1
|
Karalius A, Qi Y, Ayinla M, Szabó Z, Ramström O. Interdependent Dynamic Nitroaldol and Boronic Ester Reactions for Complex Dynamers of Different Topologies. Chemistry 2024; 30:e202402409. [PMID: 39183180 DOI: 10.1002/chem.202402409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Complex dynamic systems displaying interdependency between nitroaldol and boronic ester reactions have been demonstrated. Nitroalkane-1,3-diols, generated by the nitroaldol reaction, were susceptible to ester formation with different boronic acids in aprotic solvents, whereas hydrolysis of the esters occurred in the presence of water. The boronic ester formation led to significant stabilization of the nitroaldol adducts under basic conditions. The use of bifunctional building blocks was furthermore established, allowing for main chain nitroaldol-boronate dynamers as well as complex network dynamers with distinct topologies. The shape and rigidity of the resulting dynamers showed an apparent dependency on the configuration of the boronic acids.
Collapse
Affiliation(s)
- Antanas Karalius
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 36, S-10044, Stockholm, Sweden
| | - Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Zoltán Szabó
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 36, S-10044, Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 36, S-10044, Stockholm, Sweden
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182, Kalmar, Sweden
| |
Collapse
|
2
|
Hussein BA, Maturi W, Rylands MK, Bismillah AN, Wen Y, Aguilar JA, Ayub R, Rankine CD, McGonigal PR. Correlated shapeshifting and configurational isomerization. Chem Sci 2024:d4sc03699a. [PMID: 39239481 PMCID: PMC11370815 DOI: 10.1039/d4sc03699a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
Herein we demonstrate that the rapid 'shapeshifting' constitutional isomerization of a substituted bullvalene is influenced by the E-to-Z configurational isomerization of a remote carbamate group, giving rise to correlated motion. We find that, while the E-configurational isomer of a bulky carbamate favors the β-bullvalene constitutional isomer, a noncovalent bonding interaction within the Z-carbamate tips the equilibrium toward the γ-bullvalene form. Using DFT modelling and NMR spectroscopy, this long-range interaction is identified as being between the bullvalene core and a pendant phenyl group connected to the carbamate. Coupling the constitutional changes of a bullvalene to a reciprocal configurational isomerization through a long-range interaction in this way will allow shapeshifting rearrangements to be exploited as part of collective motion in extended structures.
Collapse
Affiliation(s)
- Burhan A Hussein
- Department of Chemistry, Durham University, Lower Mountjoy Stockton Road Durham DH1 3LE UK
| | - William Maturi
- Department of Chemistry, Durham University, Lower Mountjoy Stockton Road Durham DH1 3LE UK
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Mary Kate Rylands
- Department of Chemistry, Durham University, Lower Mountjoy Stockton Road Durham DH1 3LE UK
| | - Aisha N Bismillah
- Department of Chemistry, Durham University, Lower Mountjoy Stockton Road Durham DH1 3LE UK
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Yuzhen Wen
- Department of Chemistry, Durham University, Lower Mountjoy Stockton Road Durham DH1 3LE UK
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Juan A Aguilar
- Department of Chemistry, Durham University, Lower Mountjoy Stockton Road Durham DH1 3LE UK
| | - Rabia Ayub
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Conor D Rankine
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Paul R McGonigal
- Department of Chemistry, Durham University, Lower Mountjoy Stockton Road Durham DH1 3LE UK
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
3
|
Ives RA, Maturi W, Gill MT, Rankine C, McGonigal PR. A guide to bullvalene stereodynamics. Chem Sci 2024; 15:d4sc03700f. [PMID: 39220163 PMCID: PMC11358867 DOI: 10.1039/d4sc03700f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Here, we analyze the stereodynamic properties of bullvalenes using principal moments of inertia and exit vector plots to draw comparisons with commonly used ring systems in medicinal chemistry. To aid analyses, we first classify (i) the four elementary rearrangement steps available to substituted bullvalenes, which (ii) can be described by applying positional descriptors (α, β, γ, and δ) to the substituents. We also (iii) derive an intuitive equation to calculate the number of isomers for a given bullvalene system. Using DFT-modelled structures for di-, tri-, and tetrasubstituted bullvalenes, generated using a newly developed computational tool (bullviso), we show that their 3D shapes and the exit vectors available from the bullvalene scaffold make them comparable to other bioisosteres currently used to replace planar aromatic ring systems in drug discovery. Unlike conventional ring systems, the shapeshifting valence isomerism of bullvalenes gives rise to numerous shapes and substituent relationships attainable as a concentration-independent dynamic covalent library from a single compound. We visualize this property by applying population weightings to the principal moments of inertia and exit vector analyses to reflect the relative thermodynamic stabilities of the available isomers.
Collapse
Affiliation(s)
- Robert A Ives
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - William Maturi
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| | - Matthew T Gill
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Conor Rankine
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Paul R McGonigal
- Department of Chemistry, University of York Heslington York YO10 5DD UK
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road Durham DH1 3LE UK
| |
Collapse
|
4
|
Sun PB, Pomfret MN, Elardo MJ, Suresh A, Rentería-Gómez Á, Lalisse RF, Keating S, Chen C, Hilburg SL, Chakma P, Wu Y, Bell RC, Rowan SJ, Gutierrez O, Golder MR. Molecular Ball Joints: Mechanochemical Perturbation of Bullvalene Hardy-Cope Rearrangements in Polymer Networks. J Am Chem Soc 2024; 146:19229-19238. [PMID: 38961828 DOI: 10.1021/jacs.4c04401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The solution-state fluxional behavior of bullvalene has fascinated physical organic and supramolecular chemists alike. Little effort, however, has been put into investigating bullvalene applications in bulk, partially due to difficulties in characterizing such dynamic systems. To address this knowledge gap, we herein probe whether bullvalene Hardy-Cope rearrangements can be mechanically perturbed in bulk polymer networks. We use dynamic mechanical analysis to demonstrate that the activation barrier to the glass transition process is significantly elevated for bullvalene-containing materials relative to "static" control networks. Furthermore, bullvalene rearrangements can be mechanically perturbed at low temperatures in the glassy region; such behavior facilitates energy dissipation (i.e., increased hysteresis energy) and polymer chain alignment to stiffen the material (i.e., increased Young's modulus) under load. Computational simulations corroborate our work that showcases bullvalene as a reversible "low-force" covalent mechanophore in the modulation of viscoelastic behavior.
Collapse
Affiliation(s)
- Peiguan B Sun
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Meredith N Pomfret
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Matthew J Elardo
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Adhya Suresh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sheila Keating
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Chuqiao Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Shayna L Hilburg
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, United States
| | - Progyateg Chakma
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Yunze Wu
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Rowina C Bell
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew R Golder
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| |
Collapse
|
5
|
Rivero DS, Pérez-Pérez Y, Perretti MD, Santos T, Scoccia J, Tejedor D, Carrillo R. Kinetic Control of Complexity in Multiple Dynamic Libraries. Angew Chem Int Ed Engl 2024; 63:e202406654. [PMID: 38660925 DOI: 10.1002/anie.202406654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Multiple dynamic libraries of compounds are generated when more than one reversible reaction comes into play. Commonly, two or more orthogonal reversible reactions are used, leading to non-communicating dynamic libraries which share no building blocks. Only a few examples of communicating libraries have been reported, and in all those cases, building blocks are reversibly exchanged from one library to the other, constituting an antiparallel dynamic covalent system. Herein we report that communication between two different dynamic libraries through an irreversible process is also possible. Indeed, alkyl amines cancel the dynamic regime on the nucleophilic substitution of tetrazines, generating kinetically inert compounds. Interestingly, such amine can be part of another dynamic library, an imine-amine exchange. Thus, both libraries are interconnected with each other by an irreversible process which leads to kinetically inert structures that contain parts from both libraries, causing a collapse of the complexity. Additionally, a latent irreversible intercommunication could be developed. In such a way, a stable molecular system with specific host-guest and fluorescence properties, could be irreversibly transformed when the right stimulus was applied, triggering the cancellation of the original supramolecular and luminescent properties and the emergence of new ones.
Collapse
Affiliation(s)
- David S Rivero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Yaiza Pérez-Pérez
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Marcelle D Perretti
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Tanausú Santos
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006, Logroño, Spain
| | - Jimena Scoccia
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| |
Collapse
|
6
|
Sanchez A, Gonzalez VM, Sakamoto J, Gurajapu A, Maimone TJ. Modular, Enantioselective Entry into Polysubstituted Shapeshifting Molecules. J Am Chem Soc 2024; 146:17573-17579. [PMID: 38901002 DOI: 10.1021/jacs.4c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Dynamic, shapeshifting hydrocarbons have emerged as enabling frameworks across drug discovery, materials science, and catalysis. Their employment, however, is often hampered by a lack of efficient synthetic methods for their preparation. Herein, we report a unified, concise, and modular synthesis of enantioenriched shapeshifting hydrocarbons (barbaralones and bullvalones) and multisubstituted bullvalenes, leveraging mild photochemical and base-induced rearrangements.
Collapse
Affiliation(s)
- Andre Sanchez
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California, 94720, United States
| | - Vanessa M Gonzalez
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California, 94720, United States
| | - Jukiya Sakamoto
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California, 94720, United States
| | - Anjali Gurajapu
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California, 94720, United States
| | - Thomas J Maimone
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California, 94720, United States
| |
Collapse
|
7
|
Dohmen C, Paululat T, Ihmels H. Reversible Restrain and Release of the Dynamic Valence Isomerization in a Shape-shifting Bullvalene by Complex Formation. Chemistry 2024; 30:e202304311. [PMID: 38275100 DOI: 10.1002/chem.202304311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
In search for structural features that enable the control of the valence isomerization of the fluxional bullvalene, a bullvalene-bis(harmane) conjugate is identified that acts as chelating ligand in complexes with metal ions. Spectrometric titrations show that this ligand forms 1 : 1 complexes with Ag+, Cu+, Cu2+, and Zn2+. Most importantly, detailed NMR-spectroscopic analysis at different temperatures reveals that the complexation with Ag+ strongly affects the dynamic isomerization of the bullvalene unit of the ligand such that only one predominant valence isomer is formed, even at 5 °C. Detailed 1H-NMR-spectroscopic studies disclose an increased barrier (~11 kJ mol-1) of the Cope rearrangement. Furthermore, the addition of hexacyclene displaces the Ag+ from the complex, so that the valence isomerization is accelerated and an equilibrium with two predominant isomers is formed. In turn, repeated addition of Ag+ regains the complex with the restrained isomerization of the bullvalene unit. This method to control the valence isomerism by straightforward chemical stimuli may be used to simplify structural analysis at elevated temperatures, i. e. a feature not available so far with bullvalenes, and it may be employed as functional element in dynamic supramolecular assemblies.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry-Biology, and Center of Micro-and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Thomas Paululat
- Department of Chemistry-Biology, and Center of Micro-and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry-Biology, and Center of Micro-and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| |
Collapse
|
8
|
Gao J, Zhu X, Long Y, Liu M, Li H, Zhang Y, Yao S. Boronic Acid-Decorated Carbon Dot-Based Semiselective Multichannel Sensor Array for Cytokine Discrimination and Oral Cancer Diagnosis. Anal Chem 2024; 96:1795-1802. [PMID: 38241199 DOI: 10.1021/acs.analchem.3c05240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Cytokines are essential components of the immune system and are recognized as significant biomarkers. However, detection of a single cytokine is not precise and reliable enough to satisfy the requirements for diagnosis. Herein, we developed a pattern recognition-based method for the multiplexed sensing of cytokines, which involves three-color-emitting boronic acid-decorated carbon dots (BCDs) and arginine-modified titanium carbide (Ti3C2 MXenes) as the sensor array. Initially, the fluorescence signals of the three BCDs were quenched by Ti3C2 MXenes. In the presence of cytokines, the fluorescence intensity of the BCDs was restored or further quenched by different cytokines. The fluorescence response occurs in two steps: first, boronic acid interacts with cis-diol functional groups of cytokines, and second, arginine headgroup selectively interacts with glycans. By exploiting the different competing binding of the BCDs and the cytokines toward Ti3C2 MXenes, seven cytokines and their mixtures can be effectively discriminated at a concentration of 20 ng mL-1. Furthermore, our sensor array demonstrated an excellent performance in classifying human oral cancer saliva samples from healthy individuals with clinically relevant specificity. The noninvasive method offers a rapid approach to cytokine analysis, benefiting early and timely clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Ying Long
- Translational Medicine Centre, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
9
|
Laconsay CJ, Tantillo DJ. Modulating Escape Channels of Cycloheptatrienyl Rhodium Carbenes To Form Semibullvalene. J Org Chem 2023. [PMID: 37335974 DOI: 10.1021/acs.joc.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
We describe the various escape channels available to dirhodium carbene intermediates from cycloheptatrienyl diazo compounds located with density functional theory. An intramolecular cyclopropanation would, in principle, provide a new route to semibullvalenes (SBVs). A detailed exploration of the potential energy surface reveals that methylating carbon-7 suppresses a competing β-hydride migration pathway to heptafulvene products, giving SBV formation a reasonable chance. During our explorations, we additionally discovered unusual spirononatriene, spironorcaradiene, and metal-stabilized 9-barbaralyl cation structures as local minima.
Collapse
Affiliation(s)
- Croix J Laconsay
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| |
Collapse
|
10
|
Ottonello A, Wyllie JA, Yahiaoui O, Sun S, Koelln RA, Homer JA, Johnson RM, Murray E, Williams P, Bolla JR, Robinson CV, Fallon T, Soares da Costa TP, Moses JE. Shapeshifting bullvalene-linked vancomycin dimers as effective antibiotics against multidrug-resistant gram-positive bacteria. Proc Natl Acad Sci U S A 2023; 120:e2208737120. [PMID: 37011186 PMCID: PMC10104512 DOI: 10.1073/pnas.2208737120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
The alarming rise in superbugs that are resistant to drugs of last resort, including vancomycin-resistant enterococci and staphylococci, has become a significant global health hazard. Here, we report the click chemistry synthesis of an unprecedented class of shapeshifting vancomycin dimers (SVDs) that display potent activity against bacteria that are resistant to the parent drug, including the ESKAPE pathogens, vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), as well as vancomycin-resistant S. aureus (VRSA). The shapeshifting modality of the dimers is powered by a triazole-linked bullvalene core, exploiting the dynamic covalent rearrangements of the fluxional carbon cage and creating ligands with the capacity to inhibit bacterial cell wall biosynthesis. The new shapeshifting antibiotics are not disadvantaged by the common mechanism of vancomycin resistance resulting from the alteration of the C-terminal dipeptide with the corresponding d-Ala-d-Lac depsipeptide. Further, evidence suggests that the shapeshifting ligands destabilize the complex formed between the flippase MurJ and lipid II, implying the potential for a new mode of action for polyvalent glycopeptides. The SVDs show little propensity for acquired resistance by enterococci, suggesting that this new class of shapeshifting antibiotic will display durable antimicrobial activity not prone to rapidly acquired clinical resistance.
Collapse
Affiliation(s)
- Alessandra Ottonello
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Jessica A. Wyllie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Oussama Yahiaoui
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Shoujun Sun
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Rebecca A. Koelln
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Robert M. Johnson
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Ewan Murray
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Jani R. Bolla
- Department of Biology, University of Oxford, OxfordOX1 3RB, U.K.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
| | - Carol V. Robinson
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
- Physical and Theoretical Chemistry Laboratory, University of Oxford, OxfordOX1 3QZ, U.K.
| | - Thomas Fallon
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | | | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
11
|
Jang M, Han MS. Ratiometric Strategy Based on Intramolecular Internal Standard for Reproducible and Simultaneous Fingerprint Recognition of Diols via 19F NMR Spectroscopy. Anal Chem 2022; 94:13455-13462. [PMID: 36121681 DOI: 10.1021/acs.analchem.2c02466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
19F NMR spectroscopy has been widely used as a convenient and noninvasive analytical technique for understanding complex natural phenomena at the atomic level. However, current NMR referencing techniques are most optimized for 1H NMR, which causes some limitations while referencing heteronuclear NMR. Despite its promising advantages, 19F NMR spectroscopy often exhibits large variations in experimental results and lacks consistency compared with 1H NMR. Herein, we propose a new strategy to improve the consistency of 19F NMR referencing using an internal standard method. As a proof-of-concept, BA-Py-TFP was applied as a sensor for diols via 19F NMR spectroscopy. This strategy proved to be a robust and reproducible referencing method with acceptable deviation (ΔδF = 43-58 ppb) across diverse NMR spectrometers at different institutions. In particular, this new strategy allows reliable fingerprint recognition for analytes and enables qualitative and quantitative analyses of mixtures of multiple analytes simultaneously. The high recovery rates for d-glucose in the human serum matrix suggest its potential suitability for a diverse range of applications, such as in diabetes-related diagnostics.
Collapse
Affiliation(s)
- Mincheol Jang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
12
|
Abstract
The widespread application of nuclear magnetic resonance (NMR) spectroscopy in detection is currently hampered by its inherently low sensitivity and complications resulting from the undesired signal overlap. Here, we report a detection scheme to address these challenges, where analytes are recognized by 19F-labeled probes to induce characteristic shifts of 19F resonances that can be used as "chromatographic" signatures to pin down each low-concentration analyte in complex mixtures. This unique signal transduction mechanism allows detection sensitivity to be enhanced by using massive chemically equivalent 19F atoms, which was achieved through the proper installation of nonafluoro-tert-butoxy groups on probes of high structural symmetry. It is revealed that the binding of an analyte to the probe can be sensed by as many as 72 chemically equivalent 19F atoms, allowing the quantification of analytes at nanomolar concentrations to be routinely performed by NMR. Applications on the detection of trace amounts of prohibited drug molecules and water contaminants were demonstrated. The high sensitivity and robust resolving ability of this approach represent a first step toward extending the application of NMR to scenarios that are now governed by chromatographic and mass spectrometry techniques. The detection scheme also makes possible the highly sensitive non-invasive multi-component analysis that is difficult to achieve by other analytical methods.
Collapse
Affiliation(s)
- Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siyi Gu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
13
|
Sanz‐Novo M, Mato M, León Í, Echavarren AM, Alonso JL. Shape‐Shifting Molecules: Unveiling the Valence Tautomerism Phenomena in Bare Barbaralones. Angew Chem Int Ed Engl 2022; 61:e202117045. [PMID: 35165988 PMCID: PMC9311078 DOI: 10.1002/anie.202117045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/28/2022]
Abstract
We report a state‐of‐the‐art spectroscopic study of an archetypical barbaralone, conclusively revealing the valence tautomerism phenomena for this bistable molecular system. The two distinct 1‐ and 5‐substituted valence tautomers have been isolated in a supersonic expansion for the first time and successfully characterized by high‐resolution rotational spectroscopy. This work provides irrefutable experimental evidence of the [3,3]‐rearrangement in barbaralones and highlights the use of rotational spectroscopy to analyze shape‐shifting mixtures. Moreover, this observation opens the window toward the characterization of new fluxional systems in the isolation conditions of the gas phase and should serve as a reference point in the general understanding of valence tautomerism.
Collapse
Affiliation(s)
- Miguel Sanz‐Novo
- Grupo de Espectroscopía Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopía y Bioespectroscopía Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| | - Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/Marcel⋅li Domingo s/n 43007 Tarragona Spain
| | - Íker León
- Grupo de Espectroscopía Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopía y Bioespectroscopía Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/Marcel⋅li Domingo s/n 43007 Tarragona Spain
| | - José L. Alonso
- Grupo de Espectroscopía Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopía y Bioespectroscopía Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| |
Collapse
|
14
|
Sanz‐Novo M, Mato M, León Í, Echavarren AM, Alonso JL. Shape‐Shifting Molecules: Unveiling the Valence Tautomerism Phenomena in Bare Barbaralones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miguel Sanz‐Novo
- Grupo de Espectroscopía Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopía y Bioespectroscopía Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| | - Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/Marcel⋅li Domingo s/n 43007 Tarragona Spain
| | - Íker León
- Grupo de Espectroscopía Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopía y Bioespectroscopía Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica Universitat Rovira i Virgili C/Marcel⋅li Domingo s/n 43007 Tarragona Spain
| | - José L. Alonso
- Grupo de Espectroscopía Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopía y Bioespectroscopía Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| |
Collapse
|
15
|
Birvé AP, Patel HD, Price JR, Bloch WM, Fallon T. Guest-Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage. Angew Chem Int Ed Engl 2022; 61:e202115468. [PMID: 34854191 PMCID: PMC9303423 DOI: 10.1002/anie.202115468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/09/2022]
Abstract
A fluxional bis-monodentate ligand, based on the archetypal shape-shifting molecule bullvalene, self-assembles with M2+ (M=Pd2+ or Pt2+ ) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal-mediated self-assembly selects for an M2 L4 architecture while maintaining shape-shifting ligand complexity. A second level of simplification is achieved with guest-exchange; the binding of halides within the M2 L4 cage mixture results in a convergence to a cage species with all four ligands present as the "B isomer". Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X-ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2 L4 assembly.
Collapse
Affiliation(s)
- André P. Birvé
- Department of ChemistryUniversity of AdelaideAdelaide5005Australia
| | - Harshal D. Patel
- Department of ChemistryUniversity of AdelaideAdelaide5005Australia
| | - Jason R. Price
- ANSTOAustralian Synchrotron800 Blackburn RoadClaytonVic 3168Australia
| | - Witold M. Bloch
- Department of ChemistryUniversity of AdelaideAdelaide5005Australia
| | - Thomas Fallon
- Department of ChemistryUniversity of AdelaideAdelaide5005Australia
| |
Collapse
|
16
|
Diboronic acid assisted labeling and separation for highly efficient analysis of saccharides. J Chromatogr A 2022; 1667:462908. [DOI: 10.1016/j.chroma.2022.462908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
|
17
|
Li H, Xu Z, Zhang S, Jia Y, Zhao Y. Construction of Lewis Pairs for Optimal Enantioresolution via Recognition-Enabled “Chromatographic” 19F NMR Spectroscopy. Anal Chem 2022; 94:2023-2031. [DOI: 10.1021/acs.analchem.1c03783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Huanhuan Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siquan Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yushu Jia
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
- Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Birvé AP, Patel HD, Price JR, Bloch WM, Fallon T. Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- André P. Birvé
- Department of Chemistry University of Adelaide Adelaide 5005 Australia
| | - Harshal D. Patel
- Department of Chemistry University of Adelaide Adelaide 5005 Australia
| | - Jason R. Price
- ANSTO Australian Synchrotron 800 Blackburn Road Clayton Vic 3168 Australia
| | - Witold M. Bloch
- Department of Chemistry University of Adelaide Adelaide 5005 Australia
| | - Thomas Fallon
- Department of Chemistry University of Adelaide Adelaide 5005 Australia
| |
Collapse
|
19
|
Shapeshifting radicals. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Sobie KM, Albritton M, Yang Y, Alves MM, Roitberg A, Grenning AJ. Construction of vicinal 4°/3°-carbons via reductive Cope rearrangement. Chem Sci 2022; 13:1951-1956. [PMID: 35308853 PMCID: PMC8848919 DOI: 10.1039/d1sc06307c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
Herein reported is a strategy for constructing vicinal 4°/3° carbons via reductive Cope rearrangement. Substrates have been designed which exhibit Cope rearrangement kinetic barriers of ∼23 kcal mol−1 with isoenergetic favorability (ΔG ∼ 0). These fluxional/shape-shifting molecules can be driven forward by chemoselective reduction to useful polyfunctionalized building blocks. Herein reported is a strategy for constructing vicinal 4°/3° carbons via reductive Cope rearrangement.![]()
Collapse
Affiliation(s)
- Kristin M Sobie
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| | - Matthew Albritton
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| | - Yinuo Yang
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| | - Mariana M Alves
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| | - Adrian Roitberg
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| | - Alexander J Grenning
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| |
Collapse
|
21
|
Patel HD, Gaggl S, Pašteka LF, Fallon T. Ambimodal Pericyclic Rearrangements of Dialkenyl-Bullvalenes Give Tetrahydro-1,8-ethenoheptalenes. Org Lett 2021; 24:319-323. [PMID: 34898219 DOI: 10.1021/acs.orglett.1c03984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluxional structure of bullvalene is expanded by the discovery of a [5,5]-sigmatropic rearrangement of dialkenyl substituted derivatives. This gives rise to tetrahydro-1,8-ethenoheptalenes (THEH), representing the first examples of this tricyclic scaffold. Variation of the substitution pattern alters the product distribution, including one thermodynamically balanced between THEH and bullvalene isomers. DFT calculations are used to explore the thermodynamic landscape and reaction mechanism revealing a pretransition state bifurcation leading to a concerted ambimodal rearrangement pathway.
Collapse
Affiliation(s)
- Harshal D Patel
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sebastian Gaggl
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lukáš F Pašteka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Thomas Fallon
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
Shadfar Z, Yahiaoui O, Collier TA, Fallon T, Allison JR. Illustration of a computational pipeline for evaluating cyclodextrin host-guest complex formation through conformational capture of bullvalene. J Chem Phys 2021; 154:154105. [PMID: 33887942 DOI: 10.1063/5.0045115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cyclodextrins have a diverse range of applications, including as supramolecular hosts, as enzyme active-site analogs, in improving drug solubility and delivery, and in molecular selection. We have investigated their ability to form stable complexes with bullvalenes, unusual organic cage molecules that spontaneously interconvert between numerous degenerate isomers. The shape-shifting nature of substituted bullvalenes raises the potential for dynamic adaptive binding to biological targets. We tested whether β- and γ-cyclodextrins can capture particular bullvalene isomers and whether the preferred binding mode(s) differ between isomers. We first applied our computational host-guest interaction potential energy profiling to determine the best binding mode(s) of unsubstituted bullvalene and each isomer of methylenehydroxybullvalene to β- and γ-cyclodextrin. Subsequent molecular dynamics simulations of the predicted host-guest complexes showed that while unsubstituted bullvalene has a single, albeit ill-defined, binding mode with either cyclodextrin, each isomer of methylenehydroxybullvalene has two possible modes of binding to β-cyclodextrin but only a single, nebulous mode of binding to γ-cyclodextrin. Experimental determination of the binding free energy of each methylenehydroxybullvalene-cyclodextrin complex showed that methylenehydroxybullvalene is more likely to bind to β-cyclodextrin than to γ-cyclodextrin, despite its smaller cavity. Together, our results suggest that β-cyclodextrin, but not γ-cyclodextrin, shows promise for conformational capture of mono-substituted bullvalenes. More broadly, our computational pipeline should prove useful for rapid characterization of cyclodextrin host-guest complexes, avoiding the need for costly synthesis of guest molecules that are unlikely to bind stably, as well as providing detailed atomic-level insight into the nature of complexation.
Collapse
Affiliation(s)
- Zahra Shadfar
- Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical Sciences, Massey University, Auckland 0632, New Zealand
| | - Oussama Yahiaoui
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Thomas A Collier
- Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical Sciences, Massey University, Auckland 0632, New Zealand
| | - Thomas Fallon
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
23
|
Komáromy D, Tiemersma-Wegman T, Kemmink J, Portale G, Adamski PR, Blokhuis A, Aalbers FS, Marić I, Santiago GM, Ottelé J, Sood A, Saggiomo V, Liu B, van der Meulen P, Otto S. Stoichiometry alone can steer supramolecular systems on complex free energy surfaces with high selectivity. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Yahiaoui O, Patel HD, Chinner KS, Pašteka LF, Fallon T. Stereomutation of Substituted Bullvalenes. Org Lett 2021; 23:1157-1162. [PMID: 33146538 DOI: 10.1021/acs.orglett.0c03470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stereomutation of substituted bullvalenes is an inevitable consequence of the valence isomerism that automerizes this unique fluxional hydrocarbon. The introduction of external stereogenicity in the substituents expands the reaction graphs and leads to a wealth of complex diastereochemical relationships. In this communication, we explore these possibilities and prepare a range of stereochemically rich substituted bullvalenes. This includes a series of disubstituted bullvalenes with two external stereocenters as a platform for fluxional, shape-diverse compound libraries. We also prepare a tethered bisbullvalene with central stereogenicity in the tether as an ensemble of 900 unique isomers that are completely stereomutable.
Collapse
Affiliation(s)
- Oussama Yahiaoui
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Harshal D Patel
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kylie S Chinner
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lukáš F Pašteka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, 81806 Bratislava, Slovakia
| | - Thomas Fallon
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
25
|
Dong C, Xu Z, Wen L, He S, Wu J, Deng QH, Zhao Y. Tailoring Sensors and Solvents for Optimal Analysis of Complex Mixtures Via Discriminative 19F NMR Chemosensing. Anal Chem 2021; 93:2968-2973. [PMID: 33503366 DOI: 10.1021/acs.analchem.0c04768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Separation-free analytic techniques capable of providing precise and real-time component information are in high demand. 19F NMR-based chemosensing, where the reversible binding between analytes and a 19F-labeled sensor produces chromatogram-like output, has emerged as a valuable tool for the rapid analysis of complex mixtures. However, the potential overlap of the 19F NMR signals still limits the number of analytes that can be effectively differentiated. In this study, we systematically investigated the influence of the sensor structure and NMR solvents on the resolution of structurally similar analytes. The substituents adjacent and distal to the 19F labels are both important to the resolving ability of the 19F-labeled sensors. More pronounced separation between 19F NMR peaks was observed in nonpolar and aromatic solvents. By using a proper sensor and solvent combination, more than 20 biologically relevant analytes can be simultaneously identified.
Collapse
Affiliation(s)
- Chanjuan Dong
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.,Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Shengyuan He
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| |
Collapse
|
26
|
|
27
|
G. Keller S, Kamiya M, Urano Y. Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes. Molecules 2020; 25:E5964. [PMID: 33339370 PMCID: PMC7766215 DOI: 10.3390/molecules25245964] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescent probes in a multitude of applications is still an expanding field. This review covers the recent progress made in small molecular, spirocyclic xanthene-based probes containing different heteroatoms (e.g., oxygen, silicon, carbon) in position 10'. After a short introduction, we will focus on applications like the interaction of probes with enzymes and targeted labeling of organelles and proteins, detection of small molecules, as well as their use in therapeutics or diagnostics and super-resolution microscopy. Furthermore, the last part will summarize recent advances in the synthesis and understanding of their structure-behavior relationship including novel computational approaches.
Collapse
Affiliation(s)
- Sascha G. Keller
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
28
|
Chai Z, Wu Q, Cheng K, Liu X, Jiang L, Liu M, Li C. Simultaneous detection of small molecule thiols with a simple 19F NMR platform. Chem Sci 2020; 12:1095-1100. [PMID: 34163876 PMCID: PMC8179020 DOI: 10.1039/d0sc04664g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thiols play critical roles in regulating biological functions and have wide applications in pharmaceutical and biomedical industries. However, we still lack a general approach for the simultaneous detection of various thiols, especially in complex systems. Herein, we establish a 19F NMR platform where thiols are selectively fused into a novelly designed fluorinated receptor that has two sets of environmentally different 19F atoms with fast kinetics (k 2 = 0.73 mM-1 min-1), allowing us to generate unique two-dimensional codes for about 20 thiols. We demonstrate the feasibility of the approach by reliably quantifying thiol drug content in tablets, discriminating thiols in living cells, and for the first time monitoring the thiol related metabolism pathway at the atomic level. Moreover, the method can be easily extended to detect the activity of thiol related enzymes such as γ-glutamyl transpeptidase. We envision that the versatile platform will be a useful tool for detecting thiols and elucidating thiol-related processes in complex systems.
Collapse
Affiliation(s)
- Zhaofei Chai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
29
|
Gorai T, Sakthivel S, Maitra U. An Inexpensive Paper-Based Photoluminescent Sensor for Gallate Derived Green Tea Polyphenols. Chem Asian J 2020; 15:4023-4027. [PMID: 33078577 DOI: 10.1002/asia.202001054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Indexed: 11/10/2022]
Abstract
This work describes a terbium luminescence-based protocol to selectively detect gallate-derived green tea polyphenols on a supramolecular gel immobilised paper platform for the first time. This user-friendly, inexpensive (€ 0.0015) approach requires very low sample volumes for the analysis. The developed strategy enables simultaneous detection of gallate polyphenols in multiple tea samples with the potential for practical applications.
Collapse
Affiliation(s)
- Tumpa Gorai
- Current address: School of Chemistry Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Shruthi Sakthivel
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
30
|
Etkind SI, Vander Griend DA, Swager TM. Electroactive Anion Receptor with High Affinity for Arsenate. J Org Chem 2020; 85:10050-10061. [PMID: 32790360 DOI: 10.1021/acs.joc.0c01206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we present the synthesis and characterization of a macrocyclic polyamide cage that incorporates redox-active 1,4-dithiin units. UV/vis titration experiments with eight anions in acetonitrile revealed high affinity for H2AsO4- (log β2 = 10.4-0.4+0.4) and HCO3- (log β2 = 8.3-0.4+0.3) over other common anionic guests, such as Cl- (log K1:1 = 3.20-0.02+0.03), HSO4- (log K1:1 = 3.57-0.03+0.02), and H2PO4- (log K1:1 = 4.24-0.04+0.05), by the selective formation of HG2 complexes. The recognition of arsenate over phosphate is rare among both proteins and synthetic receptors, and though the origin of selectivity is not known, exploiting the difference in the binding stoichiometry represents an underexplored avenue toward developing receptors that can differentiate between the two anions. Additional analysis by 1H NMR in 1:3 CD2Cl2/MeCN-d3 found a strong dependence of anion binding stoichiometry with the solvent employed. Finally, titration experiments with cyclic voltammetry provided varying and complex responses for each anion tested, though reaction between the anion and receptors was observed in most cases. These results implicate 1,4-dithiins as interesting recognition moieties in the construction of supramolecular receptors.
Collapse
Affiliation(s)
- Samuel I Etkind
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Douglas A Vander Griend
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan 49546, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Patel HD, Tran TH, Sumby CJ, Pašteka LF, Fallon T. Boronate Ester Bullvalenes. J Am Chem Soc 2020; 142:3680-3685. [DOI: 10.1021/jacs.9b12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Harshal D. Patel
- Department of Chemistry, The University of Adelaide, Adelaide 5005, SA, Australia
| | - Thanh-Huyen Tran
- Department of Chemistry, The University of Adelaide, Adelaide 5005, SA, Australia
| | - Christopher J. Sumby
- Department of Chemistry, The University of Adelaide, Adelaide 5005, SA, Australia
| | - Lukáš F. Pašteka
- Department of Physical and Theoretical Chemistry and Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, Slovakia
| | - Thomas Fallon
- Department of Chemistry, The University of Adelaide, Adelaide 5005, SA, Australia
| |
Collapse
|
32
|
Bismillah AN, Chapin BM, Hussein BA, McGonigal PR. Shapeshifting molecules: the story so far and the shape of things to come. Chem Sci 2020; 11:324-332. [PMID: 32206269 PMCID: PMC7069523 DOI: 10.1039/c9sc05482k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
Shapeshifting molecules exhibit rapid constitutional dynamics while remaining stable, isolable molecules, making them promising artificial scaffolds from which to explore complex biological systems and create new functional materials. However, their structural complexity presents challenges for designing their syntheses and understanding their equilibria. This minireview showcases (1) recent applications of highly dynamic shapeshifting molecules in sensing and distinguishing complex small molecules and (2) detailed insights into the adaptation of tractable bistable systems to changes in their local environment. The current status of this field is summarised and its future prospects are discussed.
Collapse
Affiliation(s)
- Aisha N Bismillah
- Department of Chemistry , Durham University , Lower Mountjoy, Stockton Road , Durham , DH1 3LE , UK .
| | - Brette M Chapin
- Department of Chemistry , Durham University , Lower Mountjoy, Stockton Road , Durham , DH1 3LE , UK .
| | - Burhan A Hussein
- Department of Chemistry , Durham University , Lower Mountjoy, Stockton Road , Durham , DH1 3LE , UK .
| | - Paul R McGonigal
- Department of Chemistry , Durham University , Lower Mountjoy, Stockton Road , Durham , DH1 3LE , UK .
| |
Collapse
|
33
|
Yahiaoui O, Pašteka LF, Blake CJ, Newton CG, Fallon T. Network Analysis of Substituted Bullvalenes. Org Lett 2019; 21:9574-9578. [PMID: 31746207 DOI: 10.1021/acs.orglett.9b03737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Substituted bullvalenes are dynamic shape-shifting molecules that exist within complex reaction networks. Herein, we report the synthesis of di- and trisubstituted bullvalenes and investigate their dynamic properties. Trisubstituted bullvalenes share a common major isomer which shows kinetic metastability. A survey of the thermodynamic and kinetic landscapes through computational analysis together with kinetic simulation provides a map of the internal dynamics of these systems.
Collapse
Affiliation(s)
- Oussama Yahiaoui
- Department of Chemistry , The University of Adelaide , Adelaide , SA 5005 , Australia.,Institute of Natural and Mathematical Sciences , Massey University , Auckland 0632 , New Zealand
| | - Lukáš F Pašteka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences , Comenius University , Bratislava , Slovakia
| | - Christopher J Blake
- Research School of Chemistry , Australian National University , Canberra , ACT 0200 , Australia
| | - Christopher G Newton
- Department of Chemistry , The University of Adelaide , Adelaide , SA 5005 , Australia
| | - Thomas Fallon
- Department of Chemistry , The University of Adelaide , Adelaide , SA 5005 , Australia.,Institute of Natural and Mathematical Sciences , Massey University , Auckland 0632 , New Zealand
| |
Collapse
|
34
|
Zhang W, Li Y, Liang Y, Gao N, Liu C, Wang S, Yin X, Li G. Poly(ionic liquid)s as a distinct receptor material to create a highly-integrated sensing platform for efficiently identifying numerous saccharides. Chem Sci 2019; 10:6617-6623. [PMID: 31367313 PMCID: PMC6624988 DOI: 10.1039/c9sc02266j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
A highly-integrated sphere-based sensing platform for directly identifying numerous saccharides very efficiently is developed.
Saccharides have strong hydrophilicities, and are complex molecular structures with subtle structure differences, and tremendous structural variations. The creation of one sensing platform capable of efficiently identifying such target systems presents a huge challenge. Using the integration of unique multiple noncovalent interactions simultaneously occurring in poly(ionic liquid)s (PILs) with multiple signaling channels, in this research an aggregation-induced emission (AIE)-doped photonic structured PIL sphere is constructed. It is found that such a sphere can serve as a highly integrated platform to provide abundant fingerprints for directly sensing numerous saccharides with an unprecedented efficiency. As a demonstration, 23 saccharides can be conveniently identified using only one sphere. More importantly, by using simple ion-exchanges of PIL receptors or/and increasing the AIE signaling channels, this platform is able to perform, on demand, different sensing tasks very efficiently. This is demonstrated by using it for the detection of difficult targets, such as greatly extended saccharides as well as mixed targets, in real-life examples on one or two spheres. The findings show that this new class of platform is very promising for addressing the challenges of identifying saccharides.
Collapse
Affiliation(s)
- Wanlin Zhang
- Department of Chemistry , Key Laboratory of Organic Optoelectronics and Molecular Engineering , Tsinghua University , Beijing 100084 , PR China . .,Aerospace Research Institute of Special Material and Processing Technology , Beijing 100074 , PR China
| | - Yao Li
- Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , PR China
| | - Yun Liang
- Department of Chemistry , Key Laboratory of Organic Optoelectronics and Molecular Engineering , Tsinghua University , Beijing 100084 , PR China .
| | - Ning Gao
- Department of Chemistry , Key Laboratory of Organic Optoelectronics and Molecular Engineering , Tsinghua University , Beijing 100084 , PR China .
| | - Chengcheng Liu
- Department of Chemistry , Key Laboratory of Organic Optoelectronics and Molecular Engineering , Tsinghua University , Beijing 100084 , PR China .
| | - Shiqiang Wang
- Department of Chemistry , Key Laboratory of Organic Optoelectronics and Molecular Engineering , Tsinghua University , Beijing 100084 , PR China .
| | - Xianpeng Yin
- Aerospace Research Institute of Special Material and Processing Technology , Beijing 100074 , PR China
| | - Guangtao Li
- Department of Chemistry , Key Laboratory of Organic Optoelectronics and Molecular Engineering , Tsinghua University , Beijing 100084 , PR China .
| |
Collapse
|
35
|
Wang W, Xia X, Bian G, Song L. A chiral sensor for recognition of varied amines based on 19F NMR signals of newly designed rhodium complexes. Chem Commun (Camb) 2019; 55:6098-6101. [PMID: 31069349 DOI: 10.1039/c9cc01942a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel chiral octahedral rhodium complex containing fluorine has been developed to be an excellent chiral sensor for a variety of amines including diamines, monoamines, amino alcohols and amino acids, showing well distinguishable 19F NMR signals and an accurate measurement of enantiomeric determination.
Collapse
Affiliation(s)
- Wei Wang
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | | | | | | |
Collapse
|
36
|
Wang X, Shyshov O, Hanževački M, Jäger CM, von Delius M. Ammonium Complexes of Orthoester Cryptands Are Inherently Dynamic and Adaptive. J Am Chem Soc 2019; 141:8868-8876. [DOI: 10.1021/jacs.9b01350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiang Wang
- Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oleksandr Shyshov
- Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Christof M. Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
37
|
Dhayalan V, Gadekar SC, Alassad Z, Milo A. Unravelling mechanistic features of organocatalysis with in situ modifications at the secondary sphere. Nat Chem 2019; 11:543-551. [DOI: 10.1038/s41557-019-0258-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/22/2019] [Indexed: 01/12/2023]
|
38
|
Halabi EA, Pinotsi D, Rivera-Fuentes P. Photoregulated fluxional fluorophores for live-cell super-resolution microscopy with no apparent photobleaching. Nat Commun 2019; 10:1232. [PMID: 30874551 PMCID: PMC6420572 DOI: 10.1038/s41467-019-09217-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/25/2019] [Indexed: 01/13/2023] Open
Abstract
Photoswitchable molecules have multiple applications in the physical and life sciences because their properties can be modulated with light. Fluxional molecules, which undergo rapid degenerate rearrangements in the electronic ground state, also exhibit switching behavior. The stochastic nature of fluxional switching, however, has hampered its application in the development of functional molecules and materials. Here we combine photoswitching and fluxionality to develop a fluorophore that enables very long (>30 min) time-lapse single-molecule localization microscopy in living cells with minimal phototoxicity and no apparent photobleaching. These long time-lapse experiments allow us to track intracellular organelles with unprecedented spatiotemporal resolution, revealing new information of the three-dimensional compartmentalization of synaptic vesicle trafficking in live human neurons. Super-resolution microscopy with spontaneously blinking dyes is dependent on pH and polarity of the medium. Here the authors introduce a photoactivatable fluxional fluorophore for live cell imaging that allows control over the fraction of spontaneously blinking molecules independently of medium properties.
Collapse
Affiliation(s)
- Elias A Halabi
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, 8093, Switzerland
| | - Dorothea Pinotsi
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zurich, 8093, Switzerland
| | | |
Collapse
|
39
|
Wu N, Li J, Zhou M. A novel luminescent sensor for disaccharide detection in food: Synthesis and application of a water-soluble rod-coil ionic block copolymer. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Locke GM, Bernhard SSR, Senge MO. Nonconjugated Hydrocarbons as Rigid-Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry. Chemistry 2019; 25:4590-4647. [PMID: 30387906 DOI: 10.1002/chem.201804225] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/20/2018] [Indexed: 01/02/2023]
Abstract
Nonconjugated hydrocarbons, like bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane, triptycene, and cubane are a unique class of rigid linkers. Due to their similarity in size and shape they are useful mimics of classic benzene moieties in drugs, so-called bioisosteres. Moreover, they also fulfill an important role in material sciences as linear linkers, in order to arrange various functionalities in a defined spatial manner. In this Review article, recent developments and usages of these special, rectilinear systems are discussed. Furthermore, we focus on covalently linked, nonconjugated linear arrangements and discuss the physical and chemical properties and differences of individual linkers, as well as their application in material and medicinal sciences.
Collapse
Affiliation(s)
- Gemma M Locke
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Stefan S R Bernhard
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| |
Collapse
|
41
|
Bismillah AN, Sturala J, Chapin BM, Yufit DS, Hodgkinson P, McGonigal PR. Shape-selective crystallisation of fluxional carbon cages. Chem Sci 2018; 9:8631-8636. [PMID: 30647882 PMCID: PMC6301275 DOI: 10.1039/c8sc04303e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/25/2022] Open
Abstract
Dynamic covalent rearrangements of fluxional carbon cages, such as bullvalenes and barbaralanes, impart 'shapeshifting' molecular properties. Here, a series of five barbaralanes each interconvert dynamically between two constitutional isomers in solution, but resolve to single isomers upon crystallisation. Unexpectedly, the minor solution-phase isomers are resolved in two instances. Through dynamic NMR, crystallographic and DFT analyses, we show that the isomer observed in the solid state is not a direct consequence of the equilibrium distribution in solution or any specific noncovalent interactions. Rather, the dynamic preferential crystallisation is dictated by differences in molecular size and shape.
Collapse
Affiliation(s)
- Aisha N Bismillah
- Department of Chemistry , Durham University , Lower Mountjoy , Stockton Road , Durham , DH13LE , UK .
| | - Jiri Sturala
- Department of Chemistry , Durham University , Lower Mountjoy , Stockton Road , Durham , DH13LE , UK .
| | - Brette M Chapin
- Department of Chemistry , Durham University , Lower Mountjoy , Stockton Road , Durham , DH13LE , UK .
| | - Dmitry S Yufit
- Department of Chemistry , Durham University , Lower Mountjoy , Stockton Road , Durham , DH13LE , UK .
| | - Paul Hodgkinson
- Department of Chemistry , Durham University , Lower Mountjoy , Stockton Road , Durham , DH13LE , UK .
| | - Paul R McGonigal
- Department of Chemistry , Durham University , Lower Mountjoy , Stockton Road , Durham , DH13LE , UK .
| |
Collapse
|
42
|
Yang H, Lu F, Sun Y, Yuan Z, Lu C. Fluorescent Gold Nanocluster-Based Sensor Array for Nitrophenol Isomer Discrimination via an Integration of Host-Guest Interaction and Inner Filter Effect. Anal Chem 2018; 90:12846-12853. [PMID: 30296826 DOI: 10.1021/acs.analchem.8b03394] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rapid discrimination of nitrophenol isomers has been a long-standing challenge because of the tiny structural differences among the isomers. In this study, a fluorescent sensor array based on three different-color emitting gold nanoclusters (Au NCs) that were functionalized with three different ligands and a cocapping ligand β-cyclodextrin (β-CD) has been constructed for the facile discrimination of three nitrophenol isomers via the linear discriminant analysis of isomer-induced fluorescence quenching patterns. The fluorescence quenching occurs in two steps: first, β-CDs adsorb nitrophenol isomers onto the surface of Au NCs via a host-guest interaction; second, each nitrophenol isomer quenches the fluorescence of a specific type of Au NCs through diverse inner filter effect. The different binding affinities between β-CD and each nitrophenol isomer, as well as the distinct quenching efficiencies of the isomers on the fluorescence of each Au NCs, enable an excellent discrimination of the three isomers at a concentration of 5 μM, when linear discriminant and hierarchical cluster analyses were smartly combined. In addition, even a mixture of two isomers could be distinguished with the proposed sensor array. The practicability of this developed sensor array is validated by a high accuracy (98.0%) examination of 51 unknown samples containing a single isomer or a mixture of two isomers.
Collapse
Affiliation(s)
- Hongwei Yang
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Fengniu Lu
- International Center for Materials Nanoarchitectonics (MANA) , National Institute for Materials Science (NIMS) , 1-2-1 Sengen , Tsukuba 305-0047 , Japan
| | - Ye Sun
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
43
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
44
|
Strakova K, Soleimanpour S, Diez-Castellnou M, Sakai N, Matile S. Ganglioside-Selective Mechanosensitive Fluorescent Membrane Probes. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Karolina Strakova
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Saeideh Soleimanpour
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Marta Diez-Castellnou
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Stefan Matile
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| |
Collapse
|
45
|
Anandababu A, Anandan S, Ashokkumar M. A Simple Discriminating p-tert-Butylcalix[4]arene Thiospirolactam Rhodamine B Based Colorimetric and Fluorescence Sensor for Mercury Ion and Live Cell Imaging Applications. ChemistrySelect 2018. [DOI: 10.1002/slct.201800044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ambigapathi Anandababu
- Nanomaterials and Solar Energy Conversion Lab; Department of Chemistry; National Institute of Technology; Tiruchirappalli-620 015
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Lab; Department of Chemistry; National Institute of Technology; Tiruchirappalli-620 015
| | | |
Collapse
|
46
|
Johnson S, Bagdi AK, Tanaka F. C-Glycosidation of Unprotected Di- and Trisaccharide Aldopyranoses with Ketones Using Pyrrolidine-Boric Acid Catalysis. J Org Chem 2018; 83:4581-4597. [DOI: 10.1021/acs.joc.8b00340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sherida Johnson
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Avik Kumar Bagdi
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
47
|
Yahiaoui O, Pašteka LF, Judeel B, Fallon T. Synthesis and Analysis of Substituted Bullvalenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Oussama Yahiaoui
- Institute of Natural and Mathematical Sciences; Massey University; 1/5 University Avenue Albany Auckland 0632 New Zealand
| | - Lukáš F. Pašteka
- Centre for Theoretical Chemistry and Physics, NZIAS; Massey University; Oaklands Road Albany Auckland 0632 New Zealand
- Department of Physical and Theoretical Chemistry; Faculty of Natural Sciences; Comenius University; Ilkovičova 6 Bratislava Slovakia
- Centre for Advanced Study; Norwegian Academy of Science and Letters; Drammensveien 78 NO-0271 Oslo Norway
| | - Bernadette Judeel
- Institute of Natural and Mathematical Sciences; Massey University; 1/5 University Avenue Albany Auckland 0632 New Zealand
| | - Thomas Fallon
- Institute of Natural and Mathematical Sciences; Massey University; 1/5 University Avenue Albany Auckland 0632 New Zealand
| |
Collapse
|
48
|
Yahiaoui O, Pašteka LF, Judeel B, Fallon T. Synthesis and Analysis of Substituted Bullvalenes. Angew Chem Int Ed Engl 2018; 57:2570-2574. [PMID: 29314602 DOI: 10.1002/anie.201712157] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 01/01/2023]
Abstract
Herein we detail a practical synthesis of bullvalene and a variety of mono- and disubstituted analogues through cobalt-catalysed [6+2] cycloaddition of cyclooctatetraene to alkynes, followed by photochemical di-π-methane rearrangement. The application of isomer-network analysis, coupled with quantum-chemical calculations, provides a powerful automated tool for predicting the properties of bullvalene isomer networks.
Collapse
Affiliation(s)
- Oussama Yahiaoui
- Institute of Natural and Mathematical Sciences, Massey University, 1/5 University Avenue, Albany, Auckland, 0632, New Zealand
| | - Lukáš F Pašteka
- Centre for Theoretical Chemistry and Physics, NZIAS, Massey University, Oaklands Road, Albany, Auckland, 0632, New Zealand.,Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, Slovakia.,Centre for Advanced Study, Norwegian Academy of Science and Letters, Drammensveien 78, NO-0271, Oslo, Norway
| | - Bernadette Judeel
- Institute of Natural and Mathematical Sciences, Massey University, 1/5 University Avenue, Albany, Auckland, 0632, New Zealand
| | - Thomas Fallon
- Institute of Natural and Mathematical Sciences, Massey University, 1/5 University Avenue, Albany, Auckland, 0632, New Zealand
| |
Collapse
|
49
|
Grimme S, Schreiner PR. Computerchemie: das Schicksal aktueller Methoden und zukünftige Herausforderungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry; Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Peter R. Schreiner
- Institut für Organische Chemie; Justus-Liebig-Universität; Heinrich-Buff-Ring 17 35392 Gießen Deutschland
| |
Collapse
|
50
|
Grimme S, Schreiner PR. Computational Chemistry: The Fate of Current Methods and Future Challenges. Angew Chem Int Ed Engl 2017; 57:4170-4176. [PMID: 29105929 DOI: 10.1002/anie.201709943] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 11/12/2022]
Abstract
"Where do we go from here?" is the underlying question regarding the future (perhaps foreseeable) developments in computational chemistry. Although this young discipline has already permeated practically all of chemistry, it is likely to become even more powerful with the rapid development of computational hard- and software.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|