1
|
Zhang Z, Wang L, Yu Q, Li J, Li P, Luan S, Shi H. Bacterial Specific Recognition of Sulfonium Poly(Amino Acid) Adsorbents for Ultrafast MRSA Capture Against Bloodstream Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501298. [PMID: 40223366 DOI: 10.1002/smll.202501298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections pose significant health risks, potentially leading to severe conditions such as bacteremia. Developing effective treatments to eliminate resistant bacteria from the bloodstream, simultaneously mitigate infection-related complications, and reduce mortality remains challenging. Herein, microspheres are synthesized with bacterial elimination and inflammation prevention by crosslinked sulfonium poly(amino acids). As-synthesized microsphere, PM1 0.6B MS, exhibits an ultrafast adsorption efficiency of 0.41 × 108 CFU mg-1 min-1 for MRSA, which positions the highest index among the reported resin and inorganic adsorptions. This bacterial-specific and efficient capture of PM1 0.6B MS is attributed to its strong interactions with teichoic acids in MRSA (Ka: 1.8 × 105 M-1) rather than acting with phospholipids of mammalian cells. Unlike the present resin-based adsorbent, for example, heparin-modified polyethylene in the only commercial Seraph® 100, PM1 0.6B MS kills adsorbed bacteria within 1 h and can be reused by simple treatment. Meanwhile, PM1 0.6B MS also shows good hemocompatibility and longer thrombin activation time to reduce the risk of thrombosis and hemolysis. In vivo experiments further confirm the abilities of PM1 0.6B MS to prevent inflammation by removing bacteria. This adsorbent is a promising candidate for early treating life-threatening bloodstream infections, potentially preventing bacteremia and subsequent organ damage.
Collapse
Affiliation(s)
- Zhenyan Zhang
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qing Yu
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Changchun, 130022, P. R. China
| | - Peng Li
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
2
|
Bellucci MC, Romani C, Sani M, Volonterio A. Dual Antibiotic Approach: Synthesis and Antibacterial Activity of Antibiotic-Antimicrobial Peptide Conjugates. Antibiotics (Basel) 2024; 13:783. [PMID: 39200083 PMCID: PMC11352213 DOI: 10.3390/antibiotics13080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
In recent years, bacterial resistance to conventional antibiotics has become a major concern in the medical field. The global misuse of antibiotics in clinics, personal use, and agriculture has accelerated this resistance, making infections increasingly difficult to treat and rendering new antibiotics ineffective more quickly. Finding new antibiotics is challenging due to the complexity of bacterial mechanisms, high costs and low financial incentives for the development of new molecular scaffolds, and stringent regulatory requirements. Additionally, innovation has slowed, with many new antibiotics being modifications of existing drugs rather than entirely new classes. Antimicrobial peptides (AMPs) are a valid alternative to small-molecule antibiotics offering several advantages, including broad-spectrum activity and a lower likelihood of inducing resistance due to their multifaceted mechanisms of action. However, AMPs face challenges such as stability issues in physiological conditions, potential toxicity to human cells, high production costs, and difficulties in large-scale manufacturing. A reliable strategy to overcome the drawbacks associated with the use of small-molecule antibiotics and AMPs is combination therapy, namely the simultaneous co-administration of two or more antibiotics or the synthesis of covalently linked conjugates. This review aims to provide a comprehensive overview of the literature on the development of antibiotic-AMP conjugates, with a particular emphasis on critically analyzing the design and synthetic strategies employed in their creation. In addition to the synthesis, the review will also explore the reported antibacterial activity of these conjugates and, where available, examine any data concerning their cytotoxicity.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20131 Milano, Italy;
| | - Carola Romani
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimica “G. Natta” (SCITEC), Via Mario Bianco 9, 20131 Milano, Italy;
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| |
Collapse
|
3
|
Bolosov IA, Panteleev PV, Sychev SV, Khokhlova VA, Safronova VN, Toropygin IY, Kombarova TI, Korobova OV, Pereskokova ES, Borzilov AI, Ovchinnikova TV, Balandin SV. Design of Protegrin-1 Analogs with Improved Antibacterial Selectivity. Pharmaceutics 2023; 15:2047. [PMID: 37631261 PMCID: PMC10458893 DOI: 10.3390/pharmaceutics15082047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Protegrin-1 (PG-1) is a cationic β-hairpin pore-forming antimicrobial peptide having a membranolytic mechanism of action. It possesses in vitro a potent antimicrobial activity against a panel of clinically relevant MDR ESKAPE pathogens. However, its extremely high hemolytic activity and cytotoxicity toward mammalian cells prevent the further development of the protegrin-based antibiotic for systemic administration. In this study, we rationally modulated the PG-1 charge and hydrophobicity by substituting selected residues in the central β-sheet region of PG-1 to design its analogs, which retain a high antimicrobial activity but have a reduced toxicity toward mammalian cells. In this work, eight PG-1 analogs with single amino acid substitutions and five analogs with double substitutions were obtained. These analogs were produced as thioredoxin fusions in Escherichia coli. It was shown that a significant reduction in hemolytic activity without any loss of antimicrobial activity could be achieved by a single amino acid substitution, V16R in the C-terminal β-strand, which is responsible for the PG-1 oligomerization. As the result, a selective analog with a ≥30-fold improved therapeutic index was obtained. FTIR spectroscopy analysis of analog, [V16R], revealed that the peptide is unable to form oligomeric structures in a membrane-mimicking environment, in contrast to wild-type PG-1. Analog [V16R] showed a reasonable efficacy in septicemia infection mice model as a systemic antibiotic and could be considered as a promising lead for further drug design.
Collapse
Affiliation(s)
- Ilia A. Bolosov
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| | - Pavel V. Panteleev
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| | - Sergei V. Sychev
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| | - Veronika A. Khokhlova
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| | - Victoria N. Safronova
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| | - Ilia Yu. Toropygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Tatiana I. Kombarova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia
| | - Olga V. Korobova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia
| | - Eugenia S. Pereskokova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia
| | - Alexander I. Borzilov
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia
| | - Tatiana V. Ovchinnikova
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
- Department of Biotechnology, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey V. Balandin
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| |
Collapse
|
4
|
Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023; 192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
The current therapeutic antibody market in the U.S. consists of 100 antibody-based products and their market value is expected to explode beyond $300 billion by 2025. These therapies are presently limited to extracellular targets due to the innate inability of antibodies to transverse membranes. To expand the number of accessible therapeutic targets, intracellular antibody delivery is necessary. Many delivery vehicles for antibodies have been used with some promising results, such as nanoparticles and cell penetrating polymers. Despite the success of these delivery platforms using model antibody cargo, there is a surprisingly small number of studies that focus on functional antibody delivery into the cytosol that also measures a cellular response. Antibodies can be designed for essentially unlimited targets, including proteins and DNA, that will ultimately control cell function once delivered inside cells. Advancement in cellular manipulation depends on the application of intracellularly delivering functional antibodies to achieve a desired result. This review focuses on the emerging field of functional antibody delivery which enables various cellular responses and cell manipulation.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
5
|
Xian W, Hennefarth MR, Lee MW, Do T, Lee EY, Alexandrova AN, Wong GCL. Histidine-Mediated Ion Specific Effects Enable Salt Tolerance of a Pore-Forming Marine Antimicrobial Peptide. Angew Chem Int Ed Engl 2022; 61:e202108501. [PMID: 35352449 PMCID: PMC9189074 DOI: 10.1002/anie.202108501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptides (AMPs) preferentially permeate prokaryotic membranes via electrostatic binding and membrane remodeling. Such action is drastically suppressed by high salt due to increased electrostatic screening, thus it is puzzling how marine AMPs can possibly work. We examine as a model system, piscidin-1, a histidine-rich marine AMP, and show that ion-histidine interactions play unanticipated roles in membrane remodeling at high salt: Histidines can simultaneously hydrogen-bond to a phosphate and coordinate with an alkali metal ion to neutralize phosphate charge, thereby facilitating multidentate bonds to lipid headgroups in order to generate saddle-splay curvature, a prerequisite to pore formation. A comparison among Na+ , K+ , and Cs+ indicates that histidine-mediated salt tolerance is ion specific. We conclude that histidine plays a unique role in enabling protein/peptide-membrane interactions that occur in marine or other high-salt environment.
Collapse
Affiliation(s)
- Wujing Xian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew R Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tran Do
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Xian W, Hennefarth MR, Lee MW, Do T, Lee EY, Alexandrova AN, Wong GCL. Histidine‐Mediated Ion Specific Effects Enable Salt Tolerance of a Pore‐Forming Marine Antimicrobial Peptide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wujing Xian
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
| | - Matthew R. Hennefarth
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Michelle W. Lee
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
| | - Tran Do
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ernest Y. Lee
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
- California Nano Systems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Gerard C. L. Wong
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
- California Nano Systems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
7
|
Siegel DP. Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183815. [PMID: 34748744 DOI: 10.1016/j.bbamem.2021.183815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Some antimicrobial peptides (AMPs) and membrane fusion-catalyzing peptides (FPs) stabilize bicontinuous inverted cubic (QII) phases. Previous authors proposed a topological rationale: since AMP-induced pores, fusion intermediates, and QII phases all have negative Gaussian curvature (NGC), peptides which produce NGC in one structure also do it in another. This assumes that peptides change the curvature energy of the lipid membranes. Here I test this with a Helfrich curvature energy model. First, experimentally, I show that lipid systems often used to study peptide NGC have NGC without peptides at higher temperatures. To determine the net effect of an AMP on NGC, the equilibrium phase behavior of the host lipids must be determined. Second, the model shows that AMPs must make large changes in the curvature energy to stabilize AMP-induced pores. Peptide-induced changes in elastic constants affect pores and QII phase differently. Changes in spontaneous curvature affect them in opposite ways. The observed correlation between QII phase stabilization and AMP activity doesn't show that AMPs act by lowering pore curvature energy. A different rationale is proposed. In theory, AMPs could simultaneously stabilize QII phase and pores by drastically changing two particular elastic constants. This could be tested by measuring AMP effects on the individual constants. I propose experiments to do that. Unlike AMPs, FPs must make only small changes in the curvature energy to catalyze fusion. It they act in this way, their fusion activity should correlate with their ability to stabilize QII phases.
Collapse
Affiliation(s)
- D P Siegel
- Givaudan Inc., 1199 Edison Drive, Cincinnati, OH 45216, United States of America.
| |
Collapse
|
8
|
Nasiri F, Atanaki FF, Behrouzi S, Kavousi K, Bagheri M. CpACpP: In Silico Cell-Penetrating Anticancer Peptide Prediction Using a Novel Bioinformatics Framework. ACS OMEGA 2021; 6:19846-19859. [PMID: 34368571 PMCID: PMC8340416 DOI: 10.1021/acsomega.1c02569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 05/12/2023]
Abstract
Cell-penetrating anticancer peptides (Cp-ACPs) are considered promising candidates in solid tumor and hematologic cancer therapies. Current approaches for the design and discovery of Cp-ACPs trust the expensive high-throughput screenings that often give rise to multiple obstacles, including instrumentation adaptation and experimental handling. The application of machine learning (ML) tools developed for peptide activity prediction is importantly of growing interest. In this study, we applied the random forest (RF)-, support vector machine (SVM)-, and eXtreme gradient boosting (XGBoost)-based algorithms to predict the active Cp-ACPs using an experimentally validated data set. The model, CpACpP, was developed on the basis of two independent cell-penetrating peptide (CPP) and anticancer peptide (ACP) subpredictors. Various compositional and physiochemical-based features were combined or selected using the multilayered recursive feature elimination (RFE) method for both data sets. Our results showed that the ACP subclassifiers obtain a mean performance accuracy (ACC) of 0.98 with an area under curve (AUC) ≈ 0.98 vis-à-vis the CPP predictors displaying relevant values of ∼0.94 and ∼0.95 via the hybrid-based features and independent data sets, respectively. Also, the predicting evaluation of Cp-ACPs gave accuracies of ∼0.79 and 0.89 on a series of independent sequences by applying our CPP and ACP classifiers, respectively, which leaves the performance of our predictors better than the earlier reported ACPred, mACPpred, MLCPP, and CPPred-RF. The described consensus-based fusion method additionally reached an AUC of 0.94 for the prediction of Cp-ACP (http://cbb1.ut.ac.ir/CpACpP/Index).
Collapse
Affiliation(s)
- Farid Nasiri
- Peptide
Chemistry Laboratory, Department of Biochemistry, Institute of Biochemistry
and Biophysics (IBB), University of Tehran, Tehran 14176-14335, Iran
| | - Fereshteh Fallah Atanaki
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Saman Behrouzi
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Kaveh Kavousi
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Mojtaba Bagheri
- Peptide
Chemistry Laboratory, Department of Biochemistry, Institute of Biochemistry
and Biophysics (IBB), University of Tehran, Tehran 14176-14335, Iran
| |
Collapse
|
9
|
Hango CR, Backlund CM, Davis HC, Posey ND, Minter LM, Tew GN. Non-Covalent Carrier Hydrophobicity as a Universal Predictor of Intracellular Protein Activity. Biomacromolecules 2021; 22:2850-2863. [PMID: 34156837 DOI: 10.1021/acs.biomac.1c00242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, extensive optimization of polymeric cell-penetrating peptide (CPP) mimics (CPPMs) by our group has generated a substantial library of broadly effective carriers which circumvent the need for covalent conjugation often required by CPPs. In this study, design rules learned from CPPM development were applied to reverse-engineer the first library of simple amphiphilic block copolypeptides for non-covalent protein delivery, namely, poly(alanine-block-arginine), poly(phenylalanine-block-arginine), and poly(tryptophan-block-arginine). This new CPP library was screened for enhanced green fluorescent protein and Cre recombinase delivery alongside a library of CPPMs featuring equivalent side-chain configurations. Due to the added hydrophobicity imparted by the polymer backbone as compared to the polypeptide backbone, side-chain functionality was not a universal predictor of carrier performance. Rather, overall carrier hydrophobicity predicted the top performers for both internalization and activity of protein cargoes, regardless of backbone identity. Furthermore, comparison of protein uptake and function revealed carriers which facilitated high gene recombination despite remarkably low Cre internalization, leading us to formalize the concept of intracellular availability (IA) of the delivered cargo. IA, a measure of cargo activity per quantity of cargo internalized, provides valuable insight into the physical relationship between cellular internalization and bioavailability, which can be affected by bottlenecks such as endosomal escape and cargo release. Importantly, carriers with maximal IA existed within a narrow hydrophobicity window, more hydrophilic than those exhibiting maximal cargo uptake. Hydrophobicity may be used as a scaffold-independent predictor of protein uptake, function, and IA, enabling identification of new, effective carriers which would be overlooked by uptake-based screening methods.
Collapse
Affiliation(s)
- Christopher R Hango
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Coralie M Backlund
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hazel C Davis
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nicholas D Posey
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lisa M Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| |
Collapse
|
10
|
Almeida CV, de Oliveira CFR, Dos Santos EL, Dos Santos HF, Júnior EC, Marchetto R, da Cruz LA, Ferreira AMT, Gomes VM, Taveira GB, Costa BO, Franco OL, Cardoso MH, Macedo MLR. Differential interactions of the antimicrobial peptide, RQ18, with phospholipids and cholesterol modulate its selectivity for microorganism membranes. Biochim Biophys Acta Gen Subj 2021; 1865:129937. [PMID: 34052310 DOI: 10.1016/j.bbagen.2021.129937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are molecules with potential application for the treatment of microorganism infections. We, herein, describe the structure, activity, and mechanism of action of RQ18, an α-helical AMP that displays antimicrobial activity against Gram-positive and Gram-negative bacteria, and yeasts from the Candida genus. METHODS A physicochemical-guided design assisted by computer tools was used to obtain our lead peptide candidate, named RQ18. This peptide was assayed against Gram-positive and Gram-negative bacteria, yeasts, and mammalian cells to determine its selectivity index. The secondary structure and the mechanism of action of RQ18 were investigated using circular dichroism, large unilamellar vesicles, and molecular dynamic simulations. RESULTS RQ18 was not cytotoxic to human lung fibroblasts, peripheral blood mononuclear cells, red blood cells, or Vero cells at MIC values, exhibiting a high selectivity index. Circular dichroism analysis and molecular dynamic simulations revealed that RQ18 presents varying structural profiles in aqueous solution, TFE/water mixtures, SDS micelles, and lipid bilayers. The peptide was virtually unable to release carboxyfluorescein from large unilamellar vesicles composed of POPC/cholesterol, model that mimics the eukaryotic membrane, indicating that vesicles' net charges and the presence of cholesterol may be related with RQ18 selectivity for bacterial and fungal cell surfaces. CONCLUSIONS RQ18 was characterized as a membrane-active peptide with dual antibacterial and antifungal activities, without compromising mammalian cells viability, thus reinforcing its therapeutic application. GENERAL SIGNIFICANCE These results provide further insight into the complex process of AMPs interaction with biological membranes, in special with systems that mimic prokaryotic and eukaryotic cell surfaces.
Collapse
Affiliation(s)
- Claudiane V Almeida
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Caio F R de Oliveira
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil; Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil; Oncolytic Anticancer Drugs, Dourados, Mato Grosso do Sul, Brazil
| | - Edson L Dos Santos
- Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Helder F Dos Santos
- Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Edson C Júnior
- Instituto de Química, Departamento de Bioquímica e Química Tecnológica, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Reinaldo Marchetto
- Instituto de Química, Departamento de Bioquímica e Química Tecnológica, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Leticia A da Cruz
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Alda Maria T Ferreira
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Valdirene M Gomes
- Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gabriel B Taveira
- Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Bruna O Costa
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marlon H Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Maria Lígia R Macedo
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
11
|
Huang Y, Liu Y, Li Y, Liu Y, Zhang C, Wen H, Zhao L, Song Y, Wang L, Wang Z. Role of key amino acids in the transmembrane domain of the Newcastle disease virus fusion protein. Biosci Trends 2021; 15:16-23. [PMID: 33504738 DOI: 10.5582/bst.2020.03317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Newcastle disease (ND), caused by the Newcastle disease virus (NDV), is transmitted by poultry with severe infectivity and a high fatality rate. The fusion (F) protein on the NDV envelope facilitates the merger of the viral and host cell membranes with the help of the homologous hemagglutinin-neuraminidase protein (HN). The transmembrane (TM) domains of viral fusion proteins are typically required for fusion, but the key amino acids in NDV F TM domains have not been identified. Site-directed mutagenesis was utilized to change the conserved amino acids at 500, 501, 502, 505, 510, 513, 516, 519, and 520 to alanine. It was found that mutants L519 and V520 had an interrupted protein expression, decreased to below 10%, and mutants A500, I505, V513, and V516 had a hypoactive impact on fusion activity, decreased to 85.38%, 67.05%, 55.38% and 51.13% of wt F, respectively. The results indicated that the TM domain plays a vital part in the fusion activity of the NDV F protein.
Collapse
Affiliation(s)
- Yanan Huang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yaqing Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yanguo Li
- Department of Health Management and Services, Cangzhou Medical College, Cangzhou, Hebei, China
| | - Ying Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Chi Zhang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Hongling Wen
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Li Zhao
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yanyan Song
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Liyang Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| |
Collapse
|
12
|
Phuong PT, Oliver S, He J, Wong EHH, Mathers RT, Boyer C. Effect of Hydrophobic Groups on Antimicrobial and Hemolytic Activity: Developing a Predictive Tool for Ternary Antimicrobial Polymers. Biomacromolecules 2020; 21:5241-5255. [DOI: 10.1021/acs.biomac.0c01320] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pham Thu Phuong
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Susan Oliver
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Junchen He
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert T. Mathers
- Department of Chemistry, Penn State University, New Kensington, Pennsylvania 15068, United States
| | - Cyrille Boyer
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
13
|
Bagheri M, Nikolenko H, Arasteh S, Rezaei N, Behzadi M, Dathe M, Hancock REW. Bacterial Aggregation Triggered by Fibril Forming Tryptophan-Rich Sequences: Effects of Peptide Side Chain and Membrane Phospholipids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26852-26867. [PMID: 32422035 DOI: 10.1021/acsami.0c04336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The influence of side chain residue and phospholipid characteristics of the cytoplasmic membrane upon the fibrillation and bacterial aggregation of arginine (Arg) and tryptophan (Trp) rich antimicrobial peptides (AMPs) has not been well described to date. Here, we utilized the structural advantages of HHC-10 and 4HarHHC-10 (Har, l-homoarginine) that are highly active Trp-rich AMPs and investigated their fibril formation and activity behavior against bacteria. The peptides revealed time-dependent self-assembly of polyproline II (PPII) α-helices, but by comparison, 4HarHHC-10 tended to form higher ordered fibrils due to relatively strong cation-π stacking of Trp with Har residue. Both peptides rapidly killed S. aureus and E. coli at their MICs and caused aggregation of bacteria at higher concentrations. This bacterial aggregation was accompanied by the formation of morphologically distinct electron-dense nanostructures, likely including but not limited to peptides alone. Both HHC-10-derived peptides caused blebs and buds in the E. coli membrane that are rich in POPE phospholipid that promotes negative curvature. However, the main population of S. aureus cells retained their cocci structure upon treatment with HHC peptides even at concentration higher than the MICs. In contrast, the cell aggregation was not induced by HHC fibrils that were most likely stabilized through intra-/intermolecular cation-π stacking. It is proposed that masking of these interactions might have resulted in diminished membrane association/insertion of the HHC nanostructures. The peptides caused aggregation of POPC/POPG (1/3) and POPE/POPG (3/1) liposomes. Nonetheless, disaggregation of the former vesicles was observed at ratios of lipid to peptide of greater than 6 and 24 for HHC-10 and 4HarHHC-10, respectively. Collectively, our results revealed dose-dependent bacterial aggregation mediated by Trp-rich AMPs that was profoundly influenced by the degree of peptide's self-association and the composition and intrinsic curvature of the cytoplasmic membrane lipids.
Collapse
Affiliation(s)
- Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Heike Nikolenko
- Peptide-Lipid Interaction, Department of Chemical Biology, Leibniz Institute of Molecular Pharmacology, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Shima Arasteh
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Nakisa Rezaei
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Malihe Behzadi
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Margitta Dathe
- Peptide-Lipid Interaction, Department of Chemical Biology, Leibniz Institute of Molecular Pharmacology, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
14
|
Lee MW, de Anda J, Kroll C, Bieniossek C, Bradley K, Amrein KE, Wong GCL. How do cyclic antibiotics with activity against Gram-negative bacteria permeate membranes? A machine learning informed experimental study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183302. [PMID: 32311341 DOI: 10.1016/j.bbamem.2020.183302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022]
Abstract
All antibiotics have to engage bacterial amphiphilic barriers such as the lipopolysaccharide-rich outer membrane or the phospholipid-based inner membrane in some manner, either by disrupting them outright and/or permeating them and thereby allow the antibiotic to get into bacteria. There is a growing class of cyclic antibiotics, many of which are of bacterial origin, that exhibit activity against Gram-negative bacteria, which constitute an urgent problem in human health. We examine a diverse collection of these cyclic antibiotics, both natural and synthetic, which include bactenecin, polymyxin B, octapeptin, capreomycin, and Kirshenbaum peptoids, in order to identify what they have in common when they interact with bacterial lipid membranes. We find that they virtually all have the ability to induce negative Gaussian curvature (NGC) in bacterial membranes, the type of curvature geometrically required for permeation mechanisms such as pore formation, blebbing, and budding. This is interesting since permeation of membranes is a function usually ascribed to antimicrobial peptides (AMPs) from innate immunity. As prototypical test cases of cyclic antibiotics, we analyzed amino acid sequences of bactenecin, polymyxin B, and capreomycin using our recently developed machine-learning classifier trained on α-helical AMP sequences. Although the original classifier was not trained on cyclic antibiotics, a modified classifier approach correctly predicted that bactenecin and polymyxin B have the ability to induce NGC in membranes, while capreomycin does not. Moreover, the classifier was able to recapitulate empirical structure-activity relationships from alanine scans in polymyxin B surprisingly well. These results suggest that there exists some common ground in the sequence design of hybrid cyclic antibiotics and linear AMPs.
Collapse
Affiliation(s)
- Michelle W Lee
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Carsten Kroll
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kenneth Bradley
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kurt E Amrein
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
15
|
Unifying structural signature of eukaryotic α-helical host defense peptides. Proc Natl Acad Sci U S A 2019; 116:6944-6953. [PMID: 30877253 DOI: 10.1073/pnas.1819250116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diversity of α-helical host defense peptides (αHDPs) contributes to immunity against a broad spectrum of pathogens via multiple functions. Thus, resolving common structure-function relationships among αHDPs is inherently difficult, even for artificial-intelligence-based methods that seek multifactorial trends rather than foundational principles. Here, bioinformatic and pattern recognition methods were applied to identify a unifying signature of eukaryotic αHDPs derived from amino acid sequence, biochemical, and three-dimensional properties of known αHDPs. The signature formula contains a helical domain of 12 residues with a mean hydrophobic moment of 0.50 and favoring aliphatic over aromatic hydrophobes in 18-aa windows of peptides or proteins matching its semantic definition. The holistic α-core signature subsumes existing physicochemical properties of αHDPs, and converged strongly with predictions of an independent machine-learning-based classifier recognizing sequences inducing negative Gaussian curvature in target membranes. Queries using the α-core formula identified 93% of all annotated αHDPs in proteomic databases and retrieved all major αHDP families. Synthesis and antimicrobial assays confirmed efficacies of predicted sequences having no previously known antimicrobial activity. The unifying α-core signature establishes a foundational framework for discovering and understanding αHDPs encompassing diverse structural and mechanistic variations, and affords possibilities for deterministic design of antiinfectives.
Collapse
|
16
|
Fishman JM, Zwick DB, Kruger AG, Kiessling LL. Chemoselective, Postpolymerization Modification of Bioactive, Degradable Polymers. Biomacromolecules 2019; 20:1018-1027. [PMID: 30608163 PMCID: PMC6690479 DOI: 10.1021/acs.biomac.8b01631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Degradable polymers promote sustainability, mitigate environmental impact, and facilitate biological applications. Tailoring degradable polymers is challenging because installing functional group-rich side chains is difficult when the backbone itself is susceptible to degradation. A convenient means of side chain installation is through postpolymerization modification (PPM). In functionalizing polyoxazinones, a class of degradable polymers generated by the ring-opening metathesis polymerization (ROMP), we predictably found PPM challenging. Even the versatile azide-alkyne cycloaddition click reaction was ineffective. To solve this problem, we screened PPM reactions whose efficiencies could be assessed using photochemistry (excimer formation). The mildest, pH-neutral process was functionalization of a ketone-containing polymer to yield either oxime (acid labile)- or alkyoxylamine (stable)-substituted polymers. Using this approach, we equipped polymers with fluorophores, reporter groups, and bioactive epitopes. These modifications imbued the polymers with distinctive spectral properties and biological activities. Thus, polyoxazinones are now tunable through a modular method to diversify these macromolecules' function.
Collapse
Affiliation(s)
- Joshua M. Fishman
- Department of Chemistry, University of Wisconsin
– Madison, Madison, WI 53706
| | - Daniel B. Zwick
- Department of Biochemisry, University of
Wisconsin – Madison, Madison, WI 53706
| | - Austin G. Kruger
- Department of Chemistry, University of Wisconsin
– Madison, Madison, WI 53706
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin
– Madison, Madison, WI 53706
- Department of Biochemisry, University of
Wisconsin – Madison, Madison, WI 53706
- Department of Chemistry, Massachusetts Institute
of Techology, Cambridge, MA 02139
| |
Collapse
|
17
|
Artim CM, Brown JS, Alabi CA. Biophysical Characterization of Cationic Antibacterial Oligothioetheramides. Anal Chem 2019; 91:3118-3124. [PMID: 30675774 DOI: 10.1021/acs.analchem.8b05721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biophysical analysis into the mechanism of action of membrane-disrupting antibiotics such as antimicrobial peptides (AMPs) and AMP mimetics is necessary to improve our understanding of this promising but relatively untapped class of antibiotics. We evaluate the impact of cationic nature, specifically the presence of guanidine versus amine functional groups using sequence-defined oligothioetheramides (oligoTEAs). Relative to amines, guanidine groups demonstrated improved antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). To understand the mechanism of action, we evaluated membrane interactions by performing a propidium iodide assay and fluorescence microscopy of supported MRSA mimetic bilayers treated with oligoTEAs. Both studies demonstrated membrane disruption, while fluorescence microscopy showed the formation of lipid aggregates. We further analyzed the mechanism using surface plasmon resonance with a recently developed two-state binding model with loss. Our biophysical analysis points to the importance of lipid aggregation for antibacterial activity and suggests that guanidine groups improve antibacterial activity by increasing the extent of lipid aggregation. Altogether, these results verify and rationalize the importance of guanidines for enhanced antibacterial activity of oligoTEAs, and present biophysical phenomena for the design and analysis of additional membrane-active antibiotics.
Collapse
Affiliation(s)
- Christine M Artim
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Ithaca , New York 14853 , United States
| | - Joseph S Brown
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Ithaca , New York 14853 , United States
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Ithaca , New York 14853 , United States
| |
Collapse
|
18
|
Lee MW, Lee EY, Wong GCL. What Can Pleiotropic Proteins in Innate Immunity Teach Us about Bioconjugation and Molecular Design? Bioconjug Chem 2018; 29:2127-2139. [PMID: 29771496 DOI: 10.1021/acs.bioconjchem.8b00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A common bioengineering strategy to add function to a given molecule is by conjugation of a new moiety onto that molecule. Adding multiple functions in this way becomes increasingly challenging and leads to composite molecules with larger molecular weights. In this review, we attempt to gain a new perspective by looking at this problem in reverse, by examining nature's strategies of multiplexing different functions into the same pleiotropic molecule using emerging analysis techniques such as machine learning. We concentrate on examples from the innate immune system, which employs a finite repertoire of molecules for a broad range of tasks. An improved understanding of how diverse functions are multiplexed into a single molecule can inspire new approaches for the deterministic design of multifunctional molecules.
Collapse
|
19
|
Kim W, Hendricks GL, Tori K, Fuchs BB, Mylonakis E. Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med Chem 2018; 10:779-794. [PMID: 29569952 PMCID: PMC6077763 DOI: 10.4155/fmc-2017-0199] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic Staphylococcus aureus infections are complicated by frequent relapses not only from the development of drug resistance to conventional antibiotics, but also through the formation of persister bacterial cells. Bacterial persisters are in a transient, metabolically inactive state, making conventional antibiotics that target essential cellular growth processes ineffective, resulting in high clinical failure rates of antibiotic chemotherapy. The development of new antibiotics against persistent S. aureus is an urgent issue. Over the last decade, new strategies to identify S. aureus persister-active compounds have been proposed. This review summarizes the proposed targets, antipersister compounds and innovative methods that may augment conventional antibiotics against S. aureus persisters. The reviewed antipersister strategies can be summarized as two broad categories; directly targeting growth-independent targets and potentiating existing, ineffective antibiotics by aiding uptake or accessibility.
Collapse
Affiliation(s)
- Wooseong Kim
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Gabriel L Hendricks
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Katerina Tori
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Beth B Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
20
|
Ferguson AL. Machine learning and data science in soft materials engineering. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:043002. [PMID: 29111979 DOI: 10.1088/1361-648x/aa98bd] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
Collapse
Affiliation(s)
- Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, United States of America. Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, United States of America. Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, United States of America. Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America. Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| |
Collapse
|
21
|
Lee M, Lee EY, Lai GH, Kennedy NW, Posey AE, Xian W, Ferguson AL, Hill RB, Wong GCL. Molecular Motor Dnm1 Synergistically Induces Membrane Curvature To Facilitate Mitochondrial Fission. ACS CENTRAL SCIENCE 2017; 3:1156-1167. [PMID: 29202017 PMCID: PMC5704292 DOI: 10.1021/acscentsci.7b00338] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Indexed: 05/30/2023]
Abstract
Dnm1 and Fis1 are prototypical proteins that regulate yeast mitochondrial morphology by controlling fission, the dysregulation of which can result in developmental disorders and neurodegenerative diseases in humans. Loss of Dnm1 blocks the formation of fission complexes and leads to elongated mitochondria in the form of interconnected networks, while overproduction of Dnm1 results in excessive mitochondrial fragmentation. In the current model, Dnm1 is essentially a GTP hydrolysis-driven molecular motor that self-assembles into ring-like oligomeric structures that encircle and pinch the outer mitochondrial membrane at sites of fission. In this work, we use machine learning and synchrotron small-angle X-ray scattering (SAXS) to investigate whether the motor Dnm1 can synergistically facilitate mitochondrial fission by membrane remodeling. A support vector machine (SVM)-based classifier trained to detect sequences with membrane-restructuring activity identifies a helical Dnm1 domain capable of generating negative Gaussian curvature (NGC), the type of saddle-shaped local surface curvature found on scission necks during fission events. Furthermore, this domain is highly conserved in Dnm1 homologues with fission activity. Synchrotron SAXS measurements reveal that Dnm1 restructures membranes into phases rich in NGC, and is capable of inducing a fission neck with a diameter of 12.6 nm. Through in silico mutational analysis, we find that the helical Dnm1 domain is locally optimized for membrane curvature generation, and phylogenetic analysis suggests that dynamin superfamily proteins that are close relatives of human dynamin Dyn1 have evolved the capacity to restructure membranes via the induction of curvature mitochondrial fission. In addition, we observe that Fis1, an adaptor protein, is able to inhibit the pro-fission membrane activity of Dnm1, which points to the antagonistic roles of the two proteins in the regulation of mitochondrial fission.
Collapse
Affiliation(s)
- Michelle
W. Lee
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Ernest Y. Lee
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Ghee Hwee Lai
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Nolan W. Kennedy
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ammon E. Posey
- Department
of Biomedical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United
States
| | - Wujing Xian
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Andrew L. Ferguson
- Department of Materials Science
and Engineering and Department of Chemical and Biomolecular
Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - R. Blake Hill
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Gerard C. L. Wong
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 2017; 7:20160153. [PMID: 29147555 DOI: 10.1098/rsfs.2016.0153] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a diverse class of well-studied membrane-permeating peptides with important functions in innate host defense. In this short review, we provide a historical overview of AMPs, summarize previous applications of machine learning to AMPs, and discuss the results of our studies in the context of the latest AMP literature. Much work has been recently done in leveraging computational tools to design new AMP candidates with high therapeutic efficacies for drug-resistant infections. We show that machine learning on AMPs can be used to identify essential physico-chemical determinants of AMP functionality, and identify and design peptide sequences to generate membrane curvature. In a broader scope, we discuss the implications of our findings for the discovery of membrane-active peptides in general, and uncovering membrane activity in new and existing peptide taxonomies.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M Fulan
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Machine learning-enabled discovery and design of membrane-active peptides. Bioorg Med Chem 2017; 26:2708-2718. [PMID: 28728899 DOI: 10.1016/j.bmc.2017.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 11/23/2022]
Abstract
Antimicrobial peptides are a class of membrane-active peptides that form a critical component of innate host immunity and possess a diversity of sequence and structure. Machine learning approaches have been profitably employed to efficiently screen sequence space and guide experiment towards promising candidates with high putative activity. In this mini-review, we provide an introduction to antimicrobial peptides and summarize recent advances in machine learning-enabled antimicrobial peptide discovery and design with a focus on a recent work Lee et al. Proc. Natl. Acad. Sci. USA 2016;113(48):13588-13593. This study reports the development of a support vector machine classifier to aid in the design of membrane active peptides. We use this model to discover membrane activity as a multiplexed function in diverse peptide families and provide interpretable understanding of the physicochemical properties and mechanisms governing membrane activity. Experimental validation of the classifier reveals it to have learned membrane activity as a unifying signature of antimicrobial peptides with diverse modes of action. Some of the discriminating rules by which it performs classification are in line with existing "human learned" understanding, but it also unveils new previously unknown determinants and multidimensional couplings governing membrane activity. Integrating machine learning with targeted experimentation can guide both antimicrobial peptide discovery and design and new understanding of the properties and mechanisms underpinning their modes of action.
Collapse
|
24
|
Lee MW, Han M, Bossa GV, Snell C, Song Z, Tang H, Yin L, Cheng J, May S, Luijten E, Wong GCL. Interactions between Membranes and "Metaphilic" Polypeptide Architectures with Diverse Side-Chain Populations. ACS NANO 2017; 11:2858-2871. [PMID: 28212487 DOI: 10.1021/acsnano.6b07981] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
At physiological conditions, most proteins or peptides can fold into relatively stable structures that present on their molecular surfaces specific chemical patterns partially smeared out by thermal fluctuations. These nanoscopically defined patterns of charge, hydrogen bonding, and/or hydrophobicity, along with their elasticity and shape stability (folded proteins have Young's moduli of ∼1 × 108 Pa), largely determine and limit the interactions of these molecules, such as molecular recognition and allosteric regulation. In this work, we show that the membrane-permeating activity of antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) can be significantly enhanced using prototypical peptides with "molten" surfaces: metaphilic peptides with quasi-liquid surfaces and adaptable shapes. These metaphilic peptides have a bottlebrush-like architecture consisting of a rigid helical core decorated with mobile side chains that are terminated by cationic or hydrophobic groups. Computer simulations show that these flexible side chains can undergo significant rearrangement in response to different environments, giving rise to adaptable surface chemistry of the peptide. This quality makes it possible to control their hydrophobicity over a broad range while maintaining water solubility, unlike many AMPs and CPPs. Thus, we are able to show how the activity of these peptides is amplified by hydrophobicity and cationic charge, and rationalize these results using a quantitative mean-field theory. Computer simulations show that the shape-changing properties of the peptides and the resultant adaptive presentation of chemistry play a key enabling role in their interactions with membranes.
Collapse
Affiliation(s)
| | | | - Guilherme Volpe Bossa
- Department of Physics, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Carly Snell
- Department of Physics, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Haoyu Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sylvio May
- Department of Physics, North Dakota State University , Fargo, North Dakota 58108, United States
| | | | | |
Collapse
|
25
|
Deshayes S, Xian W, Schmidt NW, Kordbacheh S, Lieng J, Wang J, Zarmer S, Germain SS, Voyen L, Thulin J, Wong GCL, Kasko AM. Designing Hybrid Antibiotic Peptide Conjugates To Cross Bacterial Membranes. Bioconjug Chem 2017; 28:793-804. [DOI: 10.1021/acs.bioconjchem.6b00725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Nathan W. Schmidt
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tezgel AÖ, Jacobs P, Backlund CM, Telfer JC, Tew GN. Synthetic Protein Mimics for Functional Protein Delivery. Biomacromolecules 2017; 18:819-825. [DOI: 10.1021/acs.biomac.6b01685] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Özgül Tezgel
- Department
of Polymer Science and Engineering, ‡Molecular and Cell Biology Program, and §Veterinary and
Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Paejonette Jacobs
- Department
of Polymer Science and Engineering, ‡Molecular and Cell Biology Program, and §Veterinary and
Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Coralie M. Backlund
- Department
of Polymer Science and Engineering, ‡Molecular and Cell Biology Program, and §Veterinary and
Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Janice C. Telfer
- Department
of Polymer Science and Engineering, ‡Molecular and Cell Biology Program, and §Veterinary and
Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department
of Polymer Science and Engineering, ‡Molecular and Cell Biology Program, and §Veterinary and
Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
27
|
Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci 2017; 11:73. [PMID: 28261050 PMCID: PMC5306396 DOI: 10.3389/fnins.2017.00073] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.
Collapse
Affiliation(s)
- Jianguo Li
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| | - Jun-Jie Koh
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | - Shouping Liu
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | | | - Chandra S. Verma
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| | - Roger W. Beuerman
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| |
Collapse
|
28
|
Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proc Natl Acad Sci U S A 2016; 113:13588-13593. [PMID: 27849600 DOI: 10.1073/pnas.1609893113] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There are some ∼1,100 known antimicrobial peptides (AMPs), which permeabilize microbial membranes but have diverse sequences. Here, we develop a support vector machine (SVM)-based classifier to investigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology. SVM is used to search the undiscovered peptide sequence space and identify Pareto-optimal candidates that simultaneously maximize the distance σ from the SVM hyperplane (thus maximize its "antimicrobialness") and its ⍺-helicity, but minimize mutational distance to known AMPs. By calibrating SVM machine learning results with killing assays and small-angle X-ray scattering (SAXS), we find that the SVM metric σ correlates not with a peptide's minimum inhibitory concentration (MIC), but rather its ability to generate negative Gaussian membrane curvature. This surprising result provides a topological basis for membrane activity common to AMPs. Moreover, we highlight an important distinction between the maximal recognizability of a sequence to a trained AMP classifier (its ability to generate membrane curvature) and its maximal antimicrobial efficacy. As mutational distances are increased from known AMPs, we find AMP-like sequences that are increasingly difficult for nature to discover via simple mutation. Using the sequence map as a discovery tool, we find a unexpectedly diverse taxonomy of sequences that are just as membrane-active as known AMPs, but with a broad range of primary functions distinct from AMP functions, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and amyloids. The SVM classifier is useful as a general detector of membrane activity in peptide sequences.
Collapse
|
29
|
Realegeno S, Kelly-Scumpia KM, Dang AT, Lu J, Teles R, Liu PT, Schenk M, Lee EY, Schmidt NW, Wong GCL, Sarno EN, Rea TH, Ochoa MT, Pellegrini M, Modlin RL. S100A12 Is Part of the Antimicrobial Network against Mycobacterium leprae in Human Macrophages. PLoS Pathog 2016; 12:e1005705. [PMID: 27355424 PMCID: PMC4927120 DOI: 10.1371/journal.ppat.1005705] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022] Open
Abstract
Triggering antimicrobial mechanisms in macrophages infected with intracellular pathogens, such as mycobacteria, is critical to host defense against the infection. To uncover the unique and shared antimicrobial networks induced by the innate and adaptive immune systems, gene expression profiles generated by RNA sequencing (RNAseq) from human monocyte-derived macrophages (MDMs) activated with TLR2/1 ligand (TLR2/1L) or IFN-γ were analyzed. Weighed gene correlation network analysis identified modules of genes strongly correlated with TLR2/1L or IFN-γ that were linked by the “defense response” gene ontology term. The common TLR2/1L and IFN-γ inducible human macrophage host defense network contained 16 antimicrobial response genes, including S100A12, which was one of the most highly induced genes by TLR2/1L. There is limited information on the role of S100A12 in infectious disease, leading us to test the hypothesis that S100A12 contributes to host defense against mycobacterial infection in humans. We show that S100A12 is sufficient to directly kill Mycobacterium tuberculosis and Mycobacterium leprae. We also demonstrate that S100A12 is required for TLR2/1L and IFN-γ induced antimicrobial activity against M. leprae in infected macrophages. At the site of disease in leprosy, we found that S100A12 was more strongly expressed in skin lesions from tuberculoid leprosy (T-lep), the self-limiting form of the disease, compared to lepromatous leprosy (L-lep), the progressive form of the disease. These data suggest that S100A12 is part of an innate and adaptive inducible antimicrobial network that contributes to host defense against mycobacteria in infected macrophages. Macrophage antimicrobial activity induced by innate and adaptive immune stimuli is crucial for controlling infection against intracellular pathogens. In order to characterize host defense pathways, we activated human macrophages with innate and adaptive immune stimuli known to induce antimicrobial activity against mycobacteria, identifying a set of 16 antimicrobial response genes. One of these, S100A12, is present in humans, but not mice, has limited studies in infectious disease. By studying leprosy as a model, we found that expression of S100A12 was greater in skin lesions from patients with the self-limiting versus the progressive form of the disease. Furthermore, we show that S100A12 is sufficient to kill mycobacteria and is required for decreasing the relative viability of M. leprae in infected macrophages.
Collapse
Affiliation(s)
- Susan Realegeno
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kindra M. Kelly-Scumpia
- Division of Dermatology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Angeline Tilly Dang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rosane Teles
- Division of Dermatology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Philip T. Liu
- UCLA/Orthopedic Hospital Department of Orthopedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Mirjam Schenk
- Division of Dermatology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ernest Y. Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Nathan W. Schmidt
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Euzenir N. Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thomas H. Rea
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, United States of America
| | - Maria T. Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Robert L. Modlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Division of Dermatology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Lis M, Dorner F, Tew GN, Lienkamp K. Anionic Lipid Content Presents a Barrier to the Activity of ROMP-Based Synthetic Mimics of Protein Transduction Domains (PTDMs). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5946-5954. [PMID: 27182683 DOI: 10.1021/acs.langmuir.6b00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many biophysical studies of protein transduction domains (PTDs) and their synthetic mimics (PTDMs) focus on the interaction between the polycationic PTD(M) and anionic phospholipid surfaces. Most, but not all, of these studies suggest that these cation-anion interactions are vital for membrane activity. In this study, the effect of anionic lipid content on PTDM performance was examined for three ring-opening metathesis (ROMP)-based PTDMs with varying hydrophobicity. Using a series of dye-loaded vesicles with gradually increasing anionic lipid content, we saw that increased anionic lipid content inhibited dye release caused by these PTDMs. This result is the opposite of what was found in studies with poly- and oligo-arginine. While the effect is reduced for more hydrophobic PTDMs, it is observable even with the most hydrophobic PTDMs of our test panel. Additional experiments included dynamic light scattering and zeta potential measurements to measure size as a function of vesicle surface charge in the presence of increasing PTDM concentration and surface plasmon resonance spectroscopy to quantify binding between PTDMs and surface-bound lipid layers with varying anion content. The results from these measurements suggested that PTDM hydrophobicity, not cation-anion interactions, is the main driving force of the interaction between our PTDMs and the model membranes investigated. This suggests a model of interaction where surface association and membrane insertion are driven by PTDM hydrophobicity, while anionic lipid content serves primarily to "pin" the PTDM to the membrane surface and limit insertion.
Collapse
Affiliation(s)
| | - Franziska Dorner
- Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität , Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | | | - Karen Lienkamp
- Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität , Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
31
|
Backlund CM, Takeuchi T, Futaki S, Tew GN. Relating structure and internalization for ROMP-based protein mimics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1443-50. [PMID: 27039278 DOI: 10.1016/j.bbamem.2016.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/24/2016] [Accepted: 03/29/2016] [Indexed: 12/29/2022]
Abstract
Elucidating the predominant cellular entry mechanism for protein transduction domains (PTDs) and their synthetic mimics (PTDMs) is a complicated problem that continues to be a significant source of debate in the literature. The PTDMs reported here provide a well-controlled platform to vary molecular composition for structure activity relationship studies to further our understanding of PTDs, their non-covalent association with cargo, and their cellular internalization pathways. Specifically, several guanidine rich homopolymers, along with an amphiphilic block copolymer were used to investigate the relationship between structure and internalization activity in HeLa cells, both alone and non-covalently complexed with EGFP by flow cytometery and confocal imaging. The findings indicate that while changing the amount of positive charge on our PTDMs does not seem to affect the endosomal uptake, the presence of hydrophobicity appears to be a critical factor for the polymers to enter cells either alone, or with associated cargo.
Collapse
Affiliation(s)
- Coralie M Backlund
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Toshihide Takeuchi
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Shiroh Futaki
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Gregory N Tew
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
32
|
Sankhagowit S, Lee EY, Wong GCL, Malmstadt N. Oxidation of Membrane Curvature-Regulating Phosphatidylethanolamine Lipid Results in Formation of Bilayer and Cubic Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2450-7. [PMID: 26866900 PMCID: PMC6559366 DOI: 10.1021/acs.langmuir.5b04332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Oxidation is associated with conditions related to chronic inflammations and aging. Cubic structures have been observed in the smooth endoplasmic reticulum and mitochondrial membranes of cells under oxidative stress (e.g., tumor cells and virus-infected cells). It has been previously suspected that oxidation can result in the rearrangement of lipids from a fluid lamellar phase to a cubic structure in organelles containing membranes enriched with amphiphiles that have nonzero intrinsic curvature, such as phosphatidylethanolamine (PE) and cardiolipin. This study focuses on the oxidation of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), a lipid that natively forms an inverted hexagonal phase at physiological conditions. The oxidized samples contain an approximately 3:2 molar ratio of nonoxidized to oxidized DOPE. Optical microscopy images collected during the hydration of this mixture from a dried film suggest that the system evolves into a coexistence of a stable fluid lamellar phase and transient square lattice structures with unit cell sizes of 500-600 nm. Small-angle X-ray scattering of the same lipid mixture yielded a body-centered Im3m cubic phase with the lattice parameter of 14.04 nm. On average, the effective packing parameter of the oxidized DOPE species was estimated to be 0.657 ± 0.069 (standard deviation). This suggests that the oxidation of PE leads to a group of species with inverted molecular intrinsic curvature. Oxidation can create amphiphilic subpopulations that potently impact the integrity of the membrane, since negative Gaussian curvature intrinsic to cubic phases can enable membrane destabilization processes.
Collapse
Affiliation(s)
- Shalene Sankhagowit
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Ernest Y. Lee
- Bioengineering Department, Chemistry & Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, California 90095, United States
| | - Gerard C. L. Wong
- Bioengineering Department, Chemistry & Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, California 90095, United States
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Corresponding Author. Phone: +1 213 821 2034. Fax: +1 213 740 1056
| |
Collapse
|
33
|
Berlinck RGS, Romminger S. The chemistry and biology of guanidine natural products. Nat Prod Rep 2016; 33:456-90. [DOI: 10.1039/c5np00108k] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group.
Collapse
Affiliation(s)
| | - Stelamar Romminger
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
34
|
Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett 2015; 589:3915-20. [PMID: 26555191 DOI: 10.1016/j.febslet.2015.11.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Translocation of cell-penetrating peptides is often promoted by increased content of arginine or other guanidinium groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. This study compared the activity of three histone-derived antimicrobial peptides-buforin II, DesHDAP1, and parasin-with variants that contain only lysine or arginine cationic residues. These peptides operate via different mechanisms as parasin causes membrane permeabilization while buforin II and DesHDAP1 translocate into bacteria. For all peptides, antibacterial activity increased with increased arginine content. Higher arginine content increased permeabilization for parasin while it improved translocation for buforin II and DesHDAP1. These observations provide insight into the relative importance of arginine and lysine in these antimicrobial peptides.
Collapse
|
35
|
Wu CH, Chen YP, Liu SL, Chien FC, Mou CY, Cheng RP. Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues. Org Biomol Chem 2015; 13:11096-104. [PMID: 26399751 DOI: 10.1039/c5ob01729g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA is a drug target involved in diverse cellular functions and viral processes. Molecules that inhibit the HIV TAR RNA-Tat protein interaction may attenuate Tat/TAR-dependent protein expression and potentially serve as anti-HIV therapeutics. By incorporating positively charged residues with mixed side chain lengths, we designed peptides that bind TAR RNA with enhanced intracellular activity. Tat-derived peptides that were individually substituted with positively charged residues with varying side chain lengths were evaluated for TAR RNA binding. Positively charged residues with different side chain lengths were incorporated at each Arg and Lys position in the Tat-derived peptide to enhance TAR RNA binding. The resulting peptides showed enhanced TAR RNA binding affinity, cellular uptake, nuclear localization, proteolytic resistance, and inhibition of intracellular Tat/TAR-dependent protein expression compared to the parent Tat-derived peptide with no cytotoxicity. Apparently, the enhanced inhibition of protein expression by these peptides was not determined by RNA binding affinity, but by proteolytic resistance. Despite the high TAR binding affinity, a higher binding specificity would be necessary for practical purposes. Importantly, altering the positively charged residue side chain length should be a viable strategy to generate potentially useful RNA-targeting bioactive molecules.
Collapse
Affiliation(s)
- Cheng-Hsun Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | | | | | | | | | | |
Collapse
|
36
|
Protein transport across membranes: Comparison between lysine and guanidinium-rich carriers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2980-4. [PMID: 26342679 DOI: 10.1016/j.bbamem.2015.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/17/2015] [Accepted: 09/01/2015] [Indexed: 11/21/2022]
Abstract
The mechanism(s) by which certain small peptides and peptide mimics carry large cargoes across membranes through exclusively non-covalent interactions has been difficult to resolve. Here, we use the droplet-interface bilayer as a platform to characterize distinct mechanistic differences between two such carriers: Pep-1 and a guanidinium-rich peptide mimic we call D9. While both Pep-1 and D9 can carry an enzyme, horseradish peroxidase (HRP) across a lipid bilayer, we found that they do so by different mechanisms. Specifically, Pep-1 requires voltage or membrane asymmetry while D9 does not. In addition, D9 can facilitate HRP transport without pre-forming a complex with HRP. By contrast, complex formation is required by Pep-1. Both carriers are capable of forming pores in membranes but our data hints that these pores are not responsible for cargo transport. Overall, D9 appears to be a more potent and versatile transporter when compared with Pep-1 because D9 does not require an applied voltage or other forces to drive transport. Thus, D9 might be used to deliver cargo across membranes under conditions where Pep-1 would be ineffective.
Collapse
|
37
|
Viral fusion protein transmembrane domain adopts β-strand structure to facilitate membrane topological changes for virus-cell fusion. Proc Natl Acad Sci U S A 2015; 112:10926-31. [PMID: 26283363 DOI: 10.1073/pnas.1501430112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The C-terminal transmembrane domain (TMD) of viral fusion proteins such as HIV gp41 and influenza hemagglutinin (HA) is traditionally viewed as a passive α-helical anchor of the protein to the virus envelope during its merger with the cell membrane. The conformation, dynamics, and lipid interaction of these fusion protein TMDs have so far eluded high-resolution structure characterization because of their highly hydrophobic nature. Using magic-angle-spinning solid-state NMR spectroscopy, we show that the TMD of the parainfluenza virus 5 (PIV5) fusion protein adopts lipid-dependent conformations and interactions with the membrane and water. In phosphatidylcholine (PC) and phosphatidylglycerol (PG) membranes, the TMD is predominantly α-helical, but in phosphatidylethanolamine (PE) membranes, the TMD changes significantly to the β-strand conformation. Measured order parameters indicate that the strand segments are immobilized and thus oligomerized. (31)P NMR spectra and small-angle X-ray scattering (SAXS) data show that this β-strand-rich conformation converts the PE membrane to a bicontinuous cubic phase, which is rich in negative Gaussian curvature that is characteristic of hemifusion intermediates and fusion pores. (1)H-(31)P 2D correlation spectra and (2)H spectra show that the PE membrane with or without the TMD is much less hydrated than PC and PG membranes, suggesting that the TMD works with the natural dehydration tendency of PE to facilitate membrane merger. These results suggest a new viral-fusion model in which the TMD actively promotes membrane topological changes during fusion using the β-strand as the fusogenic conformation.
Collapse
|
38
|
deRonde BM, Tew GN. Development of protein mimics for intracellular delivery. Biopolymers 2015; 104:265-80. [PMID: 25858701 PMCID: PMC4516575 DOI: 10.1002/bip.22658] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
Abstract
Designing delivery agents for therapeutics is an ongoing challenge. As treatments and desired cargoes become more complex, the need for improved delivery vehicles becomes critical. Excellent delivery vehicles must ensure the stability of the cargo, maintain the cargo's solubility, and promote efficient delivery and release. In order to address these issues, many research groups have looked to nature for design inspiration. Proteins, such as HIV-1 trans-activator of transcription (TAT) and Antennapedia homeodomain protein, are capable of crossing cellular membranes. However, due to the complexities of their structures, they are synthetically challenging to reproduce in the laboratory setting. Being able to incorporate the key features of these proteins that enable cell entry into simpler scaffolds opens up a wide range of opportunities for the development of new delivery reagents with improved performance. This review charts the development of protein mimics based on cell-penetrating peptides (CPPs) and how structure-activity relationships (SARs) with these molecules and their protein counterparts ultimately led to the use of polymeric scaffolds. These scaffolds deviate from the normal peptide backbone, allowing for simpler, synthetic procedures to make carriers and tune chemical compositions for application specific needs. Successful design of polymeric protein mimics would allow researchers to further understand the key features in proteins and peptides necessary for efficient delivery and to design the next generation of more efficient delivery reagents.
Collapse
Affiliation(s)
- Brittany M deRonde
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003
| |
Collapse
|
39
|
Kramer J, Schmidt NW, Mayle KM, Kamei DT, Wong GL, Deming TJ. Reinventing Cell Penetrating Peptides Using Glycosylated Methionine Sulfonium Ion Sequences. ACS CENTRAL SCIENCE 2015; 1:83-8. [PMID: 27162954 PMCID: PMC4827470 DOI: 10.1021/acscentsci.5b00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 06/05/2023]
Abstract
Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess low cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.
Collapse
Affiliation(s)
- Jessica
R. Kramer
- Department of Bioengineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Nathan W. Schmidt
- Department of Bioengineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Kristine M. Mayle
- Department of Bioengineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Daniel T. Kamei
- Department of Bioengineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Gerard
C. L. Wong
- Department of Bioengineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Timothy J. Deming
- Department of Bioengineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
40
|
Wang T, Hong M. Investigation of the curvature induction and membrane localization of the influenza virus M2 protein using static and off-magic-angle spinning solid-state nuclear magnetic resonance of oriented bicelles. Biochemistry 2015; 54:2214-26. [PMID: 25774685 DOI: 10.1021/acs.biochem.5b00127] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A wide variety of membrane proteins induce membrane curvature for function; thus, it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state nuclear magnetic resonance (NMR) methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static (31)P NMR spectra of magnetically oriented 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the ability to generate a high-curvature phase. Two-dimensional (2D) (31)P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. (31)P- and (13)C-detected (1)H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the (31)P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. On the basis of this resolution, 2D (1)H-(31)P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not DHPC (31)P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the amphipathic helix induces high membrane curvature and localizes the protein to this phase, in good agreement with the membrane scission function of the protein. These bicelle-based relaxation and OMAS solid-state NMR techniques are generally applicable to curvature-inducing membrane proteins such as those involved in membrane trafficking, membrane fusion, and cell division.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Pentobra: A Potent Antibiotic with Multiple Layers of Selective Antimicrobial Mechanisms against Propionibacterium Acnes. J Invest Dermatol 2015; 135:1581-1589. [PMID: 25668237 PMCID: PMC4430421 DOI: 10.1038/jid.2015.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/21/2014] [Accepted: 01/26/2015] [Indexed: 02/08/2023]
Abstract
Although antibiotics are a common treatment for acne, the difficulties inherent to effective antimicrobial penetration in sebum and selective antimicrobial action in skin are compounded by increasing resistance of Propionibacterium acnes clinical isolates. To address these problems, we engineered Pentobra, a peptide-aminoglycoside molecule which has multiple mechanisms of antibacterial action, and investigated whether it can be a potential candidate for the treatment of acne. Pentobra combines the potent ribosomal activity of aminoglycosides with the bacteria-selective membrane-permeabilizing abilities of antimicrobial peptides (AMPs). Pentobra demonstrated potent and selective killing of P. acnes, but not against human skin cells in vitro. In direct comparison, Pentobra demonstrated bactericidal activity and drastically outperformed free tobramycin (by 5–7 logs) against multiple P. acnes clinical strains. Moreover, EM studies showed that Pentobra had robust membrane activity, as treatment with Pentobra killed P. acnes cells and caused leakage of intracellular contents. Pentobra may also have potential anti-inflammatory effects as demonstrated by suppression of some P. acnes-induced chemokines. Importantly, the killing activity was maintained in sebaceous environments as Pentobra was bactericidal against clinical isolates in comedones extracts isolated from human donors. Our work demonstrates that equipping aminoglycosides with selective membrane activity is a viable approach for developing antibiotics against P. acnes that are effective in cutaneous environments.
Collapse
|
42
|
deRonde BM, Birke A, Tew GN. Design of aromatic-containing cell-penetrating peptide mimics with structurally modified π electronics. Chemistry 2015; 21:3013-9. [PMID: 25537501 PMCID: PMC4397966 DOI: 10.1002/chem.201405381] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 01/09/2023]
Abstract
Cell-penetrating peptides (CPPs) and their synthetic mimics (CPPMs) represent a class of molecules that facilitate the intracellular delivery of various cargo. Previous studies indicated that the presence of aromatic functionalities improved CPPM activity. Given that aromatic functionalities play prominent roles in membrane biology and participate in various π interactions, we explored whether these interactions could be optimized for improved CPPM activity. CPPMs were synthesized by ring-opening metathesis polymerization by using monomers that contained aromatic rings substituted with electron-donating and electron-withdrawing groups and covered an electrostatic potential range from -29.69 to +15.57 kcal mol(-1) . These groups altered the quadrupole moments of the aromatic systems and were used to test if such structural modifications changed CPPM activity. CPPMs were added to dye-loaded vesicles and the release of carboxyfluorescein was monitored as a function of polymer concentration. Changes in the effective polymer concentration to release 50% of the dye (effective concentration, EC50 ) were monitored. Results from this assay showed that the strength of the electron-donating and electron-withdrawing groups incorporated in the CPPMs did not alter polymer EC50 values or activity. This suggests that other design parameters may have a stronger impact on CPPM activity. In addition, these results indicate that a wide range of aromatic groups can be incorporated without negatively impacting polymer activity.
Collapse
Affiliation(s)
- Brittany M. deRonde
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, Fax: (+1) 413-545-0082
| | - Alexander Birke
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, Fax: (+1) 413-545-0082
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, Fax: (+1) 413-545-0082
- Department of Veterinary and Animal Sciences, Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, Fax: (+1) 413-545-0082
| |
Collapse
|
43
|
Schmidt NW, Deshayes S, Hawker S, Blacker A, Kasko AM, Wong GCL. Engineering persister-specific antibiotics with synergistic antimicrobial functions. ACS NANO 2014; 8:8786-93. [PMID: 25130648 PMCID: PMC4173747 DOI: 10.1021/nn502201a] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most antibiotics target growth processes and are ineffective against persister bacterial cells, which tolerate antibiotics due to their reduced metabolic activity. These persisters act as a genetic reservoir for resistant mutants and constitute a root cause of antibiotic resistance, a worldwide problem in human health. We re-engineer antibiotics specifically for persisters using tobramycin, an aminoglycoside antibiotic that targets bacterial ribosomes but is ineffective against persisters with low metabolic and cellular transport activity. By giving tobramycin the ability to induce nanoscopic negative Gaussian membrane curvature via addition of 12 amino acids, we transform tobramycin itself into a transporter sequence. The resulting molecule spontaneously permeates membranes, retains the high antibiotic activity of aminoglycosides, kills E. coli and S. aureus persisters 4-6 logs better than tobramycin, but remains noncytotoxic to eukaryotes. These results suggest a promising paradigm to renovate traditional antibiotics.
Collapse
|
44
|
Abstract
![]()
RNA
interference (RNAi) is an endogenous process in which small
noncoding RNAs, including small interfering RNAs (siRNAs) and microRNAs
(miRNAs), post-transcriptionally regulate gene expressions. In general,
siRNA and miRNA/miRNA mimics are similar in nature and activity except
their origin and specificity. Although both siRNAs and miRNAs have
been extensively studied as novel therapeutics for a wide range of
diseases, the large molecular weight, anionic surface charges, instability
in blood circulation, and intracellular trafficking to the RISC after
cellular uptake have hindered the translation of these RNAs from bench
to clinic. As a result, a great variety of delivery systems have been
investigated for safe and effective delivery of small noncoding RNAs.
Among these systems, peptides, especially cationic peptides, have
emerged as a promising type of carrier due to their inherent ability
to condense negatively charged RNAs, ease of synthesis, controllable
size, and tunable structure. In this review, we will focus on three
major types of cationic peptides, including poly(l-lysine)
(PLL), protamine, and cell penetrating peptides (CPP), as well as
peptide targeting ligands that have been extensively used in RNA delivery.
The delivery strategies, applications, and limitations of these cationic
peptides in siRNA/miRNA delivery will be discussed.
Collapse
Affiliation(s)
- Ravi S Shukla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | | | | |
Collapse
|
45
|
Yang X, Hu K, Hu G, Shi D, Jiang Y, Hui L, Zhu R, Xie Y, Yang L. Long Hydrophilic-and-Cationic Polymers: A Different Pathway toward Preferential Activity against Bacterial over Mammalian Membranes. Biomacromolecules 2014; 15:3267-77. [DOI: 10.1021/bm5006596] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xin Yang
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Kan Hu
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Guantai Hu
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Danyao Shi
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Yunjiang Jiang
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Liwei Hui
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Rui Zhu
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Yuntao Xie
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| | - Lihua Yang
- CAS Key Laboratory of Soft Matter
Chemistry, ¶Department of Materials Science and
Engineering, #Department of Polymer Science and Engineering, ⊥CAS Key Laboratory of Materials
for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 P.R. China
| |
Collapse
|
46
|
Koller D, Lohner K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2250-9. [PMID: 24853655 DOI: 10.1016/j.bbamem.2014.05.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/28/2023]
Abstract
Research on antimicrobial peptides is in part driven by urgent medical needs such as the steady increase in pathogens being resistant to antibiotics. Despite the wealth of information compelling structure-function relationships are still scarce and thus the interfacial activity model has been proposed to bridge this gap. This model also applies to other interfacially active (membrane active) peptides such as cytolytic, cell penetrating or antitumor peptides. One parameter that is strongly linked to interfacial activity is the spontaneous lipid curvature, which is experimentally directly accessible. We discuss different parameters such as H-bonding, electrostatic repulsion, changes in monolayer surface area and lateral pressure that affect induction of membrane curvature, but also vice versa how membrane curvature triggers peptide response. In addition, the impact of membrane lipid composition on the formation of curved membrane structures and its relevance for diverse mode of action of interfacially active peptides and in turn biological activity are described. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Daniel Koller
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| |
Collapse
|
47
|
Lee MW, Chakraborty S, Schmidt NW, Murgai R, Gellman SH, Wong GCL. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2269-79. [PMID: 24743021 DOI: 10.1016/j.bbamem.2014.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/21/2022]
Abstract
Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Saswata Chakraborty
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, United States
| | - Nathan W Schmidt
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Rajan Murgai
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, United States
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
48
|
Sgolastra F, Minter LM, Osborne BA, Tew GN. Importance of Sequence Specific Hydrophobicity in Synthetic Protein Transduction Domain Mimics. Biomacromolecules 2014; 15:812-20. [DOI: 10.1021/bm401634r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Federica Sgolastra
- Departments of †Polymer Science and Engineering and ‡Veterinary and
Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Lisa M. Minter
- Departments of †Polymer Science and Engineering and ‡Veterinary and
Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Barbara A. Osborne
- Departments of †Polymer Science and Engineering and ‡Veterinary and
Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Departments of †Polymer Science and Engineering and ‡Veterinary and
Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
49
|
Sun D, Forsman J, Lund M, Woodward CE. Effect of arginine-rich cell penetrating peptides on membrane pore formation and life-times: a molecular simulation study. Phys Chem Chem Phys 2014; 16:20785-95. [DOI: 10.1039/c4cp02211d] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Molecular simulations show that arginine-rich peptides can stabilize transient membrane pores induced by lipid flip-flop.
Collapse
Affiliation(s)
- Delin Sun
- School of Physical
- Environmental and Mathematical Sciences
- University of New South Wales
- Canberra ACT 2600, Australia
| | - Jan Forsman
- Theoretical Chemistry
- Chemical Centre
- Lund University
- S-221 00 Lund, Sweden
| | - Mikael Lund
- Theoretical Chemistry
- Chemical Centre
- Lund University
- S-221 00 Lund, Sweden
| | - Clifford E. Woodward
- School of Physical
- Environmental and Mathematical Sciences
- University of New South Wales
- Canberra ACT 2600, Australia
| |
Collapse
|
50
|
Sgolastra F, deRonde BM, Sarapas JM, Som A, Tew GN. Designing mimics of membrane active proteins. Acc Chem Res 2013; 46:2977-87. [PMID: 24007507 DOI: 10.1021/ar400066v] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a semipermeable barrier that controls the flux of biomolecules in and out the cell, the plasma membrane is critical in cell function and survival. Many proteins interact with the plasma membrane and modulate its physiology. Within this large landscape of membrane-active molecules, researchers have focused significant attention on two specific classes of peptides, antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs), because of their unique properties. In this Account, we describe our efforts over the last decade to build and understand synthetic mimics of antimicrobial peptides (SMAMPs). These endeavors represent one specific example of a much larger effort to understand how synthetic molecules interact with and manipulate the plasma membrane. Using both defined molecular weight oligomers and easier to produce, but heterogeneous, polymers, we have generated scaffolds with biological potency exceeding that of the natural analogues. One of these compounds has progressed through a phase II clinical trial for pan-staph infections. Modern biophysical assays have highlighted the interplay between the synthetic scaffold and lipid composition: a negative Gaussian curvature is required both for pore formation and for the initiation of endosome creation. Although work remains to better resolve the complexity of this interplay between lipids, other bilayer components, and the scaffolds, significant new insights have been discovered. These results point to the importance of considering the various aspects of permeation and how these are related to "pore formation". More recently, our efforts have expanded toward protein transduction domains, or mimics of cell penetrating peptides. Using a combination of unique molecular scaffolds and guanidinium-rich side chains, we have produced an array of polymers with robust membrane (and delivery) activity. In this new area, researchers are just beginning to understand the fundamental interactions between these new scaffolds and the plasma membrane. Negative Gaussian curvature is also important in these systems, but the detailed relationships between molecular structure, self-assembly with lipids, and translocation will require more investigation. It has become clear that the combination of molecular design, biophysical models, and biological evaluation provides a robust approach to the generation and study of novel proteinomimetics.
Collapse
Affiliation(s)
- Federica Sgolastra
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Brittany M. deRonde
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Joel M. Sarapas
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Abhigyan Som
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|