1
|
Liu Q, Zhang S, Qu X, Xing Y, Xiao Z, Fan S, Zhu J, Huang M, Bi H. A novel strategy based on the dielectric barrier discharge plasma for rapid elimination of the carryover associated with μPESI-MS/MS system. J Pharm Anal 2024; 14:101017. [PMID: 39759972 PMCID: PMC11697052 DOI: 10.1016/j.jpha.2024.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 01/07/2025] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Qian Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong RangerBio Technologies Co., Ltd., Dongguan, Guangdong, 523000, China
| | - Simin Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiangyang Qu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yunhui Xing
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhenwei Xiao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Janshon Zhu
- Guangdong RangerBio Technologies Co., Ltd., Dongguan, Guangdong, 523000, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Wang H, Sun L, Zhao Y, Qiu Y. DFT Study on the Second-Order NLO Responses of 2-Phenyl Benzoquinoline Ir(III) Complexes by Substituents and Redox Effects. J Phys Chem A 2024; 128:8709-8716. [PMID: 39344984 DOI: 10.1021/acs.jpca.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Metal complexes have received extensive attention in nonlinear optical (NLO) materials because of their advantages, such as shorter response times and more flexible structural properties. Density functional theory is used in investigating the geometric structures, electronic structures, charge centroid, and first hyperpolarizability (βtot) of a series of selected 15 coordinated Ir(III) complexes. The substitute effect and one-electron redox process effects on the structures and properties of 15 coordinated Ir(III) complexes are considered. When the electron-withdrawing group is introduced into the ligand, the HOMO-LUMO energy gap decreases and the βtot value increases, positively correlating with the electron-withdrawing ability. The single electron redox process can also improve the NLO responses of complexes, especially the reduction process. The βtot value of complex 4- is the largest, 2078 times higher than that of complex 4. The analysis shows that the variation of NLO responses of complexes is ascribed to the change of electronic structures and the charge transfer modes induced by the ligand modification and redox process, which are considered to be two effective methods in enhancing the NLO responses of 2-phenyl benzoquinoline Ir(III) complexes. This study aims to offer design insights into high-performance nonlinear optical materials.
Collapse
Affiliation(s)
- Hequn Wang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Liting Sun
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuanyuan Zhao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongqing Qiu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Budny-Godlewski K, Piekarski DG, Justyniak I, Leszczyński MK, Nawrocki J, Kubas A, Lewiński J. Uncovering Factors Controlling Reactivity of Metal-TEMPO Reaction Systems in the Solid State and Solution. Chemistry 2024; 30:e202401968. [PMID: 38801170 DOI: 10.1002/chem.202401968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Nitroxides find application in various areas of chemistry, and a more in-depth understanding of factors controlling their reactivity with metal complexes is warranted to promote further developments. Here, we report on the effect of the metal centre Lewis acidity on both the distribution of the O- and N-centered spin density in 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and turning TEMPO from the O- to N-radical mode scavenger in metal-TEMPO systems. We use Et(Cl)Zn/TEMPO model reaction system with tuneable reactivity in the solid state and solution. Among various products, a unique Lewis acid-base adduct of Cl2Zn with the N-ethylated TEMPO was isolated and structurally characterised, and the so-called solid-state 'slow chemistry' reaction led to a higher yield of the N-alkylated product. The revealed structure-activity/selectivity correlations are exceptional yet are entirely rationalised by the mechanistic underpinning supported by theoretical calculations of studied model systems. This work lays a foundation and mechanistic blueprint for future metal/nitroxide systems exploration.
Collapse
Affiliation(s)
- Krzysztof Budny-Godlewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Dariusz G Piekarski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał K Leszczyński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Jan Nawrocki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
4
|
Perez-Jimenez M, Crimmin MR. Photochemical H 2 activation by an Zn-Fe heterometallic: a mechanistic investigation. Chem Sci 2024; 15:1424-1430. [PMID: 38274073 PMCID: PMC10806748 DOI: 10.1039/d3sc05966a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Addition of H2 to a Zn-Fe complex was observed to occur under photochemical conditions (390 or 428 nm LED) and leads to the formation of a heterometallic dihydride complex. The reaction does not occur under thermal conditions and DFT calculations suggest this is an endergonic, light driven process. Through a combined experimental and computational approach, the plausible mechanisms for H2 activation were investigated. Inhibition experiments, double-label cross-over experiments, radical trapping experiments, EPR spectroscopy and DFT calculations were used to gain insight into this system. The combined data are consistent with two plausible mechanisms, the first involving ligand dissociation followed by oxidative addition of H2 at the Fe centre, the second involving homolytic fragmentation of the Zn-Fe heterometallic and formation of radical intermediates.
Collapse
Affiliation(s)
- Marina Perez-Jimenez
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane, White City London W12 0Z UK
| | - Mark R Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane, White City London W12 0Z UK
| |
Collapse
|
5
|
Bekri L, Elhorri AM, Hedidi M, Zouaoui-Rabah M. Theoretical study of the Tetraaminelithium and Tetraaminesodium molecules complexed with H -, Li - and Na - anions: static and dynamic NLO parameters. J Mol Model 2023; 30:8. [PMID: 38091098 DOI: 10.1007/s00894-023-05801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024]
Abstract
CONTEXT This work focuses on the study of six molecules composed of the TetraAmineLithium (TALi+) and TetraAmineSodium (TANa+) structures linked with the anions H-, Li- and Na-. The NLO results obtained by these calculations showed significant values of static first hyperpolarizabilities (βtot) ranging from 8.74 * 10-30 to 691.99 * 10-30 esu. The two molecules TALi-Li and TALi-Na gave the highest values of static βtot equal to 563.20 and 691.99 * 10-30 esu respectively and static second hyperpolarizabilities (γav) of 680.02 and 779.05 * 10-35 esu. The highest dynamic first hyperpolarizabilities (β||) values are around 1474080.00 * 10-30 esu and 6,145,080.00 * 10-30 esu at 720 nm lasers and which are attributed to the two molecules TANa-Li and TANa-Na respectively. Four molecules have push-pull behavior where the anions are donor groups, the Li+-NH3 and Na+-NH3 groups are acceptor groups and a bridge composed by the three remaining NH3 ligands. The maximum wavelengths (λmax) in vacuum and in the presence of solvents for all molecules are in the range 240 to 870 nm. METHOD The software used in this study is Gaussian 16. The optimizations of the molecules were calculated by B3LYP-D3/6-31 + + G(d,p). The static first hyperpolarizability (βtot) was calculated by different functionals: CAM-B3LYP, LC-wPBE, LC-BLYP, M11, wB97X, HSEh1PBE and M06-2X and the MP2 method, the basis-set used is 6-31 + + G(d,p). Other calculations of static βtot were carried out by the CAM-B3LYP functional combined with several basis-sets: 6-31G(d,p), 6-31 + + G(d,p), cc-pVDZ, AUG-cc- pVDZ, 6-311G(d,p), 6-311 + + G(d,p), cc-pVTZ and AUG-cc-pVTZ. The calculations of the first (β||) and second (γ||) hyperpolarizabilities in second harmonic generation (SHG) were calculated by CAM-B3LYP/6-31 + + G(d,p). The delocalization energies (E(2)) were determined by the NBO approach and calculated by the same functional and basis-set cited before. The solvation Gibbs energies (ΔGsolv) were calculated using the implicit SMD model. Maximum wavelengths (λmax) and oscillator strengths ([Formula: see text]) were calculated by TD-CAM-B3LYP/6-31 + + G(d,p) in the presence of the implicit CPCM model.
Collapse
Affiliation(s)
- Lahcène Bekri
- Department of Chemistry, Faculty of Exact Sciences, Mustapha Stambouli, University of Mascara, Av. Cheikh El Khaldi, 29000, Mascara, Algeria
| | - Abdelkader M Elhorri
- Department of Chemistry, Faculty of Exact Sciences and Informatics, Hassiba BenBouali University, Chlef, Ouled Fares, P.O. Box 78C, 02180, Chlef, Algeria.
- Laboratory of Materials Chemistry Catalysis and Reactivity, Department of Chemistry, Faculty of Exact Sciences and Informatics, Hassiba BenBouali University, Chlef, Ouled Fares, P.O. Box 78C, 02180, Chlef, Algeria.
| | - Madani Hedidi
- Department of Chemistry, Faculty of Exact Sciences and Informatics, Hassiba BenBouali University, Chlef, Ouled Fares, P.O. Box 78C, 02180, Chlef, Algeria
- Laboratory of Materials Chemistry Catalysis and Reactivity, Department of Chemistry, Faculty of Exact Sciences and Informatics, Hassiba BenBouali University, Chlef, Ouled Fares, P.O. Box 78C, 02180, Chlef, Algeria
| | - Mourad Zouaoui-Rabah
- Laboratory of Materials Chemistry Catalysis and Reactivity, Department of Chemistry, Faculty of Exact Sciences and Informatics, Hassiba BenBouali University, Chlef, Ouled Fares, P.O. Box 78C, 02180, Chlef, Algeria
- Department of Preparatory Education in Science and Technology, National Polytechnic School of Oran Maurice Audin, Oran El M'naouer, Box B.P. 1523, Oran, Algeria
| |
Collapse
|
6
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
7
|
Brehm PC, Frontera A, Streubel R. On metal coordination of neutral open-shell P-ligands focusing on phosphanoxyls, their electron residence and reactivity. Chem Commun (Camb) 2022; 58:6270-6279. [PMID: 35579028 DOI: 10.1039/d2cc01302a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article highlights the discovery and development of phosphanoxyl complex chemistry starting from (neutral) low-coordinate phosphorus radicals and the quest of metal ligation effects. We describe synthesis and reactions of precursors, namely 2,2,6,6-tetramethylpiperidinoxyl (TEMPO) substituted phosphane tungsten(0) complexes. Trapping reactions of transient phosphanoxyl complexes, formed via thermal homolytic N-O bond cleavage, as well as their use in radical polymerisations are illustrated, thus revealing an interesting reactivity dichotomy. DFT calculations provide insight into thermal stabilities of precursors and the resulting spin density distributions (SDDs) in these reactive intermediates. Systematic studies on the dependance of the electron delocalisation in phosphanoxyl complexes have been performed examining different substitution pattern at phosphorus and different co-ligand combinations at the tungsten(0) center. Preliminary results on Mn and Fe complexes are reported.
Collapse
Affiliation(s)
- Philipp C Brehm
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Antonio Frontera
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa, 07122 Palma, Baleares, Spain
| | - Rainer Streubel
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
8
|
Brehm PC, Müller-Feyen AS, Schnakenburg G, Streubel R. 1,3,2-Diheterophospholane complexes: access to new tuneable precursors of phosphanoxyl complexes and P-functional polymers. Dalton Trans 2022; 51:4400-4405. [PMID: 35195141 DOI: 10.1039/d2dt00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Synthesis of a testbed of P-H functional diheterophospholane complexes (3 and 6a,b) with no or little steric bulk at the α-position was achieved using [NEt4][WH(CO)5] as a combined reductant and complexation reagent. Reaction with TEMPO leads to P-OTEMP substituted tungsten complexes (4 and 7a,b) possessing different thermostabilities towards N-O bond cleavage. The transient phosphanoxyl complexes obtained were used for the polymerisation of styrene and acrylonitrile. DFT calculations were performed on the formation of various open-shell complexes and Loewdin spin density distributions.
Collapse
Affiliation(s)
- Philipp C Brehm
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Anne S Müller-Feyen
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Rainer Streubel
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
9
|
Theoretical study by DFT of organometallic complexes based on metallocenes active in NLO. J Mol Model 2021; 27:179. [PMID: 34023937 DOI: 10.1007/s00894-021-04797-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
This study is based on the valuation of a few model molecules. The objective of this research is focused on linear optical (LO) and nonlinear optical (NLO) enhancement of five organometallic molecules based on different metallocenes. These molecules were subjected to several calculations by different long-range functionals CAM-B3LYP, LC-BLYP, LC-wPBE, wB97X, M11, and the following three Minnesota functionals: M06-2X and M08-HX in comparison with the MP2 approach. Hence, the CAM-B3LYP functional gave the closest NLO values to the MP2 method. Second, molecule 3A based on nickelocene recorded the highest static (βtot) value which is 76.46 Χ 10-30 esu and 4803.4 Χ 10-30 esu under the laser wavelength λ = 532 nm. Third, intramolecular charge transfers (ICTs) of the molecules studied are all directed in both directions (donor to acceptor and vice versa). Finally, the specific solvent for molecules 2A and 3A is acetonitrile, and the maximum wavelengths obtained for the isolated or solvated molecule are all located in the near UV; the corresponding interval is between 250 and 395 nm. Graphical abstract.
Collapse
|
10
|
Shen Y, Li X, Ye J, Qiu Y. A DFT study on second-order NLO properties of bis-cyclometalated Iridium(III) complexes with chelating dicarbene auxiliary ligands. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Jiang BL, Lin Y, Wang ML, Liu DS, Xu BH, Zhang SJ. Cobalt-catalyzed direct transformation of aldehydes to esters: the crucial role of an enone as a mediator. Org Chem Front 2019. [DOI: 10.1039/c8qo01298a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An oxidative esterification of aldehydes with alkanols catalyzed by an in situ generated low-valent cobalt system has been developed using an enone as a mild oxidant.
Collapse
Affiliation(s)
- Biao-Lin Jiang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
- Beijing Key Laboratory of Ionic Liquids Clean Process
| | - Yang Lin
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Key Laboratory of Green Process and Engineering
- State Key Laboratory of Multiphase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Meng-Liang Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Dian-Sheng Liu
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Key Laboratory of Green Process and Engineering
- State Key Laboratory of Multiphase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
| | - Suo-Jiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- Key Laboratory of Green Process and Engineering
- State Key Laboratory of Multiphase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
| |
Collapse
|
12
|
Morales‐Cerrada R, Fliedel C, Daran J, Gayet F, Ladmiral V, Améduri B, Poli R. Fluoroalkyl Radical Generation by Homolytic Bond Dissociation in Pentacarbonylmanganese Derivatives. Chemistry 2018; 25:296-308. [PMID: 30230633 DOI: 10.1002/chem.201804007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Roberto Morales‐Cerrada
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
- ICGMUniv MontpellierCNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| | - Christophe Fliedel
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Jean‐Claude Daran
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Florence Gayet
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Vincent Ladmiral
- ICGMUniv MontpellierCNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| | - Bruno Améduri
- ICGMUniv MontpellierCNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| | - Rinaldo Poli
- CNRSLCC (Laboratoire de Chimie de Coordination)Université de Toulouse, UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| |
Collapse
|
13
|
Yang F, Dong X, Feng M, Zhao J, Wang J. Central-metal effect on intramolecular vibrational energy transfer of M(CO) 5Br (M = Mn, Re) probed by two-dimensional infrared spectroscopy. Phys Chem Chem Phys 2018; 20:3637-3647. [PMID: 29340363 DOI: 10.1039/c7cp05117d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vibrational energy transfer in transition metal complexes with flexible structures in condensed phases is of central importance to catalytical chemistry processes. In this work, two molecules with different metal atoms, M(CO)5Br (where M = Mn, Re), were used as model systems, and their axial and radial carbonyl stretching modes as infrared probes. The central-metal effect on intramolecular vibrational energy redistribution (IVR) in M(CO)5Br was investigated in polar and nonpolar solvents. The linear infrared (IR) peak splitting between carbonyl vibrations increases as the metal atom changes from Mn to Re. The waiting-time dependent two-dimensional infrared diagonal- and off-diagonal peak amplitudes reveal a faster IVR process in Re(CO)5Br than in Mn(CO)5Br. With the aid of density functional theory (DFT) calculations, the central-metal effect on IVR time linearly correlates with the vibrational coupling strength between the two involved modes. In addition, the polar solvent is found to accelerate the IVR process by affecting the anharmonic vibrational potentials of a solute vibration mode.
Collapse
Affiliation(s)
- Fan Yang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | | | | | | | | |
Collapse
|
14
|
Chen G, Daniliuc CG, Kehr G, Erker G. Making Use of the Functional Group Combination of a Phosphane/Borane Lewis Pair Connected by an Unsaturated Four‐Carbon Bridge. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guo‐Qiang Chen
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
15
|
Pump E, Viger-Gravel J, Abou-Hamad E, Samantaray MK, Hamzaoui B, Gurinov A, Anjum DH, Gajan D, Lesage A, Bendjeriou-Sedjerari A, Emsley L, Basset JM. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy. Chem Sci 2017; 8:284-290. [PMID: 28451174 PMCID: PMC5365068 DOI: 10.1039/c6sc02379g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/12/2016] [Indexed: 01/16/2023] Open
Abstract
Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [([triple bond, length as m-dash]Si-O-)W(Me)5] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.
Collapse
Affiliation(s)
- Eva Pump
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| | - Jasmine Viger-Gravel
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| | - Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| | - Bilel Hamzaoui
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| | - Andrei Gurinov
- Imaging and Characterization Lab. King Abdullah University of Science and Technology (KAUST) , Thuwal , 23955-6900 , Saudi Arabia
| | - Dalaver H Anjum
- Imaging and Characterization Lab. King Abdullah University of Science and Technology (KAUST) , Thuwal , 23955-6900 , Saudi Arabia
| | - David Gajan
- Institut de Sciences Analytiques (CNRS/ENS-Lyon/UCB-Lyon 1) , Université de Lyon , Centre de RMN à Très Hauts Champs , 69100 Villeurbanne , France
| | - Anne Lesage
- Institut de Sciences Analytiques (CNRS/ENS-Lyon/UCB-Lyon 1) , Université de Lyon , Centre de RMN à Très Hauts Champs , 69100 Villeurbanne , France
| | - Anissa Bendjeriou-Sedjerari
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| |
Collapse
|
16
|
Liao WC, Ong TC, Gajan D, Bernada F, Sauvée C, Yulikov M, Pucino M, Schowner R, Schwarzwälder M, Buchmeiser MR, Jeschke G, Tordo P, Ouari O, Lesage A, Emsley L, Copéret C. Dendritic polarizing agents for DNP SENS. Chem Sci 2017; 8:416-422. [PMID: 28451187 PMCID: PMC5365053 DOI: 10.1039/c6sc03139k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/19/2016] [Indexed: 01/22/2023] Open
Abstract
Dendrimer-shielded polarizing agents for the application of DNP SENS to reactive surfaces.
Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an effective method to significantly improve solid-state NMR investigation of solid surfaces. The presence of unpaired electrons (polarizing agents) is crucial for DNP, but it has drawbacks such as leading to faster nuclear spin relaxation, or even reaction with the substrate under investigation. The latter can be a particular problem for heterogeneous catalysts. Here, we present a series of carbosilane-based dendritic polarizing agents, in which the bulky dendrimer can reduce the interaction between the solid surface and the free radical. We thereby preserve long nuclear T′2 of the surface species, and even successfully enhance a reactive heterogeneous metathesis catalyst.
Collapse
Affiliation(s)
- Wei-Chih Liao
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5 , 8093 Zürich , Switzerland .
| | - Ta-Chung Ong
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5 , 8093 Zürich , Switzerland .
| | - David Gajan
- Centre de RMN à Très Hauts Champs , Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon 1) , Université de Lyon , 69100 Villeurbanne , France
| | - Florian Bernada
- Aix-Marseille Univ , CNRS , ICR UMR 7273 , Marseille , 13013 , France
| | - Claire Sauvée
- Aix-Marseille Univ , CNRS , ICR UMR 7273 , Marseille , 13013 , France
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5 , 8093 Zürich , Switzerland .
| | - Margherita Pucino
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5 , 8093 Zürich , Switzerland .
| | - Roman Schowner
- Institut für Polymerchemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Martin Schwarzwälder
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5 , 8093 Zürich , Switzerland .
| | - Michael R Buchmeiser
- Institut für Polymerchemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5 , 8093 Zürich , Switzerland .
| | - Paul Tordo
- Aix-Marseille Univ , CNRS , ICR UMR 7273 , Marseille , 13013 , France
| | - Olivier Ouari
- Aix-Marseille Univ , CNRS , ICR UMR 7273 , Marseille , 13013 , France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs , Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon 1) , Université de Lyon , 69100 Villeurbanne , France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5 , 8093 Zürich , Switzerland .
| |
Collapse
|
17
|
Simpson CP, Adebolu OI, Kim JS, Vasu V, Asandei AD. Metal and Ligand Effects of Photoactive Transition Metal Carbonyls in the Iodine Degenerative Transfer Controlled Radical Polymerization and Block Copolymerization of Vinylidene Fluoride. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00698] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Christopher P. Simpson
- University of Connecticut Institute of Materials Science and Department of Chemistry, 97 North Eagleville Road, Storrs, Connecticut 06069-3136, United States
| | - Olumide I. Adebolu
- University of Connecticut Institute of Materials Science and Department of Chemistry, 97 North Eagleville Road, Storrs, Connecticut 06069-3136, United States
| | - Joon-Sung Kim
- University of Connecticut Institute of Materials Science and Department of Chemistry, 97 North Eagleville Road, Storrs, Connecticut 06069-3136, United States
| | - Vignesh Vasu
- University of Connecticut Institute of Materials Science and Department of Chemistry, 97 North Eagleville Road, Storrs, Connecticut 06069-3136, United States
| | - Alexandru D. Asandei
- University of Connecticut Institute of Materials Science and Department of Chemistry, 97 North Eagleville Road, Storrs, Connecticut 06069-3136, United States
| |
Collapse
|
18
|
DeYonker NJ, Webster CE. The trans–cis isomerization of Ni(η2-TEMPO)2: Interconnections and conformational complexity. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Ryland BL, McCann SD, Brunold TC, Stahl SS. Mechanism of alcohol oxidation mediated by copper(II) and nitroxyl radicals. J Am Chem Soc 2014; 136:12166-73. [PMID: 25090238 DOI: 10.1021/ja5070137] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
2,2'-Bipyridine-ligated copper complexes, in combination with TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl), are highly effective catalysts for aerobic alcohol oxidation. Considerable uncertainty and debate exist over the mechanism of alcohol oxidation mediated by Cu(II) and TEMPO. Here, we report experimental and density functional theory (DFT) computational studies that distinguish among numerous previously proposed mechanistic pathways. Oxidation of various classes of radical-probe substrates shows that long-lived radicals are not formed in the reaction. DFT computational studies support this conclusion. A bimolecular pathway involving hydrogen-atom-transfer from a Cu(II)-alkoxide to a nitroxyl radical is higher in energy than hydrogen transfer from a Cu(II)-alkoxide to a coordinated nitroxyl species. The data presented here reconcile a collection of diverse and seemingly contradictory experimental and computational data reported previously in the literature. The resulting Oppenauer-like reaction pathway further explains experimental trends in the relative reactivity of different classes of alcohols (benzylic versus aliphatic and primary versus secondary), as well as the different reactivity observed between TEMPO and bicyclic nitroxyls, such as ABNO (ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl).
Collapse
Affiliation(s)
- Bradford L Ryland
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
20
|
Langeslay RR, Walensky JR, Ziller JW, Evans WJ. Reactivity of Organothorium Complexes with TEMPO. Inorg Chem 2014; 53:8455-63. [DOI: 10.1021/ic501034b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ryan R. Langeslay
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Justin R. Walensky
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
21
|
Lomont JP, Nguyen SC, Harris CB. Ultrafast infrared studies of the role of spin states in organometallic reaction dynamics. Acc Chem Res 2014; 47:1634-42. [PMID: 24819619 DOI: 10.1021/ar500032d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The importance of spin state changes in organometallic reactions is a topic of significant interest, as an increasing number of reaction mechanisms involving changes of spin state are consistently being uncovered. The potential influence of spin state changes on reaction rates can be difficult to predict, and thus this class of reactions remains among the least well understood in organometallic chemistry. Ultrafast time-resolved infrared (TRIR) spectroscopy provides a powerful tool for probing the dynamics of spin state changes in organometallic catalysis, as such processes often occur on the picosecond to nanosecond time scale and can readily be monitored in the infrared via the absorptions of carbonyl reporter ligands. In this Account, we summarize recent work from our group directed toward identifying trends in reactivity that can be used to offer predictive insight into the dynamics of coordinatively unsaturated organometallic reaction intermediates. In general, coordinatively unsaturated 16-electron (16e) singlets are able to coordinate to solvent molecules as token ligands to partially stabilize the coordinatively unsaturated metal center, whereas 16e triplets and 17-electron (17e) doublets are not, allowing them to diffuse more rapidly through solution than their singlet counterparts. Triplet complexes typically (but not always) undergo spin crossover prior to solvent coordination, whereas 17e doublets do not coordinate solvent molecules as token ligands and cannot relax to a lower spin state to do so. 16e triplets are typically able to undergo facile spin crossover to yield a 16e singlet where an associative, exothermic reaction pathway exists. The combination of facile spin crossover with faster diffusion through solution for triplets can actually lead to faster catalytic reactivity than for singlets, despite the forbidden nature of these reactions. We summarize studies on odd-electron complexes in which 17e doublets were found to display varying behavior with regard to their tendency to react with 2-electron donor ligands to form 19-electron (19e) adducts. The ability of 19e adducts to serve as reducing agents in disproportionation reactions depends on whether the excess electron density localized at the metal center or at a ligand site. The reactivity of both 16e and 17e complexes toward a widely used organic nitroxyl radical (TEMPO) are reviewed, and both classes of complexes generally react similarly via an associative mechanism with a low barrier to these reactions. We also describe recent work targeted at unraveling the photoisomerization mechanism of a thermal-solar energy storage complex in which spin state changes were found to play a crucial role. Although a key triplet intermediate was found to be required for this photoisomerization mechanism to proceed, the details of why this triplet is formed in some complexes (those based on ruthenium) and not others (those based on iron, molybdenum, or tungsten) remains uncertain, and further exploration in this area may lead to a better understanding of the factors that influence intramolecular and excited state spin state changes.
Collapse
Affiliation(s)
- Justin P. Lomont
- Department of Chemistry, University of California−Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Son C. Nguyen
- Department of Chemistry, University of California−Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Charles B. Harris
- Department of Chemistry, University of California−Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Isrow D, DeYonker NJ, Koppaka A, Pellechia PJ, Webster CE, Captain B. Metal–Ligand Synergistic Effects in the Complex Ni(η2-TEMPO)2: Synthesis, Structures, and Reactivity. Inorg Chem 2013; 52:13882-93. [PMID: 24262003 DOI: 10.1021/ic401296f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Derek Isrow
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Nathan J. DeYonker
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Anjaneyulu Koppaka
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Perry J. Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Charles Edwin Webster
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Burjor Captain
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| |
Collapse
|
23
|
Panman MR, Vos J, Bocokić V, Bellini R, de Bruin B, Reek JHN, Woutersen S. Exchanging conformations of a hydroformylation catalyst structurally characterized using two-dimensional vibrational spectroscopy. Inorg Chem 2013; 52:14294-8. [PMID: 24256078 DOI: 10.1021/ic402254q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalytic transition-metal complexes often occur in several conformations that exchange rapidly (<ms) in solution so that their spatial structures are difficult to characterize with conventional methods. Here, we determine specific bond angles in the two rapidly exchanging solution conformations of the hydroformylation catalyst (xantphos)Rh(CO)2H using two-dimensional vibrational spectroscopy, a method that can be applied to any catalyst provided that the exchange between its conformers occurs on a time scale of a few picoseconds or slower. We find that, in one of the conformations, the OC-Rh-CO angle deviates significantly from the canonical value in a trigonal-bipyramidal structure. On the basis of complementary density functional calculations, we ascribe this effect to attractive van der Waals interaction between the CO and the xantphos ligand.
Collapse
Affiliation(s)
- Matthijs R Panman
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|