1
|
Kaushik T, Ghosh S, Dolkar T, Biswas R, Dutta A. Noble Metal Plasmon-Molecular Catalyst Hybrids for Renewable Energy Relevant Small Molecule Activation. ACS NANOSCIENCE AU 2024; 4:273-289. [PMID: 39430376 PMCID: PMC11487674 DOI: 10.1021/acsnanoscienceau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 10/22/2024]
Abstract
Significant endeavors have been dedicated to the advancement of materials for artificial photosynthesis, aimed at efficiently harvesting light and catalyzing reactions such as hydrogen production and CO2 conversion. The application of plasmonic nanomaterials emerges as a promising option for this purpose, owing to their excellent light absorption properties and ability to confine solar energy at the nanoscale. In this regard, coupling plasmonic particles with molecular catalysts offers a pathway to create high-performance hybrid catalysts. In this review, we discuss the plasmonic-molecular complex hybrid catalysts where the plasmonic nanoparticles serve as the light-harvesting unit and promote interfacial charge transfer in tandem with the molecular catalyst which drives chemical transformation. In the initial section, we provide a concise overview of plasmonic nanomaterials and their photophysical properties. We then explore recent breakthroughs, highlighting examples from literature reports involving plasmonic-molecular complex hybrids in various catalytic processes. The utilization of plasmonic materials in conjunction with molecular catalysts represents a relatively unexplored area with substantial potential yet to be realized. This review sets a strong basis and motivation to explore the plasmon-induced hot-electron mediated photelectrochemical small molecule activation reactions. Utilizing in situ spectroscopic investigations and ultrafast transient absorption spectroscopy, it presents a comprehensive template for scalable and sustainable antenna-reactor systems.
Collapse
Affiliation(s)
- Tannu Kaushik
- Interdisciplinary
Program Climate Studies, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Suchismita Ghosh
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Thinles Dolkar
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Rathindranath Biswas
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Arnab Dutta
- Interdisciplinary
Program Climate Studies, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
- National
Centre of Excellence in Carbon Capture and Utilization, Mumbai, Maharashtra 400076, India
| |
Collapse
|
2
|
Yan M, Li Y, Liu C, Zhao Z, Shan Y, Li F, Sun L, Li F. Promoting H 2 generation of BiFeO 3 photocathodes by a catalyst-sensitizer dyad linked with Sn(dipicolinate) 2. Chem Commun (Camb) 2024; 60:5506-5509. [PMID: 38690677 DOI: 10.1039/d4cc01091d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
An innovative method for the fabrication of a catalyst-sensitizer dyad-based photoelectrode was developed by using the coordinated interaction between the pyridine-2,6-dicarboxylic group and Sn4+. A dyad (C1 + PDI) was loaded on the mesoporous BiFeO3 (BFO) photocathode for light-driven H2 generation. The dyad could expand the light absorption range and promote the surface charge separation of BFO, resulting in an enhanced photocurrent.
Collapse
Affiliation(s)
- Meiqi Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Yingzheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Ziqi Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Yu Shan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Zong C, Kong L, Li C, Xv H, Lv M, Chen X, Li C. Light-harvesting iridium (III) complex-sensitized NiO photocathode for photoelectrochemical bioanalysis. Mikrochim Acta 2024; 191:223. [PMID: 38556564 DOI: 10.1007/s00604-024-06321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
A novel iridium (III) complex bearing boron dipyrromethene (Bodipy) as the light-harvesting antenna has been synthesized and is firstly employed as photosensitizer to assemble a dye-sensitized NiO photocathode. The assembled photocathode exhibits significantly improved photoelectrochemical (PEC) performance. Integrating the prepared photocathode with hybridization chain reaction (HCR)--based signal amplification strategy, a cathodic PEC biosensor is proposed for the detection of microRNA-133a (miRNA-133a). In the presence of the target, HCR is triggered to form long duplex concatamers on the photocathode, which allows numerous manganese porphyrins (MnPP) to bind in the dsDNA groove. With the help of H2O2, MnPP with peroxidase-like activity catalyzes 4--chloro-1-naphthol (4-CN) to produce benzo--4--chlorohexadienone (4-CD) precipitate on the electrode, leading to a significant decrease of photocurrent signal. The decreased photocurrent correlates linearly with the target concentration from 0.1 fM to 1 nM with a detection limit of 66.2 aM (S/N = 3). The proposed PEC strategy exhibits delightful selectivity, reproducibility and stability.
Collapse
Affiliation(s)
- Chengxue Zong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Linghui Kong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Can Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Huijuan Xv
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Mengwei Lv
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaodong Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Chunxiang Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
4
|
Tang K, Shao JY, Zhong YW. A Multi-Pyridine-Anchored and -Linked Bilayer Photocathode for Water Reduction. Chemistry 2023; 29:e202302663. [PMID: 37782056 DOI: 10.1002/chem.202302663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
The development of efficient photocathodes is of critical importance for the constructions of promising tandem photo-electrochemical cells. Most known dye-sensitized photocathodes are prepared with the conventional carboxylic or phosphonic acid anchors and require the presence of other terminal linking groups to connect catalysts; they suffer from high synthetic difficulty and low adsorption stability in aqueous media. Here, a compact bilayer photocathode has been prepared by using a pyrene-based photosensitizer with multiple terminal pyridine moieties as both the anchoring and linking groups to connect a Co hydrogen-evolution catalyst to the NiO substrate. The catalyst and dye molecule are assembled in a layer-by-layer manner on NiO through the metal-pyridine coordination. This photocathode exhibits good dye adsorption stability in aqueous media. A stable cathodic photocurrent of 70 μA cm-2 was achieved, with H2 being generated at the photocathode under the visible-light irradiation. The Faraday efficiency of H2 evolution was estimated to be 9.1 %. Transient absorption spectral studies suggest that the interfacial hole transfer occurs within a few picoseconds. The integration of the organic photosensitizer with pyridine anchoring and linking groups is expected to provide a simple method for the fabrication of stable and efficient photocathodes.
Collapse
Affiliation(s)
- Kun Tang
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Key Laboratory of Photochemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Key Laboratory of Photochemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Key Laboratory of Photochemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zhao Y, Niu Z, Zhao J, Xue L, Fu X, Long J. Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Xu X, Li Y, Liu C, Zhang P, Fan K, Wu X, Shan Y, Li F. Optimized H 2-evolving dye-sensitized LaFeO 3 photocathodes prepared via the layer-by-layer assembly of dyes and catalysts. Dalton Trans 2023; 52:5848-5853. [PMID: 37092596 DOI: 10.1039/d3dt00542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A molecular dye and a molecular catalyst were loaded onto the surface of a mesoporous LaFeO3 (LFO) film via layer-by-layer assembly relying on the coordination of phosphates and Zr4+. After assembling six layers of the dye and four layers of the catalyst, the (NiP-4 + PQA-6)@LFO photocathode exhibited a significant photocurrent for light-driven H2 generation.
Collapse
Affiliation(s)
- Ximeng Xu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Yingzheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Ke Fan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Yu Shan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| |
Collapse
|
7
|
Yan X, Xue J, Wang Y. Synthesis and Theoretical and Photophysical Study on a Series of Neutral Ruthenium(II) Complexes with Donor-Metal-Accepter Configuration. Inorg Chem 2023; 62:1476-1487. [PMID: 36657168 DOI: 10.1021/acs.inorgchem.2c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In order to construct a new type of ruthenium(II) terpyridine complexes with activated triplet metal-centered (3MC) states, as well as stabilized triplet metal-to-ligand charge transfer (3MLCT) states, conducive to fine emissive performances, Ru-1, Ru-2, Ru-3, and Ru-4 were synthesized. Compared with the [Ru(terpyridine)2]2+ prototype (0.25 ns), this series of ruthenium(II) terpyridine complexes exhibit lengthened excited state lifetime (43.3 ns for Ru-1, 52.7 ns for Ru-2, 43.6 ns for Ru-3, and 53.4 ns for Ru-4). Interfragment charge transfer analysis illustrates the electron transfer direction of the four complexes, manifesting their intramolecular charge transfer characteristic. When excited, their lowest-lying triplet states are assigned as 3MLCT based on spin-density surface distribution. The singlet excited states and 3MLCT states were thoroughly studied by UV-visual absorption and nanosecond time-resolved transient absorption spectra, respectively. Photoluminescence spectra revealed their weak broadband near-infrared emission at room temperature and red phosphorescence at 77 K. The low molecular weight and the good thermal stability make Ru-1 and Ru-2 suitable for vaporization coating, while the fine solubility in common organic solvents makes Ru-3 and Ru-4 suitable for solution processing. Furthermore, the intrinsic electroneutrality and favorable energy levels endow them with new potential to be applied in the optoelectronic field.
Collapse
Affiliation(s)
- Xianju Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jianan Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Jihua Hengye Electronic Materials CO. LTD. Foshan, Guangdong Province 528200, P. R. China
| |
Collapse
|
8
|
Lalaoui N, Abdellah M, Materna KL, Xu B, Tian H, Thapper A, Sa J, Hammarström L, Ott S. Gold nanoparticle-based supramolecular approach for dye-sensitized H 2-evolving photocathodes. Dalton Trans 2022; 51:15716-15724. [PMID: 36177940 DOI: 10.1039/d2dt02798d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solar conversion of water into the storable energy carrier H2 can be achieved through photoelectrochemical water splitting using light adsorbing anodes and cathodes bearing O2 and H2 evolving catalysts, respectively. Herein a novel photocathode nanohybrid system is reported. This photocathode consists of a dye-sensitized p-type nickel oxide (NiO) with a perylene-based chromophore (PCA) and a tetra-adamantane modified cobaloxime reduction catalyst (Co) that photo-reduces aqueous protons to H2. An original supramolecular approach was employed, using β-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) to link the alkane chain of the PCA dye to the adamantane moieties of the cobaloxime catalyst (Co). This new architecture was investigated by photoelectrochemical measurements and via femtosecond-transient absorption spectroscopy. The results show that irradiation of the complete NiO|PCA|β-CD-AuNPs|Co electrode leads to ultrafast hole injection into NiO (π = 3 ps) from the excited dye, followed by rapid reduction of the catalyst, and finally H2 evolution.
Collapse
Affiliation(s)
- Noémie Lalaoui
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden. .,Univ. Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, 38000 Grenoble, France
| | - Mohamed Abdellah
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden. .,Department of Chemistry, Qena Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Kelly L Materna
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | - Bo Xu
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | - Haining Tian
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | - Anders Thapper
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | - Jacinto Sa
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden. .,Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Leif Hammarström
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | - Sascha Ott
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| |
Collapse
|
9
|
Shi L, Benetti D, Li F, Wei Q, Rosei F. Design of MOF-Derived NiO-Carbon Nanohybrids Photocathodes Sensitized with Quantum Dots for Solar Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201815. [PMID: 35521950 DOI: 10.1002/smll.202201815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Nickel oxide (NiO) is a promising p-type material for a wide range of optoelectronic devices, as well as photocathode for photoelectrochemical (PEC) water splitting. However, traditional NiO photoelectrodes exhibit a wide bandgap (3.6 eV), intrinsic poor electrical conductivity, and low surface area, leading to low PEC systems performance. Herein, the authors explore a Ni-based metal-organic framework (MOF) template method to obtain hierarchical hollow spheres of carbon/NiO nanostructure by successive carbonization and oxidation treatments. After sensitization with core and core-shell quantum dots (QDs), the optimized NiO-photocathode exhibits a maximum current density of -93.6 µA cm-2 at 0 V versus RHE (reversible hydrogen electrode) in neutral pH (6.8) and -285 µA cm-2 at -0.4 V versus RHE. Compared to pure NiO and single-core CdSe QDs, a 2.2-fold increase in photocurrent can be obtained. The improvement in the performance of this hybrid is not only due to the high surface area for loading QDs and light scattering, but also to the presence of a highly conductive carbon matrix that promotes fast charge transfer. The proposed MOFs-based NiO/carbon photocathode sensitized with QDs can be an effective strategy to improve the efficiency of metal oxide-based PEC systems for hydrogen generation.
Collapse
Affiliation(s)
- Li Shi
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Daniele Benetti
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
| | - Faying Li
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
| |
Collapse
|
10
|
Active repair of a dinuclear photocatalyst for visible-light-driven hydrogen production. Nat Chem 2022; 14:500-506. [DOI: 10.1038/s41557-021-00860-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/19/2021] [Indexed: 12/30/2022]
|
11
|
Seddon AA, Karlsson JKG, Gibson EA, O’Reilly L, Kaufmann M, Vos JG, Pryce MT. Photoelectrochemical Hydrogen Evolution Using Dye-Sensitised Nickel Oxide : Environmental effects and photocatalyst design considerations. JOHNSON MATTHEY TECHNOLOGY REVIEW 2022. [DOI: 10.1595/205651322x16269403109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoelectrocatalysis offers a way to generate hydrogen and oxygen from water under ambient light. Here, a series of hydrogen evolving photocatalysts based on a ruthenium(II) bipyridyl sensitiser covalently linked to platinum or palladium catalytic centres were adsorbed onto mesoporous
nickel oxide and tested for hydrogen evolution in a photoelectrochemical half-cell. The electrolyte buffer was varied and certain catalysts performed better at pH 7 than pH 3 (for example, PC3 with photocurrent density = 8 μA cm‐2), which is encouraging for coupling with
an oxygen evolving photoanode in tandem water splitting devices. The molecular catalysts were surprisingly robust when integrated into devices, but the overall performance appears to be limited by rapid recombination at the photocatalyst|NiO interface. Our findings provide further insight
towards basic design principles for hydrogen evolving photoelectrochemical systems and guidelines for further development.
Collapse
Affiliation(s)
- Abigail A. Seddon
- Chemistry, School of Natural and Environmental Sciences, Newcastle University NE1 7RU UK
| | - Joshua K. G. Karlsson
- Chemistry, School of Natural and Environmental Sciences, Newcastle University NE1 7RU UK
| | - Elizabeth A. Gibson
- Chemistry, School of Natural and Environmental Sciences, Newcastle University NE1 7RU UK
| | - Laura O’Reilly
- School of Chemical Sciences, Dublin City University Dublin 9 Ireland
| | - Martin Kaufmann
- School of Chemical Sciences, Dublin City University Dublin 9 Ireland
| | - Johannes G. Vos
- School of Chemical Sciences, Dublin City University Dublin 9 Ireland
| | - Mary T. Pryce
- School of Chemical Sciences, Dublin City University Dublin 9 Ireland
| |
Collapse
|
12
|
Joshi G, Mir AQ, Layek A, Ali A, Aziz ST, Khatua S, Dutta A. Plasmon-Based Small-Molecule Activation: A New Dawn in the Field of Solar-Driven Chemical Transformation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gayatri Joshi
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Ab Qayoom Mir
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arkaprava Layek
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Afsar Ali
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sk. Tarik Aziz
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Saumyakanti Khatua
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
13
|
Giannoudis E, Bold S, Müller C, Schwab A, Bruhnke J, Queyriaux N, Gablin C, Leonard D, Saint-Pierre C, Gasparutto D, Aldakov D, Kupfer S, Artero V, Dietzek B, Chavarot-Kerlidou M. Hydrogen Production at a NiO Photocathode Based on a Ruthenium Dye-Cobalt Diimine Dioxime Catalyst Assembly: Insights from Advanced Spectroscopy and Post-operando Characterization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49802-49815. [PMID: 34637266 DOI: 10.1021/acsami.1c12138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of hydrogen by efficient, low-cost, and integrated photoelectrochemical water splitting processes represents an important target for the ecological transition. This challenge can be addressed thanks to bioinspired chemistry and artificial photosynthesis approaches by designing dye-sensitized photocathodes for hydrogen production, incorporating bioinspired first-row transition metal-based catalysts. The present work describes the preparation and photoelectrochemical characterization of a NiO photocathode sensitized with a phosphonate-derivatized ruthenium tris-diimine photosensitizer covalently linked to a cobalt diimine dioxime hydrogen-evolving catalyst. Under simulated AM 1.5G irradiation, hydrogen is produced with photocurrent densities reaching 84 ± 7 μA·cm-2, which is among the highest values reported so far for dye-sensitized photocathodes with surface-immobilized catalysts. Thanks to the unique combination of advanced spectroscopy and surface characterization techniques, the fast desorption of the dyad from the NiO electrode and the low yield of electron transfer to the catalyst, resulting in the Co demetallation from the diimine dioxime framework, were identified as the main barriers limiting the performances and the stability of the system. This work therefore paves the way for a more rational design of molecular photocathodes for solar fuel production and represents a further step toward the development of sustainable processes for the production of hydrogen from sunlight and water.
Collapse
Affiliation(s)
- Emmanouil Giannoudis
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Sebastian Bold
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Carolin Müller
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Alexander Schwab
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Jakob Bruhnke
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Nicolas Queyriaux
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Corinne Gablin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, F-69100 Villeurbanne, France
| | - Didier Leonard
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, F-69100 Villeurbanne, France
| | | | - Didier Gasparutto
- Univ. Grenoble Alpes, CNRS, CEA IRIG, SyMMES, F-38000 Grenoble, France
| | - Dmitry Aldakov
- Univ. Grenoble Alpes, CNRS, CEA IRIG, SyMMES, F-38000 Grenoble, France
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
14
|
Wahyuono RA, Braumüller M, Bold S, Amthor S, Nauroozi D, Plentz J, Wächtler M, Rau S, Dietzek B. Localizing the initial excitation - A case study on NiO photocathodes using Ruthenium dipyridophenazine complexes as sensitizers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119507. [PMID: 33578124 DOI: 10.1016/j.saa.2021.119507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
We report on the localization of the initially excited electronic state within the molecular framework of a series of [Ru(bpy)2dppz]2+ derivatives (bpy:2,2'-bipyridine, dppz: dipyrido-phenazine) as sensitizers in NiO based photocathodes. The introduction of conjugated linkers with phenylene and triazole moieties in the bpy ligand sphere separates the NiO surface from the metal center and hence is considered to stabilize the charge separated state, which results from light-driven hole injection. However, introduction of the conjugated linkers also alters the localization of the excess electron density in the excited state within the ligand sphere and impacts the extent to which the charge-separated state is formed. The study emphasizes that tuning the ligand with the lowest-energy π* orbital distal or proximal to the NiO surface significantly affects the initial charge-separation and the solar cell performance. The stability of the charge-separated state correlates with the observed photocurrents in dye-sensitized solar cells. Furthermore, the study challenges the widely accepted concept that the introduction of extended anchoring groups, i.e. increasing Ru - NiO distance, stabilizes the charge-separated state and suppresses charge recombination at the metal-oxide molecule interface.
Collapse
Affiliation(s)
- Ruri Agung Wahyuono
- Leibniz-Institute of Photonic Technology (IPHT) Jena e.V., Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany; Institute of Physical Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany; Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Jl. Arif Rahman Hakim, Sukolilo, 60111 Surabaya, Indonesia
| | - Markus Braumüller
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sebastian Bold
- Leibniz-Institute of Photonic Technology (IPHT) Jena e.V., Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany; Institute of Physical Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany; Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Sebastian Amthor
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Djawed Nauroozi
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jonathan Plentz
- Leibniz-Institute of Photonic Technology (IPHT) Jena e.V., Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Maria Wächtler
- Leibniz-Institute of Photonic Technology (IPHT) Jena e.V., Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany; Institute of Physical Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Benjamin Dietzek
- Leibniz-Institute of Photonic Technology (IPHT) Jena e.V., Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany; Institute of Physical Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany.
| |
Collapse
|
15
|
Bold S, Massin J, Giannoudis E, Koepf M, Artero V, Dietzek B, Chavarot-Kerlidou M. Spectroscopic Investigations Provide a Rationale for the Hydrogen-Evolving Activity of Dye-Sensitized Photocathodes Based on a Cobalt Tetraazamacrocyclic Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sebastian Bold
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Julien Massin
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Emmanouil Giannoudis
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Matthieu Koepf
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
16
|
Sherman BD, McMillan NK, Willinger D, Leem G. Sustainable hydrogen production from water using tandem dye-sensitized photoelectrochemical cells. NANO CONVERGENCE 2021; 8:7. [PMID: 33650039 PMCID: PMC7921270 DOI: 10.1186/s40580-021-00257-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 05/06/2023]
Abstract
If generated from water using renewable energy, hydrogen could serve as a carbon-zero, environmentally benign fuel to meet the needs of modern society. Photoelectrochemical cells integrate the absorption and conversion of solar energy and chemical catalysis for the generation of high value products. Tandem photoelectrochemical devices have demonstrated impressive solar-to-hydrogen conversion efficiencies but have not become economically relevant due to high production cost. Dye-sensitized solar cells, those based on a monolayer of molecular dye adsorbed to a high surface area, optically transparent semiconductor electrode, offer a possible route to realizing tandem photochemical systems for H2 production by water photolysis with lower overall material and processing costs. This review addresses the design and materials important to the development of tandem dye-sensitized photoelectrochemical cells for solar H2 production and highlights current published reports detailing systems capable of spontaneous H2 formation from water using only dye-sensitized interfaces for light capture.
Collapse
Affiliation(s)
- Benjamin D Sherman
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA.
| | - Nelli Klinova McMillan
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA
| | - Debora Willinger
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, NY, 13210, USA
| |
Collapse
|
17
|
Pei Y, Ge Y, Zhang X, Li Y. Cathodic photoelectrochemical aptasensor based on NiO/BiOI/Au NP composite sensitized with CdSe for determination of exosomes. Mikrochim Acta 2021; 188:51. [PMID: 33496853 DOI: 10.1007/s00604-021-04716-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
A cathodic photoelectrochemical sensor has been developed for the determination of exosomes, based on a dual-signal reduction strategy. A heterostructure of NiO/BiOI/Au NP/CdSe was synthesized as a photoelectrochemical sensing interface, which is able to suppress the recombination of electron-hole pairs and produce a higher photocurrent. The obtained materials were characterized, and the mechanism for the generation of the cathodic photocurrent was proposed. CdSe QDs (quantum dots) modified with DNA2 were assembled on the electrode through the hybridization with EpCAM aptamer on the surface of ITO/NiO/BiOI/Au NP. The introduction of CdSe QDs to the electrode increases the photocurrent.The recognition of exosomes with aptamer DNA led to the separation of CdSe QDs from the electrode, which in turn caused the decrease of photocurrents. Meanwhile, the big volume of exosomes hinders the electron transfer between the electrode and electrolyte. Due to the dual reduction effect, a sensitive PEC sensor was obtained with a detection limit of 1.2 × 102 particles/μL exosomes (λex = 430 nm, bias voltage = - 0.1 V). The cathodic photoelectrochemical sensor showed good selectivity, performed well in a complex biological environment and could be used to distinguishbreast cancer patients from healthy individuals.
Collapse
Affiliation(s)
- Yujiao Pei
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yonghao Ge
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoru Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Ying Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
18
|
Huang J, Sun J, Wu Y, Turro C. Dirhodium(II,II)/NiO Photocathode for Photoelectrocatalytic Hydrogen Evolution with Red Light. J Am Chem Soc 2021; 143:1610-1617. [DOI: 10.1021/jacs.0c12171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jie Huang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiaonan Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
da Silva Freires A, Botelho CN, Silva SM, Goulart MOF, Damos FS, Luz RDCS. Photoelectrochemical biosensor for 1,4-dihydroxybenzene based on copper sulfide and horseradish peroxidase enzyme: Application in skin cream samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Keijer T, Bouwens T, Hessels J, Reek JNH. Supramolecular strategies in artificial photosynthesis. Chem Sci 2020; 12:50-70. [PMID: 34168739 PMCID: PMC8179670 DOI: 10.1039/d0sc03715j] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Artificial photosynthesis is a major scientific endeavor aimed at converting solar power into a chemical fuel as a viable approach to sustainable energy production and storage. Photosynthesis requires three fundamental actions performed in order; light harvesting, charge-separation and redox catalysis. These actions span different timescales and require the integration of functional architectures developed in different fields of study. The development of artificial photosynthetic devices is therefore inherently complex and requires an interdisciplinary approach. Supramolecular chemistry has evolved to a mature scientific field in which programmed molecular components form larger functional structures by self-assembly processes. Supramolecular chemistry could provide important tools in preparing, integrating and optimizing artificial photosynthetic devices as it allows precise control over molecular components within such a device. This is illustrated in this perspective by discussing state-of-the-art devices and the current limiting factors - such as recombination and low stability of reactive intermediates - and providing exemplary supramolecular approaches to alleviate some of those problems. Inspiring supramolecular solutions such as those discussed herein will incite expansion of the supramolecular toolbox, which eventually may be needed for the development of applied artificial photosynthesis.
Collapse
Affiliation(s)
- Tom Keijer
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tessel Bouwens
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joeri Hessels
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
22
|
Materna K, Beiler AM, Thapper A, Ott S, Tian H, Hammarström L. Understanding the Performance of NiO Photocathodes with Alkyl-Derivatized Cobalt Catalysts and a Push-Pull Dye. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31372-31381. [PMID: 32538612 PMCID: PMC7467559 DOI: 10.1021/acsami.0c05228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 05/22/2023]
Abstract
Mesoporous NiO photocathodes containing the push-pull dye PB6 and alkyl-derivatized cobaloxime catalysts were prepared using surface amide couplings and analyzed for photocatalytic proton reduction catalysis. The length of the alkyl linker used to derivatize the cobalt catalysts was found to correlate to the photocurrent with the highest photocurrent observed using shorter alkyl linkers but the lowest one for samples without linker. The alkyl linkers were also helpful in slowing dye-NiO charge recombination. Photoelectrochemical measurements and femtosecond transient absorption spectroscopic measurements suggested electron transfer to the surface-immobilized catalysts occurred; however, H2 evolution was not observed. Based on UV-vis, X-ray fluorescence spectroscopy (XRF), and X-ray photoelectron spectroscopy (XPS) measurements, the cobalt catalyst appeared to be limiting the photocathode performance mainly via cobalt demetallation from the oxime ligand. This study highlights the need for a deeper understanding of the effect of catalyst molecular design on photocathode performance.
Collapse
|
23
|
Wahyuono RA, Amthor S, Müller C, Rau S, Dietzek B. Structure of Diethyl‐Phosphonic Acid Anchoring Group Affects the Charge‐Separated State on an Iridium(III) Complex Functionalized NiO Surface. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruri Agung Wahyuono
- Department Functional InterfacesLeibniz Institute of Photonic Technology (IPHT) Jena e.V. Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Sebastian Amthor
- Institute of Inorganic Chemistry IUniversity Ulm Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Carolin Müller
- Department Functional InterfacesLeibniz Institute of Photonic Technology (IPHT) Jena e.V. Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Sven Rau
- Institute of Inorganic Chemistry IUniversity Ulm Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Benjamin Dietzek
- Department Functional InterfacesLeibniz Institute of Photonic Technology (IPHT) Jena e.V. Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Center for Energy and Environmental Chemistry (CEEC)Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
24
|
Amthor S, Braun H, Gröne J, Nauroozi D, Jacob T, Rau S. Tailored protective groups for surface immobilization of ruthenium dyes. Dalton Trans 2020; 49:3735-3742. [PMID: 31728474 DOI: 10.1039/c9dt03591e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
McKenna reaction conditions are applied to the [Ru(4,4'-(CH2PO3Et2)2(bpy)](PF6)2 model chromophore in order to obtain [Ru(4,4'-(CH2PO3TMS2)2(bpy)](Br2-x)(PF6)x (x = 0-2) (2) by replacing the alkyl moieties of the phosphonates with TMS groups (TMS = trimethylsilyl). The model complex is immobilized onto both NiO powder and NiO electrodes on FTO (fluorine doped tin oxide) using organic solvents. The stability of surface binding in aqueous media and the DSC performance of 2 are tested and compared to those of a conventional dye of structure [Ru(4,4'-(CH2PO3TBA2)2(bpy)](PF6)2 (1) (TBA = tetrabutyl ammonium). This is the first example of a ruthenium based chromophore with a phosphonic acid silyl-ester being directly immobilized onto a NiO surface. In addition, complex 2 exhibits superior stability towards desorption in aqueous media and at the same time showing improved DSC performance and stability in acetonitrile and a slightly higher dye loading on the electrode surface compared to 1.
Collapse
Affiliation(s)
- Sebastian Amthor
- Ulm University, Institute of Inorganic Chemistry I, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Pan L, Vlachopoulos N, Hagfeldt A. Directly Photoexcited Oxides for Photoelectrochemical Water Splitting. CHEMSUSCHEM 2019; 12:4337-4352. [PMID: 31478349 DOI: 10.1002/cssc.201900849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/02/2019] [Indexed: 06/10/2023]
Abstract
Artificial photosynthesis promises to become a sustainable way to harvest solar energy and store it in chemical fuels by means of photoelectrochemical (PEC) cells. Although it is intriguing to shift the fossil-fuel-based economy to a renewable carbon-neutral one, which will alleviate environmental problems, there is still a long way to go before it rivals traditional energy sources. Existing solar water-splitting devices can be sorted into three categories: photovoltaic-powered electrolysis, PEC water splitting, and photocatalysis (PC). PEC and PC systems hold the potential to further reduce the cost of devices due to their simple structures in which photoabsorbers and catalysts are closely integrated. PC is expected to be the least expensive approach; however, additional costs and concerns are brought about by the subsequent explosive gas separation. At the heart of all devices, semiconductor photoabsorbers should be efficient, robust, and cheap to satisfy the strict requirements on the market. Therefore, this Review intends to give readers an overview on PEC water splitting, with an emphasis on oxide material-based devices, which hold the potential to support global-scale production in the future.
Collapse
Affiliation(s)
- Linfeng Pan
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Nick Vlachopoulos
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anders Hagfeldt
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
26
|
Creissen CE, Warnan J, Antón-García D, Farré Y, Odobel F, Reisner E. Inverse Opal CuCrO 2 Photocathodes for H 2 Production Using Organic Dyes and a Molecular Ni Catalyst. ACS Catal 2019; 9:9530-9538. [PMID: 32064143 PMCID: PMC7011728 DOI: 10.1021/acscatal.9b02984] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Indexed: 01/08/2023]
Abstract
Dye-sensitized photoelectrochemical (DSPEC) cells are an emerging approach to producing solar fuels. The recent development of delafossite CuCrO2 as a p-type semiconductor has enabled H2 generation through the coassembly of catalyst and dye components. Here, we present a CuCrO2 electrode based on a high-surface-area inverse opal (IO) architecture with benchmark performance in DSPEC H2 generation. Coimmobilization of a phosphonated diketopyrrolopyrrole (DPP-P) or perylene monoimide (PMI-P) dye with a phosphonated molecular Ni catalyst (NiP) demonstrates the ability of IO-CuCrO2 to photogenerate H2. A positive photocurrent onset potential of approximately +0.8 V vs RHE was achieved with these photocathodes. The DPP-P-based photoelectrodes delivered photocurrents of -18 μA cm-2 and generated 160 ± 24 nmol of H2 cm-2, whereas the PMI-P-based photocathodes displayed higher photocurrents of -25 μA cm-2 and produced 215 ± 10 nmol of H2 cm-2 at 0.0 V vs RHE over the course of 2 h under visible light illumination (100 mW cm-2, AM 1.5G, λ > 420 nm, 25 °C). The high performance of the PMI-constructed system is attributed to the well-suited molecular structure and photophysical properties for p-type sensitization. These precious-metal-free photocathodes highlight the benefits of using bespoke IO-CuCrO2 electrodes as well as the important role of the molecular dye structure in DSPEC fuel synthesis.
Collapse
Affiliation(s)
- Charles E. Creissen
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Julien Warnan
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Daniel Antón-García
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Yoann Farré
- Université
LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse,
Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, 44322 Nantes cedex 3, France
| | - Fabrice Odobel
- Université
LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse,
Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, 44322 Nantes cedex 3, France
| | - Erwin Reisner
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
27
|
Morikawa T, Sato S, Sekizawa K, Arai T, Suzuki TM. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting. CHEMSUSCHEM 2019; 12:1807-1824. [PMID: 30963707 DOI: 10.1002/cssc.201900441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Photocatalytic or photoelectrochemical hydrogen production by water splitting is one of the key reactions for the development of an energy supply that enables a clean energy system for a future sustainable society. Utilization of solar photon energy for the uphill water splitting reaction is a promising technology, and therefore many systems using semiconductor photocatalysts and semiconductor photoelectrodes for the reaction producing hydrogen and dioxygen in a 2:1 stoichiometric ratio have been reported. In these systems, molecular catalysts are also considered to be feasible; recently, systems based on molecular catalysts conjugated with semiconductor photosensitizers have been used for photoinduced hydrogen generation by proton reduction. Additionally, there are reports that the so-called Z-scheme (two-step photoexcitation) mechanism realizes the solar-driven uphill reaction by overall water splitting. Although the number of these reports is still small compared to those of all-inorganic systems, the advantages of molecular cocatalysts and its immobilization on a semiconductor are attractive. This Minireview provides a brief overview of approaches and recent research progress toward molecular catalysts immobilized on semiconductor photocatalysts and photoelectrodes for solar-driven hydrogen production with the stoichiometric uphill reaction of hydrogen and oxygen generation.
Collapse
Affiliation(s)
- Takeshi Morikawa
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Shunsuke Sato
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Keita Sekizawa
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Takeo Arai
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Tomiko M Suzuki
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| |
Collapse
|
28
|
Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 2019; 48:2216-2264. [PMID: 30895997 DOI: 10.1039/c8cs00897c] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | |
Collapse
|
29
|
Wang D, Wang Y, Brady MD, Sheridan MV, Sherman BD, Farnum BH, Liu Y, Marquard SL, Meyer GJ, Dares CJ, Meyer TJ. A donor-chromophore-catalyst assembly for solar CO 2 reduction. Chem Sci 2019; 10:4436-4444. [PMID: 31057771 PMCID: PMC6482438 DOI: 10.1039/c8sc03316a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/13/2019] [Indexed: 01/07/2023] Open
Abstract
We describe here the preparation and characterization of a photocathode assembly for CO2 reduction to CO in 0.1 M LiClO4 acetonitrile.
We describe here the preparation and characterization of a photocathode assembly for CO2 reduction to CO in 0.1 M LiClO4 acetonitrile. The assembly was formed on 1.0 μm thick mesoporous films of NiO using a layer-by-layer procedure based on Zr(iv)–phosphonate bridging units. The structure of the Zr(iv) bridged assembly, abbreviated as NiO|-DA-RuCP22+-Re(i), where DA is the dianiline-based electron donor (N,N,N′,N′-((CH2)3PO3H2)4-4,4′-dianiline), RuCP2+ is the light absorber [Ru((4,4′-(PO3H2CH2)2-2,2′-bipyridine)(2,2′-bipyridine))2]2+, and Re(i) is the CO2 reduction catalyst, ReI((4,4′-PO3H2CH2)2-2,2′-bipyridine)(CO)3Cl. Visible light excitation of the assembly in CO2 saturated solution resulted in CO2 reduction to CO. A steady-state photocurrent density of 65 μA cm–2 was achieved under one sun illumination and an IPCE value of 1.9% was obtained with 450 nm illumination. The importance of the DA aniline donor in the assembly as an initial site for reduction of the RuCP2+ excited state was demonstrated by an 8 times higher photocurrent generated with DA present in the surface film compared to a control without DA. Nanosecond transient absorption measurements showed that the expected reduced one-electron intermediate, RuCP+, was formed on a sub-nanosecond time scale with back electron transfer to the electrode on the microsecond timescale which competes with forward electron transfer to the Re(i) catalyst at t1/2 = 2.6 μs (kET = 2.7 × 105 s–1).
Collapse
Affiliation(s)
- Degao Wang
- Department of Chemistry , University of North Carolina Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| | - Ying Wang
- Department of Chemistry , University of North Carolina Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| | - Matthew D Brady
- Department of Chemistry , University of North Carolina Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| | - Matthew V Sheridan
- Department of Chemistry , University of North Carolina Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| | - Benjamin D Sherman
- Department of Chemistry , Texas Christian University , Fort Worth , Texas 76129 , USA
| | - Byron H Farnum
- Department of Chemistry , University of North Carolina Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| | - Yanming Liu
- Department of Chemistry , University of North Carolina Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| | - Seth L Marquard
- Department of Chemistry , University of North Carolina Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| | - Gerald J Meyer
- Department of Chemistry , University of North Carolina Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| | - Christopher J Dares
- Department of Chemistry and Biochemistry , Florida International University , 11200 SW Eighth Street , Miami , Florida 33199 , USA
| | - Thomas J Meyer
- Department of Chemistry , University of North Carolina Chapel Hill , Chapel Hill , North Carolina 27599 , USA .
| |
Collapse
|
30
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 467] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
31
|
Liu Q, Wang D, Shan B, Sherman BD, Marquard SL, Eberhart MS, Liu M, Li C, Meyer TJ. Light-driven water oxidation by a dye-sensitized photoanode with a chromophore/catalyst assembly on a mesoporous double-shell electrode. J Chem Phys 2019; 150:041727. [DOI: 10.1063/1.5048780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Qing Liu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Degao Wang
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Bing Shan
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Benjamin D. Sherman
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| | - Seth L. Marquard
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michael S. Eberhart
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Meichuan Liu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chunhui Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Chemistry, Zhengzou University, Henan 4500001, China
| | - Thomas J. Meyer
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
32
|
Bonomo M, Dini D, Decker F. Electrochemical and Photoelectrochemical Properties of Nickel Oxide (NiO) With Nanostructured Morphology for Photoconversion Applications. Front Chem 2019; 6:601. [PMID: 30619811 PMCID: PMC6299045 DOI: 10.3389/fchem.2018.00601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
The cost-effective production of chemicals in electrolytic cells and the conversion of the radiation energy into electrical energy in photoelectrochemical cells (PECs) require the use of electrodes with large surface area, which possess either electrocatalytic or photoelectrocatalytic properties. In this context nanostructured semiconductors are electrodic materials of great relevance because of the possibility of varying their photoelectrocatalytic properties in a controlled fashion via doping, dye-sensitization or modification of the conditions of deposition. Among semiconductors for electrolysers and PECs the class of the transition metal oxides (TMOs) with a particular focus on NiO interests for the chemical-physical inertness in ambient conditions and the intrinsic electroactivity in the solid state. The latter aspect implies the existence of capacitive properties in TMO and NiO electrodes which thus act as charge storage systems. After a comparative analysis of the (photo)electrochemical properties of nanostructured TMO electrodes in the configuration of thin film the use of NiO and analogs for the specific applications of water photoelectrolysis and, secondly, photoelectrochemical conversion of carbon dioxide will be discussed.
Collapse
Affiliation(s)
- Matteo Bonomo
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Danilo Dini
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Franco Decker
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
33
|
Põldme N, O'Reilly L, Fletcher I, Portoles J, Sazanovich IV, Towrie M, Long C, Vos JG, Pryce MT, Gibson EA. Photoelectrocatalytic H 2 evolution from integrated photocatalysts adsorbed on NiO. Chem Sci 2019; 10:99-112. [PMID: 30713622 PMCID: PMC6333170 DOI: 10.1039/c8sc02575d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023] Open
Abstract
A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H2 evolution from water, using integrated photocatalysts, furnished with ester groups on the peripheral ligands, [Ru(decb)2(bpt)PdCl(H2O)](PF6)2 (1) and [Ru(decb)2(2,5-bpp)PtI(CH3CN)](PF6)2 (2), (decb = 4,4'-diethylcarboxy-2,2'-bipyridine, bpp = 2,2':5',2''-terpyridine, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazole) is described. Overall, 1|NiO is superior to previously reported photocathodes, producing photocurrent densities of 30-35 μA cm-2 at an applied bias of -0.2 V vs. Ag/AgCl over 1 hour of continuous white light irradiation, resulting in the generation of 0.41 μmol h-1 cm-2 of H2 with faradaic efficiencies of up to 90%. Furthermore, surface analysis of the photocathodes before and after photoelectrocatalysis revealed that the ruthenium bipyridyl chromophore and Pd catalytic centre (1) were photochemically stable, highlighting the benefits of the approach towards robust, hybrid solar-to-fuel devices.
Collapse
Affiliation(s)
- Nils Põldme
- School of Natural and Environmental Science , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| | - Laura O'Reilly
- School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland .
| | - Ian Fletcher
- NEXUS XPS Laboratory , Newcastle University , Stephenson Building , Newcastle upon Tyne , NE1 7RU , UK .
| | - Jose Portoles
- NEXUS XPS Laboratory , Newcastle University , Stephenson Building , Newcastle upon Tyne , NE1 7RU , UK .
| | - Igor V Sazanovich
- Central Laser Facility , Research Complex at Harwell , STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxfordshire OX11 0QX , UK .
| | - Michael Towrie
- Central Laser Facility , Research Complex at Harwell , STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxfordshire OX11 0QX , UK .
| | - Conor Long
- School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland .
| | - Johannes G Vos
- School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland .
| | - Mary T Pryce
- School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland .
| | - Elizabeth A Gibson
- School of Natural and Environmental Science , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| |
Collapse
|
34
|
Zhao S, Dong Y, Wang G, Jiang P, Zhang Y, Miao H, Wu X. NiO nanowires as hole-transfer layer for drastic enhancement of CdSe-sensitized photocathodes. NEW J CHEM 2019. [DOI: 10.1039/c9nj00007k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grass-like NiO nanowires as a hole-transfer layer to improve light capture efficiency and charge transfer rate for a CdSe-sensitized photocathode.
Collapse
Affiliation(s)
- Shuang Zhao
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Yuming Dong
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Guangli Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Pingping Jiang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Yuxia Zhang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Hongyan Miao
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Xiuming Wu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| |
Collapse
|
35
|
Pizarro San Francisco SG, Astudillo Julio PA, Delgadillo Acevedo A. Adsorción de un complejo de hierro sobre nanocristales de dióxido de titanio utilizando un residuo piridina. REVISTA COLOMBIANA DE QUÍMICA 2019. [DOI: 10.15446/rev.colomb.quim.v48n1.73295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
En este trabajo se presenta el comportamiento espectroscópico y electroquímico del complejo [Fe(pytpy2)](PF6)2 (donde pytpy es 4'-(piridin-4-il)-2,2':6', 2''-terpiridina) en solución fluida y anclado sobre una película delgada de nanocristales de dióxido de titanio. La constante de formación del aducto se estimó utilizando el modelo isotérmico de Langmuir encontrándose un valor de 1,03x105 M-1 para dicho complejo. El anclaje del complejo sobre la superficie del óxido metálico semiconductor se debe a la interacción del residuo de piridina con los sitios ácidos de Lewis presentes en la superficie del TiO2, observándose que las propiedades espectroscópicas y electroquímicas del complejo no se ven modificadas por la adsorción.
Collapse
|
36
|
Tian L, Németh B, Berggren G, Tian H. Hydrogen evolution by a photoelectrochemical cell based on a Cu2O-ZnO-[FeFe] hydrogenase electrode. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Mede T, Jäger M, Schubert US. "Chemistry-on-the-complex": functional Ru II polypyridyl-type sensitizers as divergent building blocks. Chem Soc Rev 2018; 47:7577-7627. [PMID: 30246196 DOI: 10.1039/c8cs00096d] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ruthenium polypyridyl type complexes are potent photoactive compounds, and have found - among others - a broad range of important applications in the fields of biomedical diagnosis and phototherapy, energy conversion schemes such as dye-sensitized solar cells (DSSCs) and molecular assemblies for tailored photo-initiated processes. In this regard, the linkage of RuII polypyridyl-type complexes with specific functional moieties is highly desirable to enhance their inherent photophysical properties, e.g., with a targeting function to achieve cell selectivity, or with a dye or redox-active subunits for energy- and electron-transfer. However, the classical approach of performing ligand syntheses first and the formation of Ru complexes in the last steps imposes synthetic limitations with regard to tolerating functional groups or moieties as well as requiring lengthy convergent routes. Alternatively, the diversification of Ru complexes after coordination (termed "chemistry-on-the-complex") provides an elegant complementary approach. In addition to the Click chemistry concept, the rapidly developing synthesis and purification methodologies permit the preparation of Ru conjugates via amidation, alkylation and cross-coupling reactions. In this regard, recent developments in chromatography shifted the limits of purification, e.g., by using new commercialized surface-modified silica gels and automated instrumentation. This review provides detailed insights into applying the "chemistry-on-the-complex" concept, which is believed to stimulate the modular preparation of unpreceded molecular assemblies as well as functional materials based on Ru-based building blocks, including combinatorial approaches.
Collapse
Affiliation(s)
- Tina Mede
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | |
Collapse
|
38
|
Zhang S, Li X, Yun K, Yu F, Hua J. Effects of Electrolytes on the Photocurrent of N-Annulated Perylene-Sensitized Photoelectrochemical Cells Based on NiO as Photocathode. ChemElectroChem 2018. [DOI: 10.1002/celc.201801038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shicong Zhang
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering; East China University of Science and Technology; No. 130 Meilong Road Shanghai 200237 China
| | - Xing Li
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering; East China University of Science and Technology; No. 130 Meilong Road Shanghai 200237 China
| | - Kang Yun
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering; East China University of Science and Technology; No. 130 Meilong Road Shanghai 200237 China
| | - Fengtao Yu
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering; East China University of Science and Technology; No. 130 Meilong Road Shanghai 200237 China
| | - Jianli Hua
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering; East China University of Science and Technology; No. 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
39
|
Kaeffer N, Windle CD, Brisse R, Gablin C, Leonard D, Jousselme B, Chavarot-Kerlidou M, Artero V. Insights into the mechanism and aging of a noble-metal free H 2-evolving dye-sensitized photocathode. Chem Sci 2018; 9:6721-6738. [PMID: 30310606 PMCID: PMC6115630 DOI: 10.1039/c8sc00899j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022] Open
Abstract
Co-grafting of a cobalt diimine–dioxime catalyst and push–pull organic dye on NiO yields a photocathode evolving hydrogen from aqueous solution under sunlight, with equivalent performances compared to a dyad-based architecture using similar components.
Dye-sensitized photo-electrochemical cells (DS-PECs) form an emerging technology for the large-scale storage of solar energy in the form of (solar) fuels because of the low cost and ease of processing of their constitutive photoelectrode materials. Preparing such molecular photocathodes requires a well-controlled co-immobilization of molecular dyes and catalysts onto transparent semiconducting materials. Here we used a series of surface analysis techniques to describe the molecular assembly of a push–pull organic dye and a cobalt diimine–dioxime catalyst co-grafted on a p-type NiO electrode substrate. (Photo)electrochemical measurements allowed characterization of electron transfer processes within such an assembly and to demonstrate for the first time that a CoI species is formed as the entry into the light-driven H2 evolution mechanism of a dye-sensitized photocathode. This co-grafted noble-metal free H2-evolving photocathode architecture displays similar performances to its covalent dye–catalyst counterpart based on the same catalytic moiety. Post-operando time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of these photoelectrodes after extensive photoelectrochemical operation suggested decomposition pathways of the dye and triazole linkage used to graft the catalyst onto NiO, providing grounds for the design of optimized molecular DS-PEC components with increased robustness upon turnover.
Collapse
Affiliation(s)
- Nicolas Kaeffer
- Laboratoire de Chimie et Biologie des Métaux , Université Grenoble Alpes , CNRS UMR 5249, CEA , 17 rue des Martyrs , F-38054 Grenoble , Cedex , France . ; http://www.solhycat.com
| | - Christopher D Windle
- Laboratoire de Chimie et Biologie des Métaux , Université Grenoble Alpes , CNRS UMR 5249, CEA , 17 rue des Martyrs , F-38054 Grenoble , Cedex , France . ; http://www.solhycat.com
| | - Romain Brisse
- Laboratory of Innovation in Surface Chemistry and Nanosciences (LICSEN) , NIMBE , CEA , CNRS , Université Paris-Saclay , CEA Saclay , 91191 Gif-sur-Yvette , Cedex , France
| | - Corinne Gablin
- Univ Lyon , CNRS , Université Claude Bernard Lyon 1 , ENS de Lyon , Institut des Sciences Analytiques , UMR 5280, 5, rue de la Doua , F-69100 Villeurbanne , France
| | - Didier Leonard
- Univ Lyon , CNRS , Université Claude Bernard Lyon 1 , ENS de Lyon , Institut des Sciences Analytiques , UMR 5280, 5, rue de la Doua , F-69100 Villeurbanne , France
| | - Bruno Jousselme
- Laboratory of Innovation in Surface Chemistry and Nanosciences (LICSEN) , NIMBE , CEA , CNRS , Université Paris-Saclay , CEA Saclay , 91191 Gif-sur-Yvette , Cedex , France
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux , Université Grenoble Alpes , CNRS UMR 5249, CEA , 17 rue des Martyrs , F-38054 Grenoble , Cedex , France . ; http://www.solhycat.com
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux , Université Grenoble Alpes , CNRS UMR 5249, CEA , 17 rue des Martyrs , F-38054 Grenoble , Cedex , France . ; http://www.solhycat.com
| |
Collapse
|
40
|
Raber MM, Brady MD, Troian-Gautier L, Dickenson JC, Marquard SL, Hyde JT, Lopez SJ, Meyer GJ, Meyer TJ, Harrison DP. Fundamental Factors Impacting the Stability of Phosphonate-Derivatized Ruthenium Polypyridyl Sensitizers Adsorbed on Metal Oxide Surfaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22821-22833. [PMID: 29883103 DOI: 10.1021/acsami.8b04587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of 18 ruthenium(II) polypyridyl complexes were synthesized and evaluated under electrochemically oxidative conditions, which generates the Ru(III) oxidation state and mimics the harsh conditions experienced during the kinetically limited regime that can occur in dye-sensitized solar cells (DSSCs) and dye-sensitized photo-electrosynthesis cells, to further develop fundamental insights into the factors governing molecular sensitizer surface stability in aqueous 0.1 M HClO4. Both desorption and oxidatively induced ligand substitution were observed on planar fluorine-doped tin oxide (FTO) electrodes, with a dependence on the E1/2 Ru(III/II) redox potential dictating the comparative ratios of the processes. Complexes such as RuP4OMe ( E1/2 = 0.91 vs Ag/AgCl) displayed virtually only desorption, while complexes such as RuPbpz ( E1/2 > 1.62 V vs Ag/AgCl) displayed only chemical decomposition. Comparing isomers of 4,4'- and 5,5'-disubstituted-2,2'-bipyridine ancillary ligands, a dramatic increase in the rate of desorption of the Ru(III) complexes was observed for the 5,5'-ligands. Nanoscopic indium-doped tin oxide thin films (nanoITO) were also sensitized and analyzed with cyclic voltammetry, UV-vis absorption spectroscopy, and X-ray photoelectron spectroscopy, allowing for further distinction of desorption versus ligand-substitution processes. Desorption loss to bulk solution associated with the planar surface of FTO is essentially non-existent on nanoITO, where both desorption and ligand substitution are shut down with RuP4OMe. These results revealed that minimizing time spent in the oxidized form, incorporating electron-donating groups, maximizing hydrophobicity, and minimizing molecular bulk near the adsorbed ligand are critical to optimizing the performance of ruthenium(II) polypyridyl complexes in dye-sensitized devices.
Collapse
Affiliation(s)
- McKenzie M Raber
- Department of Chemistry , Virginia Military Institute , Lexington , Virginia 24450 , United States
| | - Matthew D Brady
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ludovic Troian-Gautier
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - John C Dickenson
- Department of Chemistry , Virginia Military Institute , Lexington , Virginia 24450 , United States
| | - Seth L Marquard
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jacob T Hyde
- Department of Chemistry , Virginia Military Institute , Lexington , Virginia 24450 , United States
| | - Santiago J Lopez
- Department of Chemistry , Virginia Military Institute , Lexington , Virginia 24450 , United States
| | - Gerald J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Thomas J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Daniel P Harrison
- Department of Chemistry , Virginia Military Institute , Lexington , Virginia 24450 , United States
| |
Collapse
|
41
|
Hennessey S, Farràs P. Production of solar chemicals: gaining selectivity with hybrid molecule/semiconductor assemblies. Chem Commun (Camb) 2018; 54:6662-6680. [PMID: 29808196 DOI: 10.1039/c8cc02487a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research on the production of solar fuels and chemicals has rocketed over the past decade, with a wide variety of systems proposed to harvest solar energy and drive chemical reactions. In this Feature Article we have focused on hybrid molecule/semiconductor assemblies in both powder and supported materials, summarising recent systems and highlighting the enormous possibilities offered by such assemblies to carry out highly demanding chemical reactions with industrial impact. Of relevance is the higher selectivity obtained in visible light-driven organic transformations when using molecular catalysts compared to photocatalytic materials.
Collapse
Affiliation(s)
- Seán Hennessey
- School of Chemistry, Energy Research Centre, Ryan Institute, National University of Ireland, Galway (NUI Galway), University Road, H91 CF50 Galway, Ireland.
| | | |
Collapse
|
42
|
Manfredi N, Boldrini CL, Abbotto A. Organic Sensitizers for Photoanode Water Splitting in Dye-Sensitized Photoelectrochemical Cells. ChemElectroChem 2018. [DOI: 10.1002/celc.201800592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Norberto Manfredi
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano-Bicocca; INSTM Milano-Bicocca Research; Via Cozzi 55 I-20125 Milano Italy
| | - Chiara Liliana Boldrini
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano-Bicocca; INSTM Milano-Bicocca Research; Via Cozzi 55 I-20125 Milano Italy
| | - Alessandro Abbotto
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano-Bicocca; INSTM Milano-Bicocca Research; Via Cozzi 55 I-20125 Milano Italy
| |
Collapse
|
43
|
Willkomm J, Reisner E. Photo- and electrocatalytic H 2 evolution with cobalt oxime complexes. ACTA ACUST UNITED AC 2018. [DOI: 10.4019/bjscc.71.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Janina Willkomm
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge
| |
Collapse
|
44
|
Windle CD, Massin J, Chavarot-Kerlidou M, Artero V. A protocol for quantifying hydrogen evolution by dye-sensitized molecular photocathodes and its implementation for evaluating a new covalent architecture based on an optimized dye-catalyst dyad. Dalton Trans 2018; 47:10509-10516. [PMID: 29845182 DOI: 10.1039/c8dt01210e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A protocol that combines gas chromatography and a high-sensitivity micro Clark-type electrode is described to quantify hydrogen production across gas and solution phases for systems operating at very low currents such as dye-sensitized H2-evolving photocathodes. Data indicate that a significant fraction of H2 remains in aqueous solution even after several hours of experiments. Using this protocol, re-evaluation of a dye-sensitized H2-evolving photocathode based on a dye-catalyst dyad showed a reproducible 66% increase of the faradaic efficiency compared with previously reported headspace GC measurements [Kaeffer et al., J. Am. Chem. Soc., 2016, 138, 12308-12311]. This dyad was based on an organic push-pull dye where donor and acceptor are separated by one thiophene group. Insertion of a second thiophene group between the donor and acceptor led to a more efficient system with 30% improved faradaic efficiency for H2 evolution.
Collapse
Affiliation(s)
- Christopher D Windle
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 17 rue des Martyrs, Grenoble 38000, France.
| | - Julien Massin
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 17 rue des Martyrs, Grenoble 38000, France.
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 17 rue des Martyrs, Grenoble 38000, France.
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 17 rue des Martyrs, Grenoble 38000, France.
| |
Collapse
|
45
|
Gatty MG, Pullen S, Sheibani E, Tian H, Ott S, Hammarström L. Direct evidence of catalyst reduction on dye and catalyst co-sensitized NiO photocathodes by mid-infrared transient absorption spectroscopy. Chem Sci 2018; 9:4983-4991. [PMID: 29938026 PMCID: PMC5989651 DOI: 10.1039/c8sc00990b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Co-sensitization of molecular dyes and catalysts on semiconductor surfaces is a promising strategy to build photoelectrodes for solar fuel production.
Co-sensitization of molecular dyes and catalysts on semiconductor surfaces is a promising strategy to build photoelectrodes for solar fuel production. In such a photoelectrode, understanding the charge transfer reactions between the molecular dye, catalyst and semiconductor material is key to guide further improvement of their photocatalytic performance. Herein, femtosecond mid-infrared transient absorption spectroscopy is used, for the first time, to probe charge transfer reactions leading to catalyst reduction on co-sensitized nickel oxide (NiO) photocathodes. The NiO films were co-sensitized with a molecular dye and a proton reducing catalyst from the family of [FeFe](bdt)(CO)6 (bdt = benzene-1,2-dithiolate) complexes. Two dyes were used: an organic push–pull dye denoted E2 with a triarylamine–oligothiophene–dicyanovinyl structure and a coumarin 343 dye. Upon photo-excitation of the dye, a clear spectroscopic signature of the reduced catalyst is observed a few picoseconds after excitation in all co-sensitized NiO films. However, kinetic analysis of the transient absorption signals of the dye and reduced catalyst reveal important mechanistic differences in the first reduction of the catalyst depending on the co-sensitized molecular dye (E2 or C343). While catalyst reduction is preceded by hole injection in NiO in C343-sensitized NiO films, the singly reduced catalyst is formed by direct electron transfer from the excited dye E2* to the catalyst in E2-sensitized NiO films. This change in mechanism also impacts the lifetime of the reduced catalyst, which is only ca. 50 ps in E2-sensitized NiO films but is >5 ns in C343-sensitized NiO films. Finally, the implication of this mechanistic study for the development of better co-sensitized photocathodes is discussed.
Collapse
Affiliation(s)
- M Gilbert Gatty
- Physical Chemistry , Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden .
| | - S Pullen
- Physical Chemistry , Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden .
| | - E Sheibani
- Organic Chemistry , Department of Chemistry , Chemical Science and Engineering , KTH , Royal Institute of Technology , Teknikringen 30 , 100 44 Stockholm , Sweden
| | - H Tian
- Physical Chemistry , Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden .
| | - S Ott
- Physical Chemistry , Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden .
| | - L Hammarström
- Physical Chemistry , Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden .
| |
Collapse
|
46
|
Wu H, Li X, Tung C, Wu L. Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700684. [PMID: 29721417 PMCID: PMC5908380 DOI: 10.1002/advs.201700684] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/14/2017] [Indexed: 05/19/2023]
Abstract
The increasing demand for sustainable and environmentally benign energy has stimulated intense research to establish highly efficient photo-electrochemical (PEC) cells for direct solar-to-fuel conversion via water splitting. Light absorption, as the initial step of the catalytic process, is regarded as the foundation of establishing highly efficient PEC systems. To make full use of visible light, sensitization on photoelectrodes using either molecular dyes or semiconducting quantum dots provides a promising method. In this field, however, there remain many fundamental issues to be solved, which need in-depth study. Here, fundamental knowledge of PEC systems is introduced to enable readers a better understanding of this field. Then, the development history and current state in both molecular dye- and quantum dot-sensitized photocathodes for PEC water splitting are discussed. A systematical comparison between the two systems has been made. Special emphasis is placed on the research of quantum dot-sensitized photocathodes, which have shown superiority in both efficiency and durability towards PEC water splitting at the present stage. Finally, the opportunities and challenges in the future for sensitized PEC water-splitting systems are proposed.
Collapse
Affiliation(s)
- Hao‐Lin Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xu‐Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
47
|
Jiang XY, Zhang L, Liu YL, Yu XD, Liang YY, Qu P, Zhao WW, Xu JJ, Chen HY. Hierarchical CuInS 2-based heterostructure: Application for photocathodic bioanalysis of sarcosine. Biosens Bioelectron 2018; 107:230-236. [PMID: 29477123 DOI: 10.1016/j.bios.2018.02.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 11/28/2022]
Abstract
In this study, on the basis of hierarchical CuInS2-based heterostructure, a novel cathodic photoelectrochemical (PEC) enzymatic bioanalysis of the sarcosine detection was reported. Specifically, heterostructured CuInS2/NiO/ITO photocathode was prepared and sarcosine oxidases (SOx) were integrated for the construction of the enzymatic biosensor. In the bioanalysis, the O2-dependent suppression of the cathodic photocurrent can be observed due to the competition between the as-fabricated O2-sensitive photocathode and the SOx-catalytic event toward O2 reduction. Based on the sarcosine-controlled O2 concentration, a novel photocathodic enzymatic biosensor could be realized for the sensitive and specific sarcosine detection. This work manifested the great potential of CuInS2-based heterostructure as a novel platform for future PEC bioanalytical development and also a PEC method for sarcosine detection, which could be easily extended to numerous other enzymatic systems and to our knowledge has not been reported. This work is expected to stimulate more interest in the design and implementation of numerous CuInS2-based heterostructured photocathodic enzymatic sensing.
Collapse
Affiliation(s)
- Xin-Yuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; School of Material and Chemical Engineering, Bengbu College, Bengbu 233000, China
| | - Yi-Li Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yan-Yu Liang
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Peng Qu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
48
|
Creissen CE, Warnan J, Reisner E. Solar H 2 generation in water with a CuCrO 2 photocathode modified with an organic dye and molecular Ni catalyst. Chem Sci 2018; 9:1439-1447. [PMID: 29629169 PMCID: PMC5875021 DOI: 10.1039/c7sc04476c] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/26/2017] [Indexed: 11/21/2022] Open
Abstract
Dye-sensitised photoelectrochemical (DSPEC) cells have emerged in recent years as a route to solar fuel production. However, fuel-forming photocathodes are presently limited by photo-corrodible narrow band gap semiconductors or the small range of available wide bandgap p-type semiconductors such as NiO that display low performance with dyes. Here, we introduce CuCrO2 as a suitable p-type semiconductor for visible light-driven H2 generation upon co-immobilisation of a phosphonated diketopyrrolopyrrole dye with a Ni-bis(diphosphine) catalyst. The hybrid CuCrO2 photocathode displays an early photocurrent onset potential of +0.75 V vs. RHE and delivers a photocurrent of 15 μA cm-2 at 0.0 V vs. RHE in pH 3 aqueous electrolyte solution under UV-filtered simulated solar irradiation. Controlled potential photoelectrolysis at 0.0 V vs. RHE shows good stability and yields a Ni catalyst-based turnover number of 126 ± 13 towards H2 after 2 h. This precious metal-free system outperforms an analogous NiO|dye/catalyst assembly and therefore highlights the benefits of using CuCrO2 as a novel material for DSPEC applications.
Collapse
Affiliation(s)
- Charles E Creissen
- Christian Doppler Laboratory for Sustainable SynGas Chemistry , Department of Chemistry , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Julien Warnan
- Christian Doppler Laboratory for Sustainable SynGas Chemistry , Department of Chemistry , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry , Department of Chemistry , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
49
|
Marinakis N, Wobill C, Constable EC, Housecroft CE. Refining the anchor: Optimizing the performance of cyclometallated ruthenium(II) dyes in p-type dye sensitized solar cells. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Donck S, Fize J, Gravel E, Doris E, Artero V. Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: addressing the stability of the pyridine-cobalt linkage under hydrogen evolution turnover conditions. Chem Commun (Camb) 2018; 52:11783-11786. [PMID: 27711275 DOI: 10.1039/c6cc06059e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A carbon nanotube-cobaloxime nanohybrid was prepared through supramolecular assembly of tailored polymerizable amphiphiles, leading to the coordination of cobalt on pyridine-coated nanotubes. This material was used as a catalyst for hydrogen evolution in fully aqueous media. This study provides a definitive asset regarding the stability of the pyridine-cobalt axial bond under H2 evolution turnover conditions.
Collapse
Affiliation(s)
- Simon Donck
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France. and Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, F-38000 Grenoble, France.
| | - Jennifer Fize
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, F-38000 Grenoble, France.
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, F-38000 Grenoble, France.
| |
Collapse
|