matsumoto A, Asano K, Matsubara S. Asymmetric
syn
‐1,3‐Dioxane Construction via Kinetic Resolution of Secondary Alcohols Using Chiral Phosphoric Acid Catalysts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Akira Matsumoto
- Department of Material Chemistry Graduate School of EngineeringKyoto University Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Keisuke Asano
- Department of Material Chemistry Graduate School of EngineeringKyoto University Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Seijiro Matsubara
- Department of Material Chemistry Graduate School of EngineeringKyoto University Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| |
Collapse
|
46
|
Riveira MJ, Martiren NL, Mischne MP. Domino Self-Sensitized Photooxygenation of Conjugated Dienones for the Synthesis of 1,2,4-Trioxanes. J Org Chem 2019; 84:3671-3677. [PMID: 30807156 DOI: 10.1021/acs.joc.8b03279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photochemical behavior of several dienones was studied under aerobic conditions. 2-Allylidene-1,3-cycloalkanediones prepared via Knoevenagel-type condensation between simple readily available 1,3-dicarbonyl substrates and α,β-unsaturated aldehydes afforded 1,2,4-trioxane derivatives upon UVA irradiation in the presence of oxygen. This domino self-sensitized photooxygenation cascade of conjugated carbonyl systems proceeds stereoselectively and involves the formation of two new oxa-cycles, three new bonds (two C-O), and three stereocenters.
Collapse
Affiliation(s)
- Martín J Riveira
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario-CONICET , Suipacha 531 , S2002LRK Rosario , Argentina
| | - Nadia L Martiren
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario-CONICET , Suipacha 531 , S2002LRK Rosario , Argentina
| | - Mirta P Mischne
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario-CONICET , Suipacha 531 , S2002LRK Rosario , Argentina
| |
Collapse
|
47
|
Rahman A, Xie E, Lin X. Organocatalytic asymmetric synthesis of benzazepinoindole derivatives with trifluoromethylated quaternary stereocenters by chiral phosphoric acid catalysts. Org Biomol Chem 2019; 16:1367-1374. [PMID: 29406543 DOI: 10.1039/c8ob00055g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An enantioselective aza-Friedel-Crafts reaction of trifluoromethyl dihydrobenzoazepinoindoles with pyrroles catalyzed by a chiral spirocyclic phosphoric acid was developed. This methodology provides a facile route to CF3- and pyrrole-containing benzazepinoindoles bearing quaternary stereocenters in good yields and with moderate to excellent enantioselectivities (up to 93% ee). Indoles were also investigated as electron-rich aromatic substrates to afford the corresponding chiral heterocycles with good yields and considerable enantioselectivities. The introduction of CF3 shows a remarkable fluorine effect and increases the activation and stereoinduction.
Collapse
Affiliation(s)
- Abdul Rahman
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | |
Collapse
|
48
|
Yang WL, Sun ZT, Zhang J, Li Z, Deng WP. Enantioselective synthesis of 3-amino-hydrobenzofuran-2,5-diones via Cu(i)-catalyzed intramolecular conjugate addition of imino esters. Org Chem Front 2019. [DOI: 10.1039/c8qo01335g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper-catalyzed enantioselective intramolecular conjugate addition of imino esters for desymmetrization of cyclohexadienones was described, providing access to enantioenriched 3-amino-hydrobenzofuran-2,5-diones.
Collapse
Affiliation(s)
- Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhong-Tao Sun
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wei-Ping Deng
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
49
|
Singh K, Bera T, Jaiswal V, Biswas S, Mondal B, Das D, Saha J. Lewis Acid Catalyzed Nucleophilic Ring Opening and 1,3-Bisfunctionalization of Donor-Acceptor Cyclopropanes with Hydroperoxides: Access to Highly Functionalized Peroxy/(α-Heteroatom Substituted)Peroxy Compounds. J Org Chem 2018; 84:710-725. [PMID: 30565925 DOI: 10.1021/acs.joc.8b02561] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Lewis acid catalyzed ring opening reaction of Donor-Acceptor (D-A) cyclopropanes with alkyl hydroperoxides is reported to furnish various peroxycarbonyls and 1,3-haloperoxygenated compounds in good to excellent yields. This method adds another instance to scarcely reported noncyclilizing 1,3-bisfunctionalization of D-A cyclopropanes with two different functional groups and relies on the dual role of peroxide as nucleophile and oxidant through an orchestrated reaction sequence. The products obtained, including α-heterosubstituted peroxy compounds, are amenable to useful synthetic elaboration.
Collapse
Affiliation(s)
- Kuldeep Singh
- Division of Molecular Synthesis & Drug Discovery , Centre of Biomedical Research (CBMR) , SGPGIMS Campus. Raebareli Road , Lucknow 226014 Uttar Pradesh , India
| | - Tishyasoumya Bera
- Division of Molecular Synthesis & Drug Discovery , Centre of Biomedical Research (CBMR) , SGPGIMS Campus. Raebareli Road , Lucknow 226014 Uttar Pradesh , India
| | - Vandana Jaiswal
- Division of Molecular Synthesis & Drug Discovery , Centre of Biomedical Research (CBMR) , SGPGIMS Campus. Raebareli Road , Lucknow 226014 Uttar Pradesh , India
| | - Subrata Biswas
- Division of Molecular Synthesis & Drug Discovery , Centre of Biomedical Research (CBMR) , SGPGIMS Campus. Raebareli Road , Lucknow 226014 Uttar Pradesh , India
| | - Biplab Mondal
- Division of Molecular Synthesis & Drug Discovery , Centre of Biomedical Research (CBMR) , SGPGIMS Campus. Raebareli Road , Lucknow 226014 Uttar Pradesh , India
| | - Dinabandhu Das
- School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Jaideep Saha
- Division of Molecular Synthesis & Drug Discovery , Centre of Biomedical Research (CBMR) , SGPGIMS Campus. Raebareli Road , Lucknow 226014 Uttar Pradesh , India
| |
Collapse
|
50
|
Reddy TP, Krishna AV, Ramachary DB. Catalytic [3 + 3]-Cycloaddition for Regioselective Preparation of Tricyclic Oxadiazines. Org Lett 2018; 20:6979-6983. [DOI: 10.1021/acs.orglett.8b02719] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- T. Prabhakar Reddy
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
| | - A. Vamshi Krishna
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
| | | |
Collapse
|