1
|
Di Meo V, Sanità G, Oliver A, Sandomenico A, Moccia M, Rendina I, Crescitelli A, Galdi V, Ruvo M, Esposito E. Mid-infrared enhanced spectrochemical detection using azide vibrational probes. Biosens Bioelectron 2025; 272:117083. [PMID: 39764978 DOI: 10.1016/j.bios.2024.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Spectrochemical analysis of trace elements in complex matrices is crucial across various fields of science, industry, and technology. However, this analysis is often hindered by background interference and the challenge of detecting ultralow analyte concentrations. Surface Enhanced Infrared Absorption (SEIRA) spectroscopy is emerging as a viable technique to address these challenges as it can successfully reveal soluble and unmodified analytes in a label-free manner through their interactions with a bioreceptor following site-specific labeling with small infrared-active probes. In this study, we present and demonstrate an advanced method for mid-infrared spectroscopy utilizing a pixeled SEIRA substrate coupled with a peculiar infrared-active vibrational probe. We select a small azide moiety as the vibrational tag since its signature around 2100 cm-1 is in the cell- and protein-silent window and its small size preserves the structure and biological function of the protein it integrates into. As model bioreceptor, we utilize an antigen-binding fragment (Fab') derived from the therapeutic antibody trastuzumab, modified with azidoacetic acid, and its Her2 antigen as the soluble analyte. Employing mid-infrared SEIRA spectroscopy, we are able to monitor the immobilization of the azide-modified Fab', and demonstrate the detection of analyte quantities as low as 83 amol within an area of 100 μm2.
Collapse
Affiliation(s)
- Valentina Di Meo
- National Research Council (CNR), Institute of Applied Sciences and Intelligent Systems, I-80131, Naples, Italy
| | - Gennaro Sanità
- National Research Council (CNR), Institute of Applied Sciences and Intelligent Systems, I-80131, Naples, Italy
| | - Angela Oliver
- National Research Council (CNR), Institute of Biostructures and Bioimaging, I-80131, Naples, Italy
| | - Annamaria Sandomenico
- National Research Council (CNR), Institute of Biostructures and Bioimaging, I-80131, Naples, Italy
| | - Massimo Moccia
- University of Sannio, Department of Engineering, Fields & Waves Lab, I-82100, Benevento, Italy
| | - Ivo Rendina
- National Research Council (CNR), Institute of Applied Sciences and Intelligent Systems, I-80131, Naples, Italy
| | - Alessio Crescitelli
- National Research Council (CNR), Institute of Applied Sciences and Intelligent Systems, I-80131, Naples, Italy
| | - Vincenzo Galdi
- University of Sannio, Department of Engineering, Fields & Waves Lab, I-82100, Benevento, Italy
| | - Menotti Ruvo
- National Research Council (CNR), Institute of Biostructures and Bioimaging, I-80131, Naples, Italy.
| | - Emanuela Esposito
- National Research Council (CNR), Institute of Applied Sciences and Intelligent Systems, I-80131, Naples, Italy.
| |
Collapse
|
2
|
Bylinkin A, Castilla S, Slipchenko TM, Domina K, Calavalle F, Pusapati VV, Autore M, Casanova F, Hueso LE, Martín-Moreno L, Nikitin AY, Koppens FHL, Hillenbrand R. On-chip phonon-enhanced IR near-field detection of molecular vibrations. Nat Commun 2024; 15:8907. [PMID: 39414807 PMCID: PMC11484778 DOI: 10.1038/s41467-024-53182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
Phonon polaritons - quasiparticles formed by strong coupling of infrared (IR) light with lattice vibrations in polar materials - can be utilized for surface-enhanced infrared absorption (SEIRA) spectroscopy and even for vibrational strong coupling with nanoscale amounts of molecules. Here, we introduce and demonstrate a compact on-chip phononic SEIRA spectroscopy platform, which is based on an h-BN/graphene/h-BN heterostructure on top of a metal split-gate creating a p-n junction in graphene. The metal split-gate concentrates the incident light and launches hyperbolic phonon polaritons (HPhPs) in the heterostructure, which serves simultaneously as SEIRA substrate and room-temperature infrared detector. When thin organic layers are deposited directly on top of the heterostructure, we observe a photocurrent encoding the layer's molecular vibrational fingerprint, which is strongly enhanced compared to that observed in standard far-field absorption spectroscopy. A detailed theoretical analysis supports our results, further predicting an additional sensitivity enhancement as the molecular layers approach deep subwavelength scales. Future on-chip integration of infrared light sources such as quantum cascade lasers or even electrical generation of the HPhPs could lead to fully on-chip phononic SEIRA sensors for molecular and gas sensing.
Collapse
Affiliation(s)
- Andrei Bylinkin
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - Sebastián Castilla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain
| | - Tetiana M Slipchenko
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Kateryna Domina
- Donostia International Physics Center (DIPC) and EHU/UPV, 20018, Donostia-San Sebastián, Spain
| | | | - Varun-Varma Pusapati
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain
| | - Marta Autore
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Luis Martín-Moreno
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Alexey Y Nikitin
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Frank H L Koppens
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, 08010, Spain
| | - Rainer Hillenbrand
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.
- CIC nanoGUNE BRTA and EHU/UPV, 20018, Donostia-San Sebastián, Spain.
| |
Collapse
|
3
|
Baden N, Watanabe H, Aoyagi M, Ujii H, Fujita Y. Surface-enhanced optical-mid-infrared photothermal microscopy using shortened colloidal silver nanowires: a noble approach for mid-infrared surface sensing. NANOSCALE HORIZONS 2024; 9:1311-1317. [PMID: 38808389 DOI: 10.1039/d4nh00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We propose surface-enhanced optical-mid-infrared photothermal (MIP) microscopy using highly crystalline silver nanowires, acting as a Fabry-Perot resonator, and demonstrate its applicability to enhanced mid-infrared surface sensing of thin polymer layers as thin as 20 nm.
Collapse
Affiliation(s)
- Naoki Baden
- Nihon Thermal Consulting, Co., Ltd, 3-9-2 Nishishinjuku, Sinjuku-ku, Tokyo 160-0023, Japan
| | - Hirohmi Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Masaru Aoyagi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Hiroshi Ujii
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiko Fujita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| |
Collapse
|
4
|
Li X, Zhu S, Zhu G, Wang J, Ding Y, Du W, Wang T. Surface Enhanced Infrared Absorption Using Single Conducting Polymer Antennas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14357-14363. [PMID: 38440977 DOI: 10.1021/acsami.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Infrared absorption provides the intrinsic vibrational information on chemical bonds, which is important for identifying molecular moieties. To enhance the sensitivity of infrared absorption, plasmonic antennas have been widely used to localize and concentrate mid-infrared light into nanometer-scale hotspots at desired wavelengths. Here, instead of inorganic plasmonic antennas, we have demonstrated surface-enhanced infrared absorption (SEIRA) using single plasmonic antennas based on a conducting polymer. With commercially available PEDOT:PSS (poly(ethylenedioxythiophene):poly(styrenesulfonate)), the organic plasmonic antennas are in the fashion of single PEDOT:PSS micropillars. The plasmonic resonance of single PEDOT:PSS micropillar antennas can be easily tuned by the micropillar diameter or by the interantenna gap across the mid-infrared frequencies. These organic plasmonic antennas show the ability to enhance the molecular vibrations of CBP (4,4'-bis(N-carbazolyl)-1,1'-biphenyl) molecules with a thickness of about 50 nm, illustrating the good SEIRA sensitivity (with SEIRA sensitivity up to ∼7800) at the single antenna level. Our findings provide another material choice for mid-infrared plasmonic antennas toward SEIRA applications.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Shu Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Guangpeng Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Junhui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Youyi Ding
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
5
|
Phan VTT, Nguyen QP, Wang B, Burgess IJ. Oxygen Vacancies Alter Methanol Oxidation Pathways on NiOOH. J Am Chem Soc 2024; 146:4830-4841. [PMID: 38346096 DOI: 10.1021/jacs.3c13222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
A thorough comprehension of the mechanism underlying the methanol oxidation reaction (MOR) on Ni-based catalysts is critical for future electrocatalytic design and development. However, the mechanism of MOR on these materials remains a matter of controversy. Herein, we combine in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) calculations to identify the active sites and determine the mechanism of MOR on monometallic Ni-based catalysts in alkaline media. The SEIRAS results show that formate and (bi)carbonate are formed after the commencement of the MOR with potential-dependent relative distributions. These spectroscopic results are in good agreement with the DFT-computed reaction profiles over an oxygen vacancy, suggesting that the MOR mainly proceeds through the formate-involving pathway, in which the early consumption of methanol yields formate as the major product, while increasing potential drives further oxidation of formate to (bi)carbonate. We also find a parallel pathway for the generation of (bi)carbonate at high potentials that bypasses the formation of formate. The two main pathways are thermodynamically more feasible than the one predominantly reported in the literature for MOR on NiOOH that involves CHO and/or CO as key intermediates. These DFT results are supported by spectroscopic evidence showing that no band associated with CHO or CO can be detected by SEIRAS, which is attributed to the nature of the oxygen vacancies as the active sites, suppressing deep dehydrogenation of CH2O to CHO. This work thus shows the promising role of defect engineering in promoting the electrocatalytic MOR activity and selectivity.
Collapse
Affiliation(s)
- Vi Thuy Thi Phan
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Quy P Nguyen
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Wang
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ian J Burgess
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
6
|
Akgönüllü S, Denizli A. Plasmonic nanosensors for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2023; 236:115671. [PMID: 37659267 DOI: 10.1016/j.jpba.2023.115671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
The detection and identification of clinical biomarkers with related sensitivity have become a source of considerable concern for biomedical analysis. There have been increasing efforts toward the development of single-molecule analytical platforms to overcome this concern. The latest developments in plasmonic nanomaterials include fascinating advances in energy, catalyst chemistry, optics, biotechnology, and medicine. Nanomaterials can be successfully applied to biomolecule and drug detection in plasmonic nanosensors for pharmaceutical and biomedical analysis. Plasmonic-based sensing technology exhibits high sensitivity and selectivity depending on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) phenomena. In this critical paper, we offer an overview of the methodology of the SPR, LSPR, surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), and plasmonic nanoplatforms advanced for pharmaceutical and biomedical applications. First of all, we present here a brief discussion of the above trends. We have devoted the last section to the explanation of SPR, LSPR, SERS, SEIRA, and SEF platforms, which have found a wide range of applications, and reviewed recent advances for biomedical and pharmaceutical analysis.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
7
|
Xu H, Wang J. A super asymmetric cross antenna structure with tunable dual-frequency resonances. Phys Chem Chem Phys 2023; 25:29042-29049. [PMID: 37860894 DOI: 10.1039/d3cp03880g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The detection performance of traditional infrared spectroscopy can be very limited in the case of molecular vibrational modes with low absorption cross-sections. On account of its electric field enhancement, plasmonic antenna can be combined with infrared spectroscopy to realize surface enhanced infrared detection and characterization of molecules. In this work, a super asymmetric cross antenna structure with tunable dual-frequency resonance and a high enhancement factor is designed. By systematically studying the transmission spectrum and charge distribution of this super asymmetric cross antenna structure, the physical origin of the dual-frequency resonance and its tunability are characterized in detail. In addition, in order to target desired molecular ensembles, the relationship between the resonance frequency and electric-field intensity of the two resonance modes and the parameters of structure and incident light are examined, yielding an enhancement factor close to 100 in the desired frequency region. Finally, the experimental results show that the proposed super asymmetric cross antenna structure can indeed generate dual-frequency resonances, agreeing reasonably with the theoretical results. It is believed that the super asymmetric cross antenna structure can be widely used to sensitively detect trace molecules, and in monolayered chemistry and bio-molecules, allowing their structures and dynamics to be studied using nonlinear infrared spectroscopy.
Collapse
Affiliation(s)
- Haiyan Xu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Paggi L, Fabas A, El Ouazzani H, Hugonin JP, Fayard N, Bardou N, Dupuis C, Greffet JJ, Bouchon P. Over-coupled resonator for broadband surface enhanced infrared absorption (SEIRA). Nat Commun 2023; 14:4814. [PMID: 37558692 PMCID: PMC10412556 DOI: 10.1038/s41467-023-40511-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Detection of molecules is a key issue for many applications. Surface enhanced infrared absorption (SEIRA) uses arrays of resonant nanoantennas with good quality factors which can be used to locally enhance the illumination of molecules. The technique has proved to be an effective tool to detect small amount of material. However, nanoresonators can detect molecules on a narrow bandwidth so that a set of resonators is necessary to identify a molecule fingerprint. Here, we introduce an alternative paradigm and use low quality factor resonators with large radiative losses (over-coupled resonators). The bandwidth enables to detect all absorption lines between 5 and 10 μm, reproducing the molecular absorption spectrum. Counterintuitively, despite a lower quality factor, the system sensitivity is improved and we report a reflectivity variation as large as one percent per nanometer of molecular layer of PMMA. This paves the way to specific identification of molecules. We illustrate the potential of the technique with the detection of the explosive precursor 2,4-dinitrotoluene (DNT). There is a fair agreement with electromagnetic simulations and we also introduce an analytic model of the SEIRA signal obtained in the over-coupling regime.
Collapse
Affiliation(s)
- Laura Paggi
- DOTA, ONERA, Université Paris-Saclay, Palaiseau, France
| | - Alice Fabas
- DOTA, ONERA, Université Paris-Saclay, Palaiseau, France
| | | | - Jean-Paul Hugonin
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, Palaiseau, France
| | - Nikos Fayard
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, Palaiseau, France
| | - Nathalie Bardou
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - Christophe Dupuis
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - Jean-Jacques Greffet
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, Palaiseau, France
| | | |
Collapse
|
9
|
John-Herpin A, Tittl A, Kühner L, Richter F, Huang SH, Shvets G, Oh SH, Altug H. Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2110163. [PMID: 35638248 DOI: 10.1002/adma.202110163] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Infrared spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity and the capability for label-free, noninvasive, and real-time detection, infrared spectroscopy approaches have unlocked a plethora of breakthrough applications for fields ranging from environmental monitoring and defense to chemical analysis and medical diagnostics. Nanophotonics has played a crucial role for pushing the sensitivity limits of traditional far-field spectroscopy by using resonant nanostructures to focus the incident light into nanoscale hot-spots of the electromagnetic field, greatly enhancing light-matter interaction. Metasurfaces composed of regular arrangements of such resonators further increase the design space for tailoring this nanoscale light control both spectrally and spatially, which has established them as an invaluable toolkit for surface-enhanced spectroscopy. Starting from the fundamental concepts of metasurface-enhanced infrared spectroscopy, a broad palette of resonator geometries, materials, and arrangements for realizing highly sensitive metadevices is showcased, with a special focus on emerging systems such as phononic and 2D van der Waals materials, and integration with waveguides for lab-on-a-chip devices. Furthermore, advanced sensor functionalities of metasurface-based infrared spectroscopy, including multiresonance, tunability, dielectrophoresis, live cell sensing, and machine-learning-aided analysis are highlighted.
Collapse
Affiliation(s)
- Aurelian John-Herpin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lucca Kühner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Felix Richter
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
10
|
Najem M, Carcenac F, Coutaud L, Mouhibi M, Taliercio T, Gonzalez-Posada F. Honeycomb-like aluminum antennas for surface-enhanced infrared absorption sensing. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2199-2212. [PMID: 39634040 PMCID: PMC11501651 DOI: 10.1515/nanoph-2023-0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 12/07/2024]
Abstract
Surface-enhanced infrared absorption (SEIRA) spectroscopy is a competent method to detect trace quantity of molecules and even protein conformational flexibility by enhancing their vibrational modes. To improve the spectroscopy features, we propose a surface with honeycomb-like (HC) arrangement of aluminum equilateral triangles within a metal-insulator-metal configuration. With adjustable geometric parameters, the HC nanoantennas allow a tunable and wide spectral coverage in the IR. The reflectance measurements correlate extremely well with the numerical simulations. Being compact and insensitive to the light polarization, the HC are appealing for boosting the signal-to-noise ratio and increasing the number of hotspots as required for sensing applications. These nanoantennas are thus suitable for accurate and broadband SEIRA sensing via a spectral overlap between the large plasmonic resonances and the narrow IR vibrational modes of our analyte (vanillin). In line with our previously studied bowties nanoantennas, we demonstrate, using HC, SEIRA enhancement factors greater than 107 achieved at a tuning ratio below 1 stating the best spectral overlap. Around 104 molecules are sensed per HC tip. The investigation results are matching the best-reported SEIRA studies. These findings pave the way toward sensitive, adaptable, and miniaturized IR spectroscopy devices for vital applications like biosensing and environmental monitoring.
Collapse
Affiliation(s)
- Melissa Najem
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Franck Carcenac
- CNRS Laboratory for Systems Analysis and Architecture, Toulouse, Occitanie, France
| | - Luka Coutaud
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Mohamed Mouhibi
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Thierry Taliercio
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Fernando Gonzalez-Posada
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| |
Collapse
|
11
|
Petit T, Lounasvuori M, Chemin A, Bärmann P. Nanointerfaces: Concepts and Strategies for Optical and X-ray Spectroscopic Characterization. ACS PHYSICAL CHEMISTRY AU 2023; 3:263-278. [PMID: 37249937 PMCID: PMC10214513 DOI: 10.1021/acsphyschemau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 05/31/2023]
Abstract
Interfaces at the nanoscale, also called nanointerfaces, play a fundamental role in physics and chemistry. Probing the chemical and electronic environment at nanointerfaces is essential in order to elucidate chemical processes relevant for applications in a variety of fields. Many spectroscopic techniques have been applied for this purpose, although some approaches are more appropriate than others depending on the type of the nanointerface and the physical properties of the different phases. In this Perspective, we introduce the major concepts to be considered when characterizing nanointerfaces. In particular, the interplay between the characteristic length of the nanointerfaces, and the probing and information depths of different spectroscopy techniques is discussed. Differences between nano- and bulk interfaces are explained and illustrated with chosen examples from optical and X-ray spectroscopies, focusing on solid-liquid nanointerfaces. We hope that this Perspective will help to prepare spectroscopic characterization of nanointerfaces and stimulate interest in the development of new spectroscopic techniques adapted to the nanointerfaces.
Collapse
|
12
|
Sun M, Han Z. Highly sensitive terahertz fingerprint sensing based on the quasi-guided modes in a distorted photonic lattice. OPTICS EXPRESS 2023; 31:10947-10954. [PMID: 37157629 DOI: 10.1364/oe.477547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Using photonic structures resonating at the characteristic absorption frequency of the target molecules is a widely-adopted approach to enhance the absorption and improve the sensitivity in many spectral regions. Unfortunately, the requirement of accurate spectral matching poses a big challenge for the structure fabrication, while active tuning of the resonance for a given structure using external means like the electric gating significantly complicates the system. In this work, we propose to circumvent the problem by making use of quasi-guided modes which feature both ultra-high Q factors and wavevector-dependent resonances over a large operating bandwidth. These modes are supported in a distorted photonic lattice, whose band structure is formed above the light line due to the band-folding effect. The advantage and flexibility of this scheme in terahertz sensing are elucidated and exemplified by using a compound grating structure on a silicon slab waveguide to achieve the detection of a nanometer scale α-lactose film. The spectral matching between the leaky resonance and the α-lactose absorption frequency at 529.2 GHz by changing the incident angle is demonstrated using a flawed structure which exhibits a detuned resonance at normal incidence. Based on the high dependence of the transmittance at the resonance on the thickness of α-lactose, our results show it is possible to achieve an exclusive detection of α-lactose with the effective sensing of thickness as small as 0.5 nm.
Collapse
|
13
|
Tseng C, Pennathur AK, Blauth D, Salazar N, Dawlaty JM. Direct Determination of Plasmon Enhancement Factor and Penetration Depths in Surface Enhanced IR Absorption Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3179-3184. [PMID: 36812524 DOI: 10.1021/acs.langmuir.2c02254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS) is a powerful tool for studying a wide range of surface and electrochemical phenomena. For most electrochemical experiments the evanescent field of an IR beam partially penetrates through a thin metal electrode deposited on top of an attenuated total reflection (ATR) crystal to interact with molecules of interest. Despite its success, a major problem that complicates quantitative interpretation of the spectra from this method is the ambiguity of the enhancement factor due to plasmon effects in metals. We developed a systematic method for measuring this, which relies upon independent determination of surface coverage by Coulometry of a surface-bound redox-active species. Following that, we measure the SEIRAS spectrum of the surface bound species, and from the knowledge of surface coverage, retrieve the effective molar absorptivity, εSEIRAS. Comparing this to the independently determined bulk molar absorptivity leads us to the enhancement factor f = εSEIRAS/εbulk. We report enhancement factors in excess of 1000 for the C-H stretches of surface bound ferrocene molecules. We additionally developed a methodical approach to measure the penetration depth of the evanescent field from the metal electrode into a thin film. Such systematic measure of the enhancement factor and penetration depth will help SEIRAS advance from a qualitative to a more quantitative method.
Collapse
Affiliation(s)
- Cindy Tseng
- Department of Chemistry, University of Southern California, California, Los Angeles 90089, United States
| | - Anuj K Pennathur
- Department of Chemistry, University of Southern California, California, Los Angeles 90089, United States
| | - Drew Blauth
- Department of Chemistry, Lewis & Clark College, Portland, Oregon 97219, United States
| | - Noemi Salazar
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, California, Los Angeles 90089, United States
| |
Collapse
|
14
|
Pennathur AK, Tseng C, Salazar N, Dawlaty JM. Controlling Water Delivery to an Electrochemical Interface with Surfactants. J Am Chem Soc 2023; 145:2421-2429. [PMID: 36688713 DOI: 10.1021/jacs.2c11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most electrochemical reactions require delivery of protons, often from water, to surface-adsorbed species. However, water also acts as a competitor to many such processes by directly reacting with the electrode, which necessitates using water in small amounts. Controlling the water content and structure near the surface is an important frontier in directing the reactivity and selectivity of electrochemical reactions. Surfactants accumulate near surfaces, and therefore, they can be used as agents to control interfacial water. Using mid-IR spectro-electrochemistry, we show that a modest concentration (1 mM) of the cationic surfactant CTAB in mixtures of 10 M water in an organic solvent (dDMSO) has a large effect on the interfacial water concentration, changing it by up to ∼35% in the presence of an applied potential. The major cause of water content change is displacement due to the accumulation or depletion of surfactants driven by potential. Two forces drive the surfactants to the electrode: the applied potential and the hydrophobic interactions with the water in the bulk. We have quantified their competition by varying the water content in the bulk. To our knowledge, for the first time, we have identified the electrochemical equivalent of the hydrophobic drive. For our system, a change in applied potential of 1 V has the same effect as adding a 0.55 mole fraction of water to the bulk. This work illustrates the significance of surfactants in the partitioning of water between the bulk and the surface and paves the way toward engineering interfacial water structures for controlling electrochemical reactions.
Collapse
Affiliation(s)
- Anuj K Pennathur
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Cindy Tseng
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Noemi Salazar
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
15
|
Ma P, Liu K, Huang G, Ding Y, Du W, Wang T. Epsilon-near-zero substrate-enabled strong coupling between molecular vibrations and mid-infrared plasmons. OPTICS LETTERS 2022; 47:4524-4527. [PMID: 36048695 DOI: 10.1364/ol.469491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
As the strong light-matter interaction between molecular vibrations and mid-infrared optical resonant modes, vibrational strong coupling (VSC) has the potential to modify the intrinsic chemistry of molecules, leading to the control of ground-state chemical reactions. Here, by using quartz as an epsilon-near-zero (ENZ) substrate, we have realized VSC between organic molecular vibrations and mid-infrared plasmons on metallic antennas. The ENZ substrate enables sharp mid-infrared plasmonic resonances (Q factor ∼50) which efficiently couple to the molecular vibrations of polymethyl methacrylate (PMMA) molecules with prominent mode splitting. The coupling strength is proportional to the square root of the thickness of the PMMA layer and reaches the VSC regime with a thickness of ∼300 nm. The coupling strength also depends on the polarization of the incident light, illustrating an additional way to control the molecule-plasmon coupling. Our findings provide a new, to the best of our knowledge, possibility to realize VSC with metallic antennas and pave the way to increase the sensitivity of molecular vibrational spectroscopy.
Collapse
|
16
|
Ninakanti R, Dingenen F, Borah R, Peeters H, Verbruggen SW. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Top Curr Chem (Cham) 2022; 380:40. [PMID: 35951165 DOI: 10.1007/s41061-022-00390-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
(Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term "hybrid" implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core-shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.
Collapse
Affiliation(s)
- Rajeshreddy Ninakanti
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hannelore Peeters
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
17
|
Gao Y, Aspnes DE, Franzen S. Classical Model of Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy. J Phys Chem A 2022; 126:341-351. [PMID: 35005959 DOI: 10.1021/acs.jpca.1c08463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecule-plasmon interaction is the key to the mechanisms of surface enhanced infrared absorption (SEIRA) and surface enhanced Raman scattering (SERS). Since plasmons are well described by Maxwell's equations, one fundamental treatment involves the classical interpretation of infrared absorption and resonance Raman spectroscopies. We can understand the molecule-plasmon interaction using electromagnetic theory if the classical field effect on a transition dipole moment or transition polarizability is properly described. In previous work, we derived the Raman excitation profile of a model molecule using a classical driven spring attached to a charged mass with a perturbative force constant due to vibrational oscillations. In this study we generalize the interactions of plasmons with molecules by considering the N2O asymmetric stretch SEIRA signal on a Dy doped CdO (CdO:Dy) film. This semiconductor has tunable plasmon dispersion curves throughout the near-and mid-infrared that can interact directly with vibrational absorption transitions. We have demonstrated this using the Kretschmann configuration with a CaF2 prism and a MgO substrate. The model predicts the phase behavior of SEIRA. The calculated enhancement factor relative to an Au control is 6.2, in good agreement with the value of 6.8 ± 0.5 measured under the same conditions.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695-8204, United States
| | - D E Aspnes
- Department of Physics, NC State University, Raleigh, North Carolina 27695-8202, United States
| | - Stefan Franzen
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
18
|
Plasmonic Resonant Nanoantennas Induce Changes in the Shape and the Intensity of Infrared Spectra of Phospholipids. Molecules 2021; 27:molecules27010062. [PMID: 35011296 PMCID: PMC8746598 DOI: 10.3390/molecules27010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Surface enhanced infrared absorption spectroscopic studies (SEIRAS) as a technique to study biological molecules in extremely low concentrations is greatly evolving. In order to use the technique for identification of the structure and interactions of such biological molecules, it is necessary to identify the effects of the plasmonic electric-field enhancement on the spectral signature. In this study the spectral properties of 1,2-Dipalmitoyl-sn-glycero-3 phosphothioethanol (DPPTE) phospholipid immobilized on gold nanoantennas, specifically designed to enhance the vibrational fingerprints of lipid molecules were studied. An AFM study demonstrates an organization of the DPPTE phospholipid in bilayers on the nanoantenna structure. The spectral data were compared to SEIRAS active gold surfaces based on nanoparticles, plain gold and plain substrate (Si) for different temperatures. The shape of the infrared signals, the peak positions and their relative intensities were found to be sensitive to the type of surface and the presence of an enhancement. The strongest shifts in position and intensity were seen for the nanoantennas, and a smaller effect was seen for the DPPTE immobilized on gold nanoparticles. This information is crucial for interpretation of data obtained for biological molecules measured on such structures, for future application in nanodevices for biologically or medically relevant samples.
Collapse
|
19
|
Huang SH, Li J, Fan Z, Delgado R, Shvets G. Monitoring the effects of chemical stimuli on live cells with metasurface-enhanced infrared reflection spectroscopy. LAB ON A CHIP 2021; 21:3991-4004. [PMID: 34474459 PMCID: PMC8511245 DOI: 10.1039/d1lc00580d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures - plasmonic metasurfaces - as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, and lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells.
Collapse
Affiliation(s)
- Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Jiaruo Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Zhiyuan Fan
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Robert Delgado
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| |
Collapse
|
20
|
Hwang I, Kim M, Yu J, Lee J, Choi JH, Park SA, Chang WS, Lee J, Jung JY. Ultrasensitive Molecule Detection Based on Infrared Metamaterial Absorber with Vertical Nanogap. SMALL METHODS 2021; 5:e2100277. [PMID: 34927875 DOI: 10.1002/smtd.202100277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Indexed: 05/14/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) spectroscopy is a powerful methodology for sensing and identifying small quantities of analyte molecules via coupling between molecular vibrations and an enhanced near-field induced in engineered structures. A metamaterial absorber (MA) is proposed as an efficient SEIRA platform; however, its efficiency is limited because it requires the appropriate insulator thickness and has a limited accessible area for sensing. SEIRA spectroscopy is proposed using an MA with a 10 nm thick vertical nanogap, and a record-high reflection difference SEIRA signal of 36% is experimentally achieved using a 1-octadecanethiol monolayer target molecule. Theoretical and experimental comparative studies are conducted using MAs with three different vertical nanogaps. The MAs with a vertical nanogap are processed using nanoimprint lithography and isotropic dry etching, which allow cost-effective large-area patterning and mass production. The proposed structure may provide promising routes for ultrasensitive sensing and detection applications.
Collapse
Affiliation(s)
- Inyong Hwang
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Mingyun Kim
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Jaeyeon Yu
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jihye Lee
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Jun-Hyuk Choi
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Su A Park
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Won Seok Chang
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Jongwon Lee
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Joo-Yun Jung
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| |
Collapse
|
21
|
Dizaji AN, Ozek NS, Yilmaz A, Aysin F, Yilmaz M. Gold nanorod arrays enable highly sensitive bacterial detection via surface-enhanced infrared absorption (SEIRA) spectroscopy. Colloids Surf B Biointerfaces 2021; 206:111939. [PMID: 34186307 DOI: 10.1016/j.colsurfb.2021.111939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
Infrared (IR) spectroscopy is a unique and powerful method in the identification, characterization, and classification of chemical and biological molecules. However, the low absorbance of biological molecules has arisen as a major bottleneck and inhibits the application of IR in practical applications. To overcome this limitation, in the last four decades, surface-enhanced IR absorption (SEIRA) spectroscopy has been proposed and has become the focus of interest in various applications. In this study, for the first time, we proposed the employment of 3D anisotropic gold nanorod arrays (GNAs) as a highly active SEIRA platform in bacterial detection. For this, GNA platforms were fabricated through an oblique angle deposition (OAD) approach by using a physical vapor deposition (PVD) system. OAD of gold at proper deposition angle (10°) created closely-packed and columnar gold nanorod structures onto the glass slides in a well-controlled manner. GNA platform was tested as a SEIRA system in three different species of bacteria (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis) by collecting IR spectra of each bacteria from different parts of GNA. The employment of GNA provided robust IR spectra with high reproducibility and signal-to-noise ratio. For the comparison, IR spectra of each bacteria were collected from aluminum foil and a smooth gold surface (SGS). No or very low IR spectra were observed in comparison to the GNA platform for these substrates. Unsupervised (PCA, HCA) and supervised (SIMCA, LDA, and SVM classification) machine learning analysis of bacteria spectra obtained from GNA substrate indicated that all bacteria samples can be detected and identified without using a label-containing biosensor, in a fast and simple manner.
Collapse
Affiliation(s)
- Araz Norouz Dizaji
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey; East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
| | - Nihal Simsek Ozek
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey; Department of Biology, Ataturk University, 25240 Erzurum, Turkey
| | - Asli Yilmaz
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey; Department of Molecular Biology and Genetics, Ataturk University, 25240 Erzurum, Turkey
| | - Ferhunde Aysin
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey; Department of Biology, Ataturk University, 25240 Erzurum, Turkey
| | - Mehmet Yilmaz
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey; East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum, Turkey.
| |
Collapse
|
22
|
Koya A, Zhu X, Ohannesian N, Yanik AA, Alabastri A, Proietti Zaccaria R, Krahne R, Shih WC, Garoli D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS NANO 2021; 15:6038-6060. [PMID: 33797880 PMCID: PMC8155319 DOI: 10.1021/acsnano.0c10945] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/29/2021] [Indexed: 05/04/2023]
Abstract
The field of plasmonics is capable of enabling interesting applications in different wavelength ranges, spanning from the ultraviolet up to the infrared. The choice of plasmonic material and how the material is nanostructured has significant implications for ultimate performance of any plasmonic device. Artificially designed nanoporous metals (NPMs) have interesting material properties including large specific surface area, distinctive optical properties, high electrical conductivity, and reduced stiffness, implying their potentials for many applications. This paper reviews the wide range of available nanoporous metals (such as Au, Ag, Cu, Al, Mg, and Pt), mainly focusing on their properties as plasmonic materials. While extensive reports on the use and characterization of NPMs exist, a detailed discussion on their connection with surface plasmons and enhanced spectroscopies as well as photocatalysis is missing. Here, we report on different metals investigated, from the most used nanoporous gold to mixed metal compounds, and discuss each of these plasmonic materials' suitability for a range of structural design and applications. Finally, we discuss the potentials and limitations of the traditional and alternative plasmonic materials for applications in enhanced spectroscopy and photocatalysis.
Collapse
Affiliation(s)
| | - Xiangchao Zhu
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Nareg Ohannesian
- Department
of Electrical and Computer Engineering, University of Houston, Houston Texas 77204, United States
| | - A. Ali Yanik
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Remo Proietti Zaccaria
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Cixi
Institute of Biomedical Engineering, Ningbo Institute of Materials
Technology and Engineering, Chinese Academy
of Sciences, Zhejiang 315201, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Wei-Chuan Shih
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Faculty of
Science and Technology, Free University
of Bozen, Piazza Università
5, 39100 Bolzano, Italy
| |
Collapse
|
23
|
Harder RA, Wijenayaka LA, Phan HT, Haes AJ. Tuning gold nanostar morphology for the SERS detection of uranyl. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2021; 52:497-505. [PMID: 34177076 PMCID: PMC8225228 DOI: 10.1002/jrs.5994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/02/2020] [Indexed: 05/04/2023]
Abstract
The impact of tunable morphologies and plasmonic properties of gold nanostars are evaluated for the surface enhanced Raman scattering (SERS) detection of uranyl. To do so, gold nanostars are synthesized with varying concentrations of the Good's buffer reagent, 2-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid (EPPS). EPPS plays three roles including as a reducing agent for nanostar nucleation and growth, as a nanostar-stabilizing agent for solution phase stability, and as a coordinating ligand for the capture of uranyl. The resulting nanostructures exhibit localized surface plasmon resonance (LSPR) spectra that contain two visible and one near-infrared plasmonic modes. All three optical features arise from synergistic coupling between the nanostar core and branches. The tunability of these optical resonances are correlated with nanostar morphology through careful transmission electron microscopy (TEM) analysis. As the EPPS concentration used during synthesis increases, both the length and aspect ratio of the branches increase. This causes the two lower energy extinction features to grow in magnitude and become ideal for the SERS detection of uranyl. Finally, uranyl binds to the gold nanostar surface directly and via sulfonate coordination. Changes in the uranyl signal are directly correlated to the plasmonic properties associated with the nanostar branches. Overall, this work highlights the synergistic importance of nanostar morphology and plasmonic properties for the SERS detection of small molecules.
Collapse
Affiliation(s)
- Rachel A. Harder
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
| | - Lahiru A. Wijenayaka
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
- Current Address: Department of Chemistry, The Open University of Sri Lanka, Nawala, 11222, Sri Lanka
| | - Hoa T. Phan
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
| | - Amanda J. Haes
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
| |
Collapse
|
24
|
Cui Y, Zheng J, Zhuang W, Wang H. A target-activated plasmon coupling surface-enhanced Raman scattering platform for the highly sensitive and reproducible detection of miRNA-21. NEW J CHEM 2021. [DOI: 10.1039/d1nj00173f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have developed an SERS-based platform for the miRNA-21 assay with nucleic acid and Raman dye-modified AuNPs as capture substrates.
Collapse
Affiliation(s)
- Yanfang Cui
- Department of Clinical Laboratory
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Jing Zheng
- Science and Technology Division
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Wei Zhuang
- Department of Clinical Laboratory
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Haiwang Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan
- P. R. China
- Institute of Disaster Medicine
| |
Collapse
|
25
|
Fabas A, El Ouazzani H, Hugonin JP, Dupuis C, Haidar R, Greffet JJ, Bouchon P. Dispersion-based intertwined SEIRA and SPR effect detection of 2,4-dinitrotoluene using a plasmonic metasurface. OPTICS EXPRESS 2020; 28:39595-39605. [PMID: 33379505 DOI: 10.1364/oe.413325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Surface enhanced infrared absorption (SEIRA) spectroscopy and surface plasmon resonance (SPR) make possible, thanks to plasmonics nanoantennas, the detection of low quantities of biological and chemical materials. Here, we investigate the infrared response of 2,4-dinitrotoluene deposited on various arrays of closely arranged metal-insulator-metal (MIM) resonators and experimentally show how the natural dispersion of the complex refractive index leads to an intertwined combination of SEIRA and SPR effect that can be leveraged to identify molecules. They are shown to be efficient for SEIRA spectroscopy and allows detecting of the dispersive explosive material, 2,4-dinitrotoluene. By changing the in-plane parameters, a whole spectral range of absorptions of 2,4-DNT is scanned. These results open the way to the design of sensors based on SEIRA and SPR combined effects, without including a spectrometer.
Collapse
|
26
|
Qi X, Yan X, Zhao Y, Li L, Wang S. Highly sensitive and specific detection of small molecules using advanced aptasensors based on split aptamers: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116069] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Xu J, Ren Z, Dong B, Liu X, Wang C, Tian Y, Lee C. Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy. ACS NANO 2020; 14:12159-12172. [PMID: 32812748 DOI: 10.1021/acsnano.0c05794] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the most effective surface-enhanced infrared absorption (SEIRA) techniques, metal-insulator-metal structured metamaterial perfect absorbers possess an ultrahigh sensitivity and selectivity in molecular infrared fingerprint detection. However, most of the localized electromagnetic fields (i.e., hotspots) are confined in the dielectric layer, hindering the interaction between analytes and hotspots. By replacing the dielectric layer with the nanofluidic channel, we develop a sapphire (Al2O3)-based mid-infrared (MIR) hybrid nanofluidic-SEIRA (HN-SEIRA) platform for liquid sensors with the aid of a low-temperature interfacial heterogeneous sapphire wafer direct bonding technique. The robust atomic bonding interface is confirmed by transmission electron microscope observation. We also establish a design methodology for the HN-SEIRA sensor using coupled-mode theory to carry out the loss engineering and experimentally validate its feasibility through the accurate nanogap control. Thanks to the capillary force, liquid analytes can be driven into sensing hotspots without external actuation systems. Besides, we demonstrate an in situ real-time dynamic monitoring process for the acetone molecular diffusion in deionized water. A small concentration change of 0.29% is distinguished and an ultrahigh sensitivity (0.8364 pmol-1 %) is achieved. With the aid of IR fingerprint absorption, our HN-SEIRA platform brings the selectivity of liquid molecules with similar refractive indexes. It also resolves water absorption issues in traditional IR liquid sensors thanks to the sub-nm long light path. Considering the wide transparency window of Al2O3 in MIR (up to 5.2 μm), the HN-SEIRA platform covers more IR absorption range for liquid sensing compared to fused glass commonly used in micro/nanofluidics. Leveraging the aforementioned advantages, our work provides insights into developing a MIR real-time liquid sensing platform with intrinsic IR fingerprint selectivity, label-free ultrahigh sensitivity, and ultralow analyte volume, demonstrating a way toward quantitative molecule identification and dynamic analysis for the chemical and biological reaction processes.
Collapse
Affiliation(s)
- Jikai Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
| | - Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
| | - Chenxi Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
28
|
Chuntonov L, Rubtsov IV. Surface-enhanced ultrafast two-dimensional vibrational spectroscopy with engineered plasmonic nano-antennas. J Chem Phys 2020; 153:050902. [DOI: 10.1063/5.0013956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Igor V. Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
29
|
Yin H, Li N, Si Y, Zhang H, Yang B, Wang J. Gold nanonails for surface-enhanced infrared absorption. NANOSCALE HORIZONS 2020; 5:1200-1212. [PMID: 32578657 DOI: 10.1039/d0nh00244e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) can dramatically enhance the vibrational signals of analyte molecules owing to the interaction between plasmons and molecular vibrations. It has huge potential for applications in various detection and diagnostic fields. High-aspect-ratio rod-like metal nanostructures have been the most widely studied nanomaterials for SEIRA. However, nearly all of the rod-like nanostructures reported previously are fabricated using physical methods. They suffer from damping and low areal number densities. In this work, high-aspect-ratio Au nanorods are synthesized, and Au nanonails are prepared through Au overgrowth on the as-prepared Au nanorods. The aspect ratios of the Au nanorods and nanonails can be varied in the range of ∼10 to ∼60, and their longitudinal dipolar plasmon resonance wavelengths can be correspondingly tailored from ∼1.6 to ∼8.3 μm. The Au nanonails exhibit superior SEIRA performance with 4-aminothiophenol used as the probe molecules. They are further used to detect the common biomolecule l-cysteine. Numerical simulations are further performed to understand the experimental results. They match well with the experimental observations, revealing the mechanism of the SEIRA enhancement. Our study demonstrates that colloidal high-aspect-ratio Au nanonails and nanorods can function as SEIRA nanoantennas for highly sensitive molecular detection in various situations.
Collapse
Affiliation(s)
- Hang Yin
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | | | | | | | | | | |
Collapse
|
30
|
Wang D, Wang X, Lin H, Wang B, Jiang J, Li Z. Surface-Enhanced Infrared Absorption of Ligands on Colloidal Gold Nanowires through Resonant Coupling. Anal Chem 2020; 92:3494-3498. [PMID: 31939283 DOI: 10.1021/acs.analchem.9b04885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pushing the detection limit of infrared absorption (IR) through surface-enhanced (SEIRA) approaches have far-reaching prospect for related applications in molecular analysis and detection. Specifically engineered Au nanowires (NWs) can be applied as the surface-enhancing substrates in colloidal solution, given their longitudinal surface plasmon resonance (SPR) being aspect-ratio dependent and extendable into the infrared region. Through carefully designed control experiments, we realized resonant coupling between the longitudinal surface plasmons of Au NWs and the vibration modes of the bonded oleylamine (OA) ligands. In our system, after deliberately tuning thickness of the OA ligands and ratio of the detached/attached ligands in the solution, the apparent enhancement factor of IR signal from ligands around Au NWs could be pushed up to 5.29 × 104. Given the facile tuning of SPR properties of Au NWs in the colloidal solution and the performance demonstrated in the report, our work could be an intriguing platform for SEIRA implementations in a broad spectrum of circumstances.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xuxiang Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hanjie Lin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Benxin Wang
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zheng Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
31
|
Muhammad N, Ouyang Z. Plasmon-induced anti-transparency modes in metasurface. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Surface-Enhanced Absorption Spectroscopy for Optical Fiber Sensing. MATERIALS 2019; 13:ma13010034. [PMID: 31861738 PMCID: PMC6981369 DOI: 10.3390/ma13010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022]
Abstract
Visible and near-infrared spectroscopy are widely used for sensing applications but suffer from poor signal-to-noise ratios for the detection of compounds with low concentrations. Enhancement by surface plasmon resonance is a popular technique that can be utilized to increase the signal of absorption spectroscopy due to the increased near-field created close to the plasmons. Despite interest in surface-enhanced infrared absorption spectroscopy (SEIRAS), the method is usually applied in lab setups rather than real-life sensing situations. This study aimed to achieve enhanced absorption from plasmons on a fiber-optic probe and thus move closer to applications of SEIRAS. A tapered coreless fiber coated with a 100 nm Au film supported signal enhancement at visible wavelengths. An increase in absorption was shown for two dyes spanning concentrations from 5 × 10−8 mol/L to 8 × 10−4 mol/L: Rhodamine 6G and Crystal Violet. In the presence of the Au film, the absorbance signal was 2–3 times higher than from an identically tapered uncoated fiber. The results confirm that the concept of SEIRAS can be implemented on an optical fiber probe, enabling enhanced signal detection in remote sensing applications.
Collapse
|
33
|
Cui Y, Wang H, Liu S, Wang Y, Huang J. Target-activated DNA nanomachines for the ATP detection based on the SERS of plasmonic coupling from gold nanoparticle aggregation. Analyst 2019; 145:445-452. [PMID: 31819931 DOI: 10.1039/c9an02051a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The self-assembly of plasmonic nanoparticles provides a powerful approach to generate surface-enhanced Raman scattering (SERS), which promotes the actual applications in chemical and biomolecular analyses. Herein, we developed a facile SERS sensing strategy for an ATP assay with a 3-D DNA nanomachine that walks by the Exo III cleavage, leading to the formation of AuNP aggregates, which resulted in the enhancement of the electromagnetic field. Depending on the target-activated Exo III cleavage, the 3-D nanomachine can walk along the 3-D track on the surface of AuNPs and generate self-assembled hot-spots to enhance the SERS signal of a Raman dye, allowing a homogenous assay of the ATP concentration with high sensitivity and reproducibility. Under optimized experimental conditions, the biosensor detected ATP with a widened dynamic range from 1 pM to 1 × 105 pM with a limit of detection of up to 0.29 pM. Hence, the novel strategy provides a useful and practical platform for the SERS assay of ATP with high sensitivity and repeatability. Besides, this platform shows great potential for applications in high-throughput assays for drug screening and clinical diagnostics.
Collapse
Affiliation(s)
- Yanfang Cui
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China.
| | - Haiwang Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Su Liu
- College of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Yu Wang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China.
| | - Jiadong Huang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China. and Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
34
|
Su DS, Tsai DP, Yen TJ, Tanaka T. Ultrasensitive and Selective Gas Sensor Based on a Channel Plasmonic Structure with an Enormous Hot Spot Region. ACS Sens 2019; 4:2900-2907. [PMID: 31602973 DOI: 10.1021/acssensors.9b01225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present experimental and theoretical studies of a metamaterial-based plasmonic structure to build a plasmonic-molecular coupling detection system. High molecular sensitivity is realized only when molecules are located in the vicinity of the enhanced field (hot spot region); thus, introducing target molecules in the hot spot region to maximize plasmonic-molecular coupling is crucial to developing the sensing technology. We design a metamaterial consisting of a vertically oriented metal insulator metal (MIM) structure with a 25 nm channel sandwiched between two metal films, which enables the delivery of molecules into the large ravinelike hot spot region, offering an ultrasensitive platform for molecular sensing. This metamaterial is applied to carbon dioxide and butane detection. We design the structure to exhibit resonances at 4033 and 2945 cm-1, which overlap with the C═O and -CH2 vibration modes, respectively. The mutual coupling of these two resonance modes creates a Fano resonance, and their distinct peaks are clearly observed in the corresponding transmission dips. In addition, owing to its small footprint, such a vertical-oriented MIM structure enables us to increase the integration density and allows the detection of a 20 ppm concentration with negligible background noise and high selectivity in the mid-infrared region.
Collapse
Affiliation(s)
- Dong-Sheng Su
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Din Ping Tsai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Takuo Tanaka
- Metamaterial Lab, Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
35
|
Interaction of photothermal graphene networks with polymer chains and laser-driven photo-actuation behavior of shape memory polyurethane/epoxy/epoxy-functionalized graphene oxide nanocomposites. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Feng X, Han T, Xiong Y, Wang S, Dai T, Chen J, Zhang X, Wang G. Plasmon-Enhanced Electrochemiluminescence of Silver Nanoclusters for microRNA Detection. ACS Sens 2019; 4:1633-1640. [PMID: 31244011 DOI: 10.1021/acssensors.9b00413] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface plasmon-enhanced electrochemiluminescence (SPEECL) with excellent sensitivity and simplicity has attracted increasing attention. In this work, we reported a novel SPEECL with DNA templated silver nanoclusters (DNA-AgNCs) as ECL emitters and gold nanoparticles (AuNPs) as localized surface plasmon resonance (LSPR) source. The SPEECL with DNA-AgNCs as ECL luminophores possessed low toxicity and avoided the labeling process, which is favorable for its further sensing application. In addition, by investigation of the SPEECL under different distances between DNA-AgNCs and AuNPs, it was demonstrated that the SPEECL was distance dependent. Meanwhile, the SPEECL intensity changed with the sizes and interdistance of AuNPs under different electrodeposition time. Furthermore, by the combination of a cyclic amplification process with enzyme-free catalytic hairpin DNA, a sensitive SPEECL biosensor was proposed for the detection of microRNA (miRNA-21) successfully with a wide linear range from 1 aM to 104 fM and a relatively low detection limit of 0.96 aM, which was applied in the detection of miRNA-21 in real samples with satisfying results. This novel, simple, sensitive, and selective SPEECL with label-free and low-toxic ECL emitters displayed a great potential for bioassay application.
Collapse
Affiliation(s)
- Xiuyun Feng
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Ting Han
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Yunfang Xiong
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Sicheng Wang
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Tianyue Dai
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Jihua Chen
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Xiaojun Zhang
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing, Anhui province; Key Laboratory of Functional Molecular Solids, Anhui province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China
| |
Collapse
|
37
|
Maß TWW, Nguyen VH, Schnakenberg U, Taubner T. Tailoring grating strip widths for optimizing infrared absorption signals of an adsorbed molecular monolayer. OPTICS EXPRESS 2019; 27:10524-10532. [PMID: 31052910 DOI: 10.1364/oe.27.010524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Metal structures with resonances in the mid-infrared spectral range enable an increased sensitivity for detecting molecular vibrational signals. 1D gold strip gratings have already proven potential in surface-enhanced infrared absorption (SEIRA) experiments, as grating resonances and local electric field enhancement can be spectrally tuned by changing the grating period. Here, we identify the grating strip width as another important design parameter, which is investigated for further optimization of molecular absorption signal enhancement in SEIRA experiments. Previous literature used gratings to increase light absorption in relatively thick polymer layers. Here, we demonstrate the capability of gold strip gratings fabricated on a CaF2 substrate to enhance the CH2 vibrational modes of a thiol-based monolayer of MHDA. An optimal choice of the strip width w = 1.33 μm enables a maximum vibrational signal enhancement factor of around 84, when normalized to microscopic GIR measurements of an MHDA monolayer on an extended gold surface. Numerical simulations demonstrate the broadband local field enhancement of gold strip gratings, which are suitable for enhancing multiple vibrational modes in a large hot-spot volume.
Collapse
|
38
|
Zhou C, Yu Z, Yu W, Liu H, Zhang H, Guo C. Split aptamer-based detection of adenosine triphosphate using surface enhanced Raman spectroscopy and two kinds of gold nanoparticles. Mikrochim Acta 2019; 186:251. [PMID: 30895481 DOI: 10.1007/s00604-019-3356-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022]
Abstract
An ultrasensitive and highly selective method is described for the determination of adenosine triphosphate (ATP) via surface-enhanced Raman scattering (SERS). Two split aptamers are used for specific recognition of ATP. They were attached to two SERS substrates. The first was placed on a nanolayer of gold nanoparticle-decorated graphene oxide (GO/Au3), and the other on gold nanoparticles (Au2). When ATP is introduced, it will interact with the split aptamers on the gold nanostructures to form a sandwich structure that brings the GO/Au3 nanolayer and the Au2 nanoparticle in close proximity. Consequently, the SERS signal, best measured at 1072 cm-1, is strongly enhanced. The sandwich structure also displays good water solubility and stability. Under optimized conditions, the SERS signal increases in the 10 pM - 10 nM ATP concentration range, and the limit of detection (LOD) is 0.85 pM. The method was applied to the determination of ATP in spiked human serum, and the LODs in serum and buffer are comparable. In our perception, the method has a wide scope in that numerous other aptamers may be used. This may result in a variety of other highly sensitive aptasensors for use in in-vitro diagnostics. Graphical abstract Schematic presentation of a self-assembly sandwich nanostructure as unique SERS assay platform for the sensitive detection of ATP.
Collapse
Affiliation(s)
- Chunyang Zhou
- The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, People's Republic of China.
| | - Zhi Yu
- The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, People's Republic of China
| | - Weili Yu
- The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, People's Republic of China
| | - Huiwen Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Chunlei Guo
- The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, People's Republic of China. .,The Institute of Optics, University of Rochester, Rochester, New York, 14627, USA.
| |
Collapse
|
39
|
Wei XL, Gao XL, Chen J, Mo ZH. Exciton-enhanced infrared spectroscopy with organometallic perovskite nanoplatelets. NEW J CHEM 2019. [DOI: 10.1039/c8nj06524a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organometallic perovskite nanoplatelets enhance molecular infrared absorption as their excitons can be excited by infrared photons and amplify molecular polarization.
Collapse
Affiliation(s)
- Xiao-Lan Wei
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecule
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing 400067
- China
| | - Xiao-Li Gao
- Department of Pharmaceutical Engineering
- Chongqing Chemical Industry Vocational College
- Chongqing 401228
- China
| | - Jia Chen
- College of Chemistry and Chemical Engineering
- National Key Laboratory for New Micro/Nano-Devices and System Technology
- Chongqing University
- Chongqing 401331
- China
| | - Zhi-Hong Mo
- College of Chemistry and Chemical Engineering
- National Key Laboratory for New Micro/Nano-Devices and System Technology
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
40
|
Fischer MP, Riede A, Gallacher K, Frigerio J, Pellegrini G, Ortolani M, Paul DJ, Isella G, Leitenstorfer A, Biagioni P, Brida D. Plasmonic mid-infrared third harmonic generation in germanium nanoantennas. LIGHT, SCIENCE & APPLICATIONS 2018; 7:106. [PMID: 30564312 PMCID: PMC6290006 DOI: 10.1038/s41377-018-0108-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
We demonstrate third harmonic generation in plasmonic antennas consisting of highly doped germanium grown on silicon substrates and designed to be resonant in the mid-infrared frequency range that is inaccessible with conventional nonlinear plasmonic materials. Owing to the near-field enhancement, the result is an ultrafast, subdiffraction, coherent light source with a wavelength tunable between 3 and 5 µm, and ideally overlapping with the fingerprint region of molecular vibrations. To observe the nonlinearity in this challenging spectral window, a high-power femtosecond laser system equipped with parametric frequency conversion in combination with an all-reflective confocal microscope setup is employed. We demonstrate spatially resolved maps of the linear scattering cross section and the nonlinear emission of single isolated antenna structures. A clear third-order power dependence as well as mid-infrared emission spectra prove the nonlinear nature of the light emission. Simulations support the observed resonance length of the double-rod antenna and demonstrate that the field enhancement inside the antenna material is responsible for the nonlinear frequency mixing.
Collapse
Affiliation(s)
- Marco P. Fischer
- Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany
| | - Aaron Riede
- Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany
| | - Kevin Gallacher
- School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, G12 8LT UK
| | - Jacopo Frigerio
- L-NESS, Dipartimento di Fisica del Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
| | - Giovanni Pellegrini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Michele Ortolani
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Douglas J. Paul
- School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, G12 8LT UK
| | - Giovanni Isella
- L-NESS, Dipartimento di Fisica del Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
| | - Alfred Leitenstorfer
- Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany
| | - Paolo Biagioni
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Daniele Brida
- Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
41
|
Cohn B, Engelman B, Goldner A, Chuntonov L. Two-Dimensional Infrared Spectroscopy with Local Plasmonic Fields of a Trimer Gap-Antenna Array. J Phys Chem Lett 2018; 9:4596-4601. [PMID: 30044640 DOI: 10.1021/acs.jpclett.8b01937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Half-wavelength plasmonic antennas tuned to resonance with molecular vibrational excitations have been demonstrated to enhance 2DIR signals by multiple orders of magnitude. We design doubly degenerate in-plane plasmonic normal modes of the symmetric trimer gap-antenna, which have orthogonal dipole moments excited by light of the appropriate polarization, to localize the enhanced field into the antenna's gap. Vibrational excitations serve as sensitive probes of the plasmonic fields. 2DIR spectroscopy of thin molecular films indicates that molecules emitting enhanced signals experience an electric field with a direction independent of the excitation laser pulse polarization. Our results illustrate the trade-off between the large signal amplification in molecules close to the antenna surface by resonant plasmons, where the direction of the enhanced fields follows metal surface boundary conditions, and the associated limitations for the polarization-selective spectroscopy. The ultrafast quantum dynamics reported by the enhanced signals is not affected by its interaction with plasmonic excitation.
Collapse
|
42
|
Pfitzner E, Seki H, Schlesinger R, Ataka K, Heberle J. Disc Antenna Enhanced Infrared Spectroscopy: From Self-Assembled Monolayers to Membrane Proteins. ACS Sens 2018; 3:984-991. [PMID: 29741356 DOI: 10.1021/acssensors.8b00139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmonic surfaces have emerged as a powerful platform for biomolecular sensing applications and can be designed to optimize the plasmonic resonance for probing molecular vibrations at utmost sensitivity. Here, we present a facile procedure to generate metallic microdisc antenna arrays that are employed in surface-enhanced infrared absorption (SEIRA) spectroscopy of biomolecules. Transmission electron microscopy (TEM) grids are used as shadow mask deployed during physical vapor deposition of gold. The resulting disc-shaped antennas exhibit enhancement factors of the vibrational bands of 4 × 104 giving rise to a detection limit <1 femtomol (10-15 mol) of molecules. Surface-bound monolayers of 4-mercaptobenzoic acid show polyelectrolyte behavior when titrated with cations in the aqueous medium. Conformational rigidity of the self-assembled monolayer is validated by density functional theory calculations. The membrane protein sensory rhodopsin II is tethered to the disc antenna arrays and is fully functional as inferred from the light-induced SEIRA difference spectra. As an advance to previous studies, the accessible frequency range is improved and extended into the fingerprint region.
Collapse
Affiliation(s)
- Emanuel Pfitzner
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Hirofumi Seki
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
- Toray Research Center Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567, Japan
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Kenichi Ataka
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
43
|
Haran G, Chuntonov L. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chem Rev 2018; 118:5539-5580. [DOI: 10.1021/acs.chemrev.7b00647] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gilad Haran
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 760001, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
44
|
Guo X, Hu H, Liao B, Zhu X, Yang X, Dai Q. Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy. NANOTECHNOLOGY 2018; 29:184004. [PMID: 29457777 DOI: 10.1088/1361-6528/aab077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V-1 s-1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Collapse
Affiliation(s)
- Xiangdong Guo
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China. Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. State Key Lab for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Yang X, Sun Z, Low T, Hu H, Guo X, García de Abajo FJ, Avouris P, Dai Q. Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704896. [PMID: 29572965 DOI: 10.1002/adma.201704896] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/05/2017] [Indexed: 05/19/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) has attracted increasing attention due to the potential of infrared spectroscopy in applications such as molecular trace sensing of solids, polymers, and proteins, specifically fueled by recent substantial developments in infrared plasmonic materials and engineered nanostructures. Here, the significant progress achieved in the past decades is reviewed, along with the current state of the art of SEIRA. In particular, the plasmonic properties of a variety of nanomaterials are discussed (e.g., metals, semiconductors, and graphene) along with their use in the design of efficient SEIRA configurations. To conclude, perspectives on potential applications, including single-molecule detection and in vivo bioassays, are presented.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Espoo, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Keller Hall 200 Union St S.E., Minneapolis, MN, 55455, USA
| | - Hai Hu
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangdong Guo
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - F Javier García de Abajo
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
- ICREA-Institució Catalana de Recerca I Estudis Avancąts, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Phaedon Avouris
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Qing Dai
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
46
|
Cohn B, Prasad AK, Chuntonov L. Communication: Probing the interaction of infrared antenna arrays and molecular films with ultrafast quantum dynamics. J Chem Phys 2018; 148:131101. [DOI: 10.1063/1.5025600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Bar Cohn
- Schulich Faculty of Chemistry, Solid State Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Amit K. Prasad
- Schulich Faculty of Chemistry, Solid State Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Solid State Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
47
|
Yoo D, Mohr DA, Vidal-Codina F, John-Herpin A, Jo M, Kim S, Matson J, Caldwell JD, Jeon H, Nguyen NC, Martin-Moreno L, Peraire J, Altug H, Oh SH. High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps. NANO LETTERS 2018; 18:1930-1936. [PMID: 29437401 DOI: 10.1021/acs.nanolett.7b05295] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a wafer-scale array of resonant coaxial nanoapertures as a practical platform for surface-enhanced infrared absorption spectroscopy (SEIRA). Coaxial nanoapertures with sub-10 nm gaps are fabricated via photolithography, atomic layer deposition of a sacrificial Al2O3 layer to define the nanogaps, and planarization via glancing-angle ion milling. At the zeroth-order Fabry-Pérot resonance condition, our coaxial apertures act as a "zero-mode resonator (ZMR)", efficiently funneling as much as 34% of incident infrared (IR) light along 10 nm annular gaps. After removing Al2O3 in the gaps and inserting silk protein, we can couple the intense optical fields of the annular nanogap into the vibrational modes of protein molecules. From 7 nm gap ZMR devices coated with a 5 nm thick silk protein film, we observe high-contrast IR absorbance signals drastically suppressing 58% of the transmitted light and infer a strong IR absorption enhancement factor of 104∼105. These single nanometer gap ZMR devices can be mass-produced via batch processing and offer promising routes for broad applications of SEIRA.
Collapse
Affiliation(s)
- Daehan Yoo
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Daniel A Mohr
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ferran Vidal-Codina
- Department of Aeronautics and Astronautics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Aurelian John-Herpin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015 , Switzerland
| | - Minsik Jo
- Department of Physics and Department of Energy Systems Research , Ajou University , Suwon 16499 , Korea
| | - Sunghwan Kim
- Department of Physics and Department of Energy Systems Research , Ajou University , Suwon 16499 , Korea
| | - Joseph Matson
- Department of Mechanical Engineering , Vanderbilt University , Nashville , Tennessee 37212 , United States
| | - Joshua D Caldwell
- Department of Mechanical Engineering , Vanderbilt University , Nashville , Tennessee 37212 , United States
| | - Heonsu Jeon
- Department of Physics and Astronomy , Seoul National University , Seoul 08826 , Korea
| | - Ngoc-Cuong Nguyen
- Department of Aeronautics and Astronautics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Luis Martin-Moreno
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza , E-50009 Zaragoza , Spain
| | - Jaime Peraire
- Department of Aeronautics and Astronautics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015 , Switzerland
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
48
|
Gu Y, Zhu Z, Song J, Zeng H. Triangle-, tripod-, and tetrapod-branched ITO nanocrystals for anisotropic infrared plasmonics. NANOSCALE 2017; 9:19374-19383. [PMID: 29199742 DOI: 10.1039/c7nr07895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While many sophisticated geometries of metallic nanoparticles have been explored for plasmon resonance in the visible light waveband, similar structures for infrared plasmonics have seldom been studied. Herein, for the first time, we report branched colloidal Sn-doped In2O3 (ITO) NCs prepared through heating metal organic precursors in a high boiling solvent and surfactants via a simple one-pot method and their interesting anisotropic infrared plasmonics. Shaped ITO NCs were anisotropically grown into triangles, tripods, and tetrapods from spherical particles by tuning the composition of the surfactants. Interestingly, such anisotropic ITO NCs exhibit shape-dependent localized surface plasmon resonances. A new peak emerged at a low energy band, and the peak intensity increases when the particles become more anisotropic. Meanwhile, a redshift of this newly emerging peak and a blueshift of the original peak can also be observed. The proposed overlapping spheroid model successfully explained those features and the calculated extinction spectra matched excellently with the experimental data. Moreover, the origins of those peaks were also revealed and assigned to in-plane longitudinal and out-of-plane transverse modes, respectively. This work may help design more sophisticated structures for infrared plasmonics and broaden its applications in various areas.
Collapse
Affiliation(s)
- Yu Gu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | | | | | | |
Collapse
|
49
|
Le THH, Tanaka T. Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules. ACS NANO 2017; 11:9780-9788. [PMID: 28945355 DOI: 10.1021/acsnano.7b02743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the most attractive potentials of plasmonic metamaterials is the amplification of intrinsically weak signals such as molecular infrared absorption or Raman scattering for detection applications. This effect, however, is only effective when target molecules are located at the enhanced electromagnetic field of the plasmonic structures (i.e., hot-spots). It is thus of significance to control the spatial overlapping of molecules and hot-spots, yet it is a long-standing challenge, since it involves the handling of molecules in nanoscale spaces. Here a metamaterial consisting of a nanofluidic channel with a depth of several tens of nanometers sandwiched between plasmonic resonators and a metal film enables the controllable delivery of small molecules into the most enhanced field arising from the quadrupole mode of the structures, forming a plasmon-molecular coupled system. It offers an ultrasensitive platform for detection of IR absorption and molecular sensing. Notably, the precise handling of molecules in a fixed and ultrasmall (10-100 nm) gap also addressed some critical issues in IR spectroscopy such as quantitative measurement and measurement in aqueous solution. Moreover, a drastic change in the reflectance characteristic resulting from the strong coupling between molecules and plasmonic structures indicates that molecules can also be utilized as triggers for actively switching the optical property of metamaterials.
Collapse
Affiliation(s)
- Thu H H Le
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics , Wako, Saitama 351-0198, Japan
| | - Takuo Tanaka
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics , Wako, Saitama 351-0198, Japan
- Metamaterials Laboratory, RIKEN , Wako, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology , Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
50
|
Zhu X, Yip HK, Zhuo X, Jiang R, Chen J, Zhu XM, Yang Z, Wang J. Realization of Red Plasmon Shifts up to ∼900 nm by AgPd-Tipping Elongated Au Nanocrystals. J Am Chem Soc 2017; 139:13837-13846. [DOI: 10.1021/jacs.7b07462] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xingzhong Zhu
- Key
Laboratory for Thin Film and Microfabrication of Ministry of Education,
Department of Micro/Nano Electronics, School of Electronic Information
and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hang Kuen Yip
- Department
of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaolu Zhuo
- Department
of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ruibin Jiang
- Key
Shaanxi Engineering Lab for Advanced Energy Technology, School of
Material Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jianli Chen
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Xiao-Ming Zhu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Zhi Yang
- Key
Laboratory for Thin Film and Microfabrication of Ministry of Education,
Department of Micro/Nano Electronics, School of Electronic Information
and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianfang Wang
- Department
of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|