1
|
Zhang J, Li J, Wang Y, Shi C. NMR methods to detect fluoride binding and transport by membrane proteins. Methods Enzymol 2024; 696:25-42. [PMID: 38658082 DOI: 10.1016/bs.mie.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Solid-state nuclear magnetic resonance (NMR) methods can probe the motions of membrane proteins in liposomes at the atomic level, and propel the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. High-resolution crystallography snapshots have provided a structural basis for fluoride channels. NMR is a powerful tool to build upon these snapshots and depict a dynamic picture of fluoride channels in native-like lipid bilayers. In this contribution, we discuss solid-state and solution NMR experiments to detect fluoride binding and transport by fluoride channels. Ongoing developments in membrane protein sample preparation and ssNMR methodology, particularly in using 1H, 19F and 13C-detection schemes, offer additional opportunities to study structure and functional aspects of fluoride channels.
Collapse
Affiliation(s)
- Jin Zhang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Juan Li
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Yusong Wang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Chaowei Shi
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China.
| |
Collapse
|
2
|
High-Resolution Magic Angle Spinning NMR of KcsA in Liposomes: The Highly Mobile C-Terminus. Biomolecules 2022; 12:biom12081122. [PMID: 36009016 PMCID: PMC9405666 DOI: 10.3390/biom12081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
The structure of the transmembrane domain of the pH-activated bacterial potassium channel KcsA has been extensively characterized, yet little information is available on the structure of its cytosolic, functionally critical N- and C-termini. This study presents high-resolution magic angle spinning (HR-MAS) and fractional deuteration as tools to study these poorly resolved regions for proteoliposome-embedded KcsA. Using 1H-detected HR-MAS NMR, we show that the C-terminus transitions from a rigid structure to a more dynamic structure as the solution is rendered acidic. We make previously unreported assignments of residues in the C-terminus of lipid-embedded channels. These data agree with functional models of the C-terminus-stabilizing KcsA tetramers at a neutral pH with decreased stabilization effects at acidic pH. We present evidence that a C-terminal truncation mutation has a destabilizing effect on the KcsA selectivity filter. Finally, we show evidence of hydrolysis of lipids in proteoliposome samples during typical experimental timeframes.
Collapse
|
3
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
4
|
A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V. Nat Commun 2022; 13:1574. [PMID: 35322021 PMCID: PMC8943062 DOI: 10.1038/s41467-022-28866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/01/2022] [Indexed: 11/08/2022] Open
Abstract
C-type inactivation is of great physiological importance in voltage-activated K+ channels (Kv), but its structural basis remains unresolved. Knowledge about C-type inactivation has been largely deduced from the bacterial K+ channel KcsA, whose selectivity filter constricts under inactivating conditions. However, the filter is highly sensitive to its molecular environment, which is different in Kv channels than in KcsA. In particular, a glutamic acid residue at position 71 along the pore helix in KcsA is substituted by a valine conserved in most Kv channels, suggesting that this side chain is a molecular determinant of function. Here, a combination of X-ray crystallography, solid-state NMR and MD simulations of the E71V KcsA mutant is undertaken to explore inactivation in this Kv-like construct. X-ray and ssNMR data show that the filter of the Kv-like mutant does not constrict under inactivating conditions. Rather, the filter adopts a conformation that is slightly narrowed and rigidified. On the other hand, MD simulations indicate that the constricted conformation can nonetheless be stably established in the mutant channel. Together, these findings suggest that the Kv-like KcsA mutant may be associated with different modes of C-type inactivation, showing that distinct filter environments entail distinct C-type inactivation mechanisms.
Collapse
|
5
|
Rauh O, Opper J, Sturm M, Drexler N, Scheub DD, Hansen UP, Thiel G, Schroeder I. Role of ion distribution and energy barriers for concerted motion of subunits in selectivity filter gating of a K+ channel. J Mol Biol 2022; 434:167522. [DOI: 10.1016/j.jmb.2022.167522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
|
6
|
Shcherbakov AA, Medeiros-Silva J, Tran N, Gelenter MD, Hong M. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Chem Rev 2021; 122:9848-9879. [PMID: 34694769 DOI: 10.1021/acs.chemrev.1c00662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Internuclear distances represent one of the main structural constraints in molecular structure determination using solid-state NMR spectroscopy, complementing chemical shifts and orientational restraints. Although a large number of magic-angle-spinning (MAS) NMR techniques have been available for distance measurements, traditional 13C and 15N NMR experiments are inherently limited to distances of a few angstroms due to the low gyromagnetic ratios of these nuclei. Recent development of fast MAS triple-resonance 19F and 1H NMR probes has stimulated the design of MAS NMR experiments that measure distances in the 1-2 nm range with high sensitivity. This review describes the principles and applications of these multiplexed multidimensional correlation distance NMR experiments, with an emphasis on 19F- and 1H-based distance experiments. Representative applications of these long-distance NMR methods to biological macromolecules as well as small molecules are reviewed.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Li J, Shen R, Rohaim A, Mendoza Uriarte R, Fajer M, Perozo E, Roux B. Computational study of non-conductive selectivity filter conformations and C-type inactivation in a voltage-dependent potassium channel. J Gen Physiol 2021; 153:e202112875. [PMID: 34357375 PMCID: PMC8352720 DOI: 10.1085/jgp.202112875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
C-type inactivation is a time-dependent process of great physiological significance that is observed in a large class of K+ channels. Experimental and computational studies of the pH-activated KcsA channel show that the functional C-type inactivated state, for this channel, is associated with a structural constriction of the selectivity filter at the level of the central glycine residue in the signature sequence, TTV(G)YGD. The structural constriction is allosterically promoted by the wide opening of the intracellular activation gate. However, whether this is a universal mechanism for C-type inactivation has not been established with certainty because similar constricted structures have not been observed for other K+ channels. Seeking to ascertain the general plausibility of the constricted filter conformation, molecular dynamics simulations of a homology model of the pore domain of the voltage-gated potassium channel Shaker were performed. Simulations performed with an open intracellular gate spontaneously resulted in a stable constricted-like filter conformation, providing a plausible nonconductive state responsible for C-type inactivation in the Shaker channel. While there are broad similarities with the constricted structure of KcsA, the hypothetical constricted-like conformation of Shaker also displays some subtle differences. Interestingly, those are recapitulated by the Shaker-like E71V KcsA mutant, suggesting that the residue at this position along the pore helix plays a pivotal role in determining the C-type inactivation behavior. Free energy landscape calculations show that the conductive-to-constricted transition in Shaker is allosterically controlled by the degree of opening of the intracellular activation gate, as observed with the KcsA channel. The behavior of the classic inactivating W434F Shaker mutant is also characterized from a 10-μs MD simulation, revealing that the selectivity filter spontaneously adopts a nonconductive conformation that is constricted at the level of the second glycine in the signature sequence, TTVGY(G)D.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Ahmed Rohaim
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Ramon Mendoza Uriarte
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Mikolai Fajer
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| |
Collapse
|
8
|
Mironenko A, Zachariae U, de Groot BL, Kopec W. The Persistent Question of Potassium Channel Permeation Mechanisms. J Mol Biol 2021; 433:167002. [PMID: 33891905 DOI: 10.1016/j.jmb.2021.167002] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/09/2023]
Abstract
Potassium channels play critical roles in many physiological processes, providing a selective permeation route for K+ ions in and out of a cell, by employing a carefully designed selectivity filter, evolutionarily conserved from viruses to mammals. The structure of the selectivity filter was determined at atomic resolution by x-ray crystallography, showing a tight coordination of desolvated K+ ions by the channel. However, the molecular mechanism of K+ ions permeation through potassium channels remains unclear, with structural, functional and computational studies often providing conflicting data and interpretations. In this review, we will present the proposed mechanisms, discuss their origins, and will critically assess them against all available data. General properties shared by all potassium channels are introduced first, followed by the introduction of two main mechanisms of ion permeation: soft and direct knock-on. Then, we will discuss critical computational and experimental studies that shaped the field. We will especially focus on molecular dynamics (MD) simulations, that provided mechanistic and energetic aspects of K+ permeation, but at the same time created long-standing controversies. Further challenges and possible solutions are presented as well.
Collapse
Affiliation(s)
- Andrei Mironenko
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
9
|
Li J, Shen R, Reddy B, Perozo E, Roux B. Mechanism of C-type inactivation in the hERG potassium channel. SCIENCE ADVANCES 2021; 7:7/5/eabd6203. [PMID: 33514547 PMCID: PMC7846155 DOI: 10.1126/sciadv.abd6203] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/14/2020] [Indexed: 05/05/2023]
Abstract
The fast C-type inactivation displayed by the voltage-activated potassium channel hERG plays a critical role in the repolarization of cardiac cells, and malfunction caused by nonspecific binding of drugs or naturally occurring missense mutations affecting inactivation can lead to pathologies. Because of its impact on human health, understanding the molecular mechanism of C-type inactivation in hERG represents an advance of paramount importance. Here, long-time scale molecular dynamics simulations, free energy landscape calculations, and electrophysiological experiments are combined to address the structural and functional impacts of several disease-associated mutations. Results suggest that C-type inactivation in hERG is associated with an asymmetrical constricted-like conformation of the selectivity filter, identifying F627 side-chain rotation and the hydrogen bond between Y616 and N629 as key determinants. Comparison of hERG with other K+ channels suggests that C-type inactivation depends on the degree of opening of the intracellular gate via the filter-gate allosteric coupling.
Collapse
Affiliation(s)
- Jing Li
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Bharat Reddy
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Iwahashi Y, Toyama Y, Imai S, Itoh H, Osawa M, Inoue M, Shimada I. Conformational equilibrium shift underlies altered K + channel gating as revealed by NMR. Nat Commun 2020; 11:5168. [PMID: 33057011 PMCID: PMC7560842 DOI: 10.1038/s41467-020-19005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/23/2020] [Indexed: 01/30/2023] Open
Abstract
The potassium ion (K+) channel plays a fundamental role in controlling K+ permeation across the cell membrane and regulating cellular excitabilities. Mutations in the transmembrane pore reportedly affect the gating transitions of K+ channels, and are associated with the onset of neural disorders. However, due to the lack of structural and dynamic insights into the functions of K+ channels, the structural mechanism by which these mutations cause K+ channel dysfunctions remains elusive. Here, we used nuclear magnetic resonance spectroscopy to investigate the structural mechanism underlying the decreased K+-permeation caused by disease-related mutations, using the prokaryotic K+ channel KcsA. We demonstrated that the conformational equilibrium in the transmembrane region is shifted toward the non-conductive state with the closed intracellular K+-gate in the disease-related mutant. We also demonstrated that this equilibrium shift is attributable to the additional steric contacts in the open-conductive structure, which are evoked by the increased side-chain bulkiness of the residues lining the transmembrane helix. Our results suggest that the alteration in the conformational equilibrium of the intracellular K+-gate is one of the fundamental mechanisms underlying the dysfunctions of K+ channels caused by disease-related mutations. Potassium ion channels control K+ permeation across cell membranes and mutations that cause cardiovascular and neural diseases are known. Here, the authors perform NMR measurements with the prototypical K+ channel from Streptomyces lividans, KcsA and characterise the effects of disease causing mutations on the conformational dynamics of K+ channels in a physiological solution environment.
Collapse
Affiliation(s)
- Yuta Iwahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan.
| |
Collapse
|
11
|
Borcik CG, Versteeg DB, Amani R, Yekefallah M, Khan NH, Wylie BJ. The Lipid Activation Mechanism of a Transmembrane Potassium Channel. J Am Chem Soc 2020; 142:14102-14116. [PMID: 32702990 DOI: 10.1021/jacs.0c01991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Membrane proteins and lipids coevolved to yield unique coregulatory mechanisms. Inward-rectifier K+ (Kir) channels are often activated by anionic lipids endemic to their native membranes and require accessible water along their K+ conductance pathway. To better understand Kir channel activation, we target multiple mutants of the Kir channel KirBac1.1 via solid-state nuclear magnetic resonance (SSNMR) spectroscopy, potassium efflux assays, and Förster resonance energy transfer (FRET) measurements. In the I131C stability mutant (SM), we observe an open-active channel in the presence of anionic lipids with greater activity upon addition of cardiolipin (CL). The introduction of three R to Q mutations (R49/151/153Q (triple Q mutant, TQ)) renders the protein inactive within the same activating lipid environment. Our SSNMR experiments reveal a stark reduction of lipid-protein interactions in the TQ mutant explaining the dramatic loss of channel activity. Water-edited SSNMR experiments further determined the TQ mutant possesses greater overall solvent exposure in comparison to wild-type but with reduced water accessibility along the ion conduction pathway, consistent with the closed state of the channel. These experiments also suggest water is proximal to the selectivity filter of KirBac1.1 in the open-activated state but that it may not directly enter the selectivity filter. Our findings suggest lipid binding initiates a concerted rotation of the cytoplasmic domain subunits, which is stabilized by multiple intersubunit salt bridges. This action buries ionic side chains away from the bulk water, while allowing water greater access to the K+ conduction pathway. This work highlights universal membrane protein motifs, including lipid-protein interactions, domain rearrangement, and water-mediated diffusion mechanisms.
Collapse
Affiliation(s)
- Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Derek B Versteeg
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Reza Amani
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Nazmul H Khan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
12
|
Abstract
Despite the well-characterized structural symmetry of the dimeric transmembrane antibiotic gramicidin A, we show that the symmetry is broken by selective hydrogen bonding between eight waters comprising a transmembrane water wire and a specific subset of the 26 pore-lining carbonyl oxygens of the gramicidin A channel. The 17O NMR spectroscopic resolution of the carbonyl resonances from the two subunits required the use of a world record high field magnet (35.2 T; 1,500 MHz for 1H). Uniquely, this result documented the millisecond timescale stability of the water wire orientation within the gramicidin A pore that had been reported to have only subnanosecond stability. These 17O spectroscopic results portend wide applications in molecular biophysics and beyond. Water wires are critical for the functioning of many membrane proteins, as in channels that conduct water, protons, and other ions. Here, in liquid crystalline lipid bilayers under symmetric environmental conditions, the selective hydrogen bonding interactions between eight waters comprising a water wire and a subset of 26 carbonyl oxygens lining the antiparallel dimeric gramicidin A channel are characterized by 17O NMR spectroscopy at 35.2 T (or 1,500 MHz for 1H) and computational studies. While backbone 15N spectra clearly indicate structural symmetry between the two subunits, single site 17O labels of the pore-lining carbonyls report two resonances, implying a break in dimer symmetry caused by the selective interactions with the water wire. The 17O shifts document selective water hydrogen bonding with carbonyl oxygens that are stable on the millisecond timescale. Such interactions are supported by density functional theory calculations on snapshots taken from molecular dynamics simulations. Water hydrogen bonding in the pore is restricted to just three simultaneous interactions, unlike bulk water environs. The stability of the water wire orientation and its electric dipole leads to opposite charge-dipole interactions for K+ ions bound at the two ends of the pore, thereby providing a simple explanation for an ∼20-fold difference in K+ affinity between two binding sites that are ∼24 Å apart. The 17O NMR spectroscopy reported here represents a breakthrough in high field NMR technology that will have applications throughout molecular biophysics, because of the acute sensitivity of the 17O nucleus to its chemical environment.
Collapse
|
13
|
Mandala VS, Hong M. High-sensitivity protein solid-state NMR spectroscopy. Curr Opin Struct Biol 2019; 58:183-190. [PMID: 31031067 PMCID: PMC6778492 DOI: 10.1016/j.sbi.2019.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
The sensitivity of solid-state nuclear magnetic resonance (SSNMR) spectroscopy for structural biology is significantly increased by 1H detection under fast magic-angle spinning (MAS) and by dynamic nuclear polarization (DNP) from electron spins to nuclear spins. The former allows studies of the structure and dynamics of small quantities of proteins under physiological conditions, while the latter permits studies of large biomolecular complexes in lipid membranes and cells, protein intermediates, and protein conformational distributions. We highlight recent applications of these two emerging SSNMR technologies and point out areas for future development.
Collapse
Affiliation(s)
- Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States.
| |
Collapse
|
14
|
Medeiros‐Silva J, Jekhmane S, Breukink E, Weingarth M. Towards the Native Binding Modes of Antibiotics that Target Lipid II. Chembiochem 2019; 20:1731-1738. [PMID: 30725496 PMCID: PMC6767406 DOI: 10.1002/cbic.201800796] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 12/22/2022]
Abstract
The alarming rise of antimicrobial resistance (AMR) imposes severe burdens on healthcare systems and the economy worldwide, urgently calling for the development of new antibiotics. Antimicrobial peptides could be ideal templates for next-generation antibiotics, due to their low propensity to cause resistance. An especially promising branch of antimicrobial peptides target lipid II, the precursor of the bacterial peptidoglycan network. To develop these peptides into clinically applicable compounds, detailed information on their pharmacologically relevant modes of action is of critical importance. Here we review the binding modes of a selection of peptides that target lipid II and highlight shortcomings in our molecular understanding that, at least partly, relate to the widespread use of artificial membrane mimics for structural studies of membrane-active antibiotics. In particular, with the example of the antimicrobial peptide nisin, we showcase how the native cellular membrane environment can be critical for understanding of the physiologically relevant binding mode.
Collapse
Affiliation(s)
- João Medeiros‐Silva
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Shehrazade Jekhmane
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and BiophysicsBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Markus Weingarth
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| |
Collapse
|
15
|
Öster C, Hendriks K, Kopec W, Chevelkov V, Shi C, Michl D, Lange S, Sun H, de Groot BL, Lange A. The conduction pathway of potassium channels is water free under physiological conditions. SCIENCE ADVANCES 2019; 5:eaaw6756. [PMID: 31392272 PMCID: PMC6669007 DOI: 10.1126/sciadv.aaw6756] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Ion conduction through potassium channels is a fundamental process of life. On the basis of crystallographic data, it was originally proposed that potassium ions and water molecules are transported through the selectivity filter in an alternating arrangement, suggesting a "water-mediated" knock-on mechanism. Later on, this view was challenged by results from molecular dynamics simulations that revealed a "direct" knock-on mechanism where ions are in direct contact. Using solid-state nuclear magnetic resonance techniques tailored to characterize the interaction between water molecules and the ion channel, we show here that the selectivity filter of a potassium channel is free of water under physiological conditions. Our results are fully consistent with the direct knock-on mechanism of ion conduction but contradict the previously proposed water-mediated knock-on mechanism.
Collapse
Affiliation(s)
- Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Wojciech Kopec
- Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Dagmar Michl
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Han Sun
- Section Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Bert L. de Groot
- Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
16
|
Xu Y, McDermott AE. Inactivation in the potassium channel KcsA. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 3:100009. [PMID: 32647814 PMCID: PMC7337057 DOI: 10.1016/j.yjsbx.2019.100009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
C-type inactivation in potassium channels is a nearly universal regulatory mechanism. A major hypothesis states that C-type inactivation involves ion loss at the selectivity filter as an allosteric response to activation. NMR is used to probe protein conformational changes in response to pH and [K+], demonstrating that H+ and K+ binding are allosterically coupled in KcsA. The lipids are integrated parts of potassium channels in terms of structure, energetics and function.
Inactivation, the slow cessation of transmission after activation, is a general feature of potassium channels. It is essential for their function, and malfunctions in inactivation leads to numerous pathologies. The detailed mechanism for the C-type inactivation, distinct from the N-type inactivation, remains an active area of investigation. Crystallography, computational simulations, and NMR have greatly enriched our understanding of the process. Here we review the major hypotheses regarding C-type inactivation, particularly focusing on the key role played by NMR studies of the prokaryotic potassium channel KcsA, which serves as a good model for voltage gated mammalian channels.
Collapse
Affiliation(s)
- Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| |
Collapse
|
17
|
Pinto C, Mance D, Julien M, Daniels M, Weingarth M, Baldus M. Studying assembly of the BAM complex in native membranes by cellular solid-state NMR spectroscopy. J Struct Biol 2019; 206:1-11. [DOI: 10.1016/j.jsb.2017.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
|
18
|
Visscher KM, Geerke DP. Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model. J Chem Theory Comput 2019; 15:1875-1883. [PMID: 30763086 PMCID: PMC6581419 DOI: 10.1021/acs.jctc.8b01105] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 11/30/2022]
Abstract
In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular electron densities into atomic subregions. The partitioned atomic densities are subsequently used to compute atomic dispersion coefficients from effective exchange-hole-dipole moment (XDM) calculations. In order to derive values for the repulsive van der Waals parameters from first principles, we use a simple volume relation to scale effective atomic radii. Explicit inclusion of higher order dispersion coefficients was tested for a series of alkanes, and we show that combining C6 and C8 attractive terms together with a C11 repulsive potential yields satisfying models when used in combination with our van der Waals parameters and electrostatic and bonded parameters as directly obtained from quantum calculations as well. This result highlights that explicit inclusion of higher order dispersion terms could be viable in simulation, and it suggests that currently available QM analysis methods allow for first-principles parametrization of molecular mechanics models.
Collapse
Affiliation(s)
- Koen M. Visscher
- AIMMS Division of Molecular Toxicology,
Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Daan P. Geerke
- AIMMS Division of Molecular Toxicology,
Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
19
|
Jekhmane S, Medeiros-Silva J, Li J, Kümmerer F, Müller-Hermes C, Baldus M, Roux B, Weingarth M. Shifts in the selectivity filter dynamics cause modal gating in K + channels. Nat Commun 2019; 10:123. [PMID: 30631074 PMCID: PMC6328603 DOI: 10.1038/s41467-018-07973-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023] Open
Abstract
Spontaneous activity shifts at constant experimental conditions represent a widespread regulatory mechanism in ion channels. The molecular origins of these modal gating shifts are poorly understood. In the K+ channel KcsA, a multitude of fast activity shifts that emulate the native modal gating behaviour can be triggered by point-mutations in the hydrogen bonding network that controls the selectivity filter. Using solid-state NMR and molecular dynamics simulations in a variety of KcsA mutants, here we show that modal gating shifts in K+ channels are associated with important changes in the channel dynamics that strongly perturb the selectivity filter equilibrium conformation. Furthermore, our study reveals a drastically different motional and conformational selectivity filter landscape in a mutant that mimics voltage-gated K+ channels, which provides a foundation for an improved understanding of eukaryotic K+ channels. Altogether, our results provide a high-resolution perspective on some of the complex functional behaviour of K+ channels.
Collapse
Affiliation(s)
- Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Jing Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E57th Street, Chicago, IL, 60637, USA
| | - Felix Kümmerer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Christoph Müller-Hermes
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E57th Street, Chicago, IL, 60637, USA
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands.
| |
Collapse
|
20
|
Visscher KM, Swope WC, Geerke DP. A QM/MM Derived Polarizable Water Model for Molecular Simulation. Molecules 2018; 23:E3131. [PMID: 30501058 PMCID: PMC6321318 DOI: 10.3390/molecules23123131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/26/2022] Open
Abstract
In this work, we propose an improved QM/MM-based strategy to determine condensed-phase polarizabilities and we use this approach to optimize a new and simple polarizable four-site water model for classical molecular simulation. For the determination of the model value for the polarizability from QM/MM, we show that our proposed consensus-fitting strategy significantly reduces the uncertainty in calculated polarizabilities in cases where the size of the local external electric field is small. By fitting electrostatic, polarization and dispersion properties of our water model based on quantum and/or combined QM/MM calculations, only a single model parameter (describing exchange repulsion) is left for empirical calibration. The resulting model performs well in describing relevant pure-liquid thermodynamic and transport properties, which illustrates the merit of our approach to minimize the number of free variables in our model.
Collapse
Affiliation(s)
- Koen M Visscher
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands.
| | - William C Swope
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
| | - Daan P Geerke
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Kondo HX, Yoshida N, Shirota M, Kinoshita K. Molecular Mechanism of Depolarization-Dependent Inactivation in W366F Mutant of Kv1.2. J Phys Chem B 2018; 122:10825-10833. [PMID: 30395463 DOI: 10.1021/acs.jpcb.8b09446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Voltage-gated potassium channels play crucial roles in regulating membrane potential. They are activated by membrane depolarization, allowing the selective permeation of K+ ions across the plasma membrane, and enter a nonconducting state after lasting depolarization, a process known as inactivation. Inactivation in voltage-activated potassium channels occurs through two distinct mechanisms, N-type and C-type inactivation. C-type inactivation is caused by conformational changes in the extracellular mouth of the channel, whereas N-type inactivation is elicited by changes in the cytoplasmic mouth of the protein. The W434F-mutated Shaker channel is known as a nonconducting mutant and is in a C-type inactivation state at a depolarizing membrane potential. To clarify the structural properties of C-type inactivated protein, we performed molecular dynamics simulations of the wild-type and W366F (corresponding to W434F in Shaker) mutant of the Kv1.2-2.1 chimera channel. The W366F mutant was in a nearly nonconducting state with a depolarizing voltage and recovered from inactivation with a reverse voltage. Our simulations and three-dimensional reference interaction site model analysis suggested that structural changes in the selectivity filter upon membrane depolarization trap K+ ions around the inner mouth of the selectivity filter and prevent ion permeation. This pore restriction is involved in the molecular mechanism of C-type inactivation.
Collapse
Affiliation(s)
- Hiroko X Kondo
- Department of Applied Information Sciences, Graduate School of Information Sciences , Tohoku University , 6-3-09 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8579 , Japan.,Laboratory for Computational Molecular Design , RIKEN Center for Biosystems Dynamics Research , 6-2-3, Furuedai , Suita 565-0874 , Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science , Kyushu University , 744, Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Matsuyuki Shirota
- Department of Applied Information Sciences, Graduate School of Information Sciences , Tohoku University , 6-3-09 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8579 , Japan.,Graduate School of Medicine , Tohoku University , 2-1 Seiryo-machi , Aoba-ku, Sendai 980-8575 , Japan.,Tohoku Medical Megabank Organization , Tohoku University , 2-1 Seiryo-machi , Aoba-ku, Sendai 980-8573 , Japan
| | - Kengo Kinoshita
- Department of Applied Information Sciences, Graduate School of Information Sciences , Tohoku University , 6-3-09 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8579 , Japan.,Tohoku Medical Megabank Organization , Tohoku University , 2-1 Seiryo-machi , Aoba-ku, Sendai 980-8573 , Japan.,Institute of Development, Aging and Cancer , Tohoku University , 4-1 Seiryocho, Aoba-ku , Sendai 980-8575 , Japan
| |
Collapse
|
22
|
Visscher KM, Vosmeer CR, Luirink RA, Geerke DP. A systematic approach to calibrate a transferable polarizable force field parameter set for primary alcohols. J Comput Chem 2018; 38:508-517. [PMID: 28133840 DOI: 10.1002/jcc.24702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022]
Abstract
In this work, parameters are optimized for a charge-on-spring based polarizable force field for linear alcohols. We show that parameter transferability can be obtained using a systematic approach in which the effects of parameter changes on physico-chemical properties calculated from simulation are predicted. Our previously described QM/MM calculations are used to attribute condensed-phase polarizabilities, and starting from the non-polarizable GROMOS 53A5/53A6 parameter set, van der Waals and Coulomb interaction parameters are optimized to reproduce pure-liquid (thermodynamic, dielectric, and transport) properties, as well as hydration free energies. For a large set of models, which were obtained by combining small perturbations of 10 distinct parameters, values for pure-liquid properties of the series methanol to butanol were close to experiment. From this large set of models, we selected 34 models without special repulsive van der Waals parameters to distinguish between hydrogen-bonding and non-hydrogen-bonding atom pairs, to make the force field simple and transparent. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Koen M Visscher
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, HZ, Amsterdam, the Netherlands
| | - C Ruben Vosmeer
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, HZ, Amsterdam, the Netherlands
| | - Rosa A Luirink
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, HZ, Amsterdam, the Netherlands
| | - Daan P Geerke
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, HZ, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Delemotte L. Opening leads to closing: Allosteric crosstalk between the activation and inactivation gates in KcsA. J Gen Physiol 2018; 150:1356-1359. [PMID: 30143551 PMCID: PMC6168244 DOI: 10.1085/jgp.201812161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Delemotte appraises new computational work revealing that the intracellular activation gate must open for C-type inactivation to occur in K+ channels.
Collapse
Affiliation(s)
- Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
24
|
Li J, Ostmeyer J, Cuello LG, Perozo E, Roux B. Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel. J Gen Physiol 2018; 150:1408-1420. [PMID: 30072373 PMCID: PMC6168234 DOI: 10.1085/jgp.201812082] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022] Open
Abstract
C-type inactivation in K+ channels is thought to be a result of constriction of the selectivity filter. By using MD simulations, Li et al. show that rapid constriction occurs within 1–2 s when the intracellular activation gate is fully open, but not when the gate is closed or partially open. C-type inactivation is a time-dependent process observed in many K+ channels whereby prolonged activation by an external stimulus leads to a reduction in ionic conduction. While C-type inactivation is thought to be a result of a constriction of the selectivity filter, the local dynamics of the process remain elusive. Here, we use molecular dynamics (MD) simulations of the KcsA channel to elucidate the nature of kinetically delayed activation/inactivation gating coupling. Microsecond-scale MD simulations based on the truncated form of the KcsA channel (C-terminal domain deleted) provide a first glimpse of the onset of C-type inactivation. We observe over multiple trajectories that the selectivity filter consistently undergoes a spontaneous and rapid (within 1–2 µs) transition to a constricted conformation when the intracellular activation gate is fully open, but remains in the conductive conformation when the activation gate is closed or partially open. Multidimensional umbrella sampling potential of mean force calculations and nonequilibrium voltage-driven simulations further confirm these observations. Electrophysiological measurements show that the truncated form of the KcsA channel inactivates faster and greater than full-length KcsA, which is consistent with truncated KcsA opening to a greater degree because of the absence of the C-terminal domain restraint. Together, these results imply that the observed kinetics underlying activation/inactivation gating reflect a rapid conductive-to-constricted transition of the selectivity filter that is allosterically controlled by the slow opening of the intracellular gate.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Jared Ostmeyer
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| |
Collapse
|
25
|
Gianti E, Carnevale V. Computational Approaches to Studying Voltage-Gated Ion Channel Modulation by General Anesthetics. Methods Enzymol 2018; 602:25-59. [DOI: 10.1016/bs.mie.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Wang S, Gopinath T, Veglia G. Application of paramagnetic relaxation enhancements to accelerate the acquisition of 2D and 3D solid-state NMR spectra of oriented membrane proteins. Methods 2017; 138-139:54-61. [PMID: 29274874 DOI: 10.1016/j.ymeth.2017.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
Oriented sample solid-state NMR (OS-ssNMR) spectroscopy is uniquely suited to determine membrane protein topology at the atomic resolution in liquid crystalline bilayers under physiological temperature. However, the inherent low sensitivity of this technique has hindered the throughput of multidimensional experiments necessary for resonance assignments and structure determination. In this work, we show that doping membrane protein bicelle preparations with paramagnetic ion chelated lipids and exploiting paramagnetic relaxation effects it is possible to accelerate the acquisition of both 2D and 3D multidimensional experiments with significant saving in time. We demonstrate the efficacy of this method for a small membrane protein, sarcolipin, reconstituted in DMPC/POPC/DHPC oriented bicelles. In particular, using Cu2+-DMPE-DTPA as a dopant, we observed a decrease of 1H T1 of sarcolipin by 2/3, allowing us to reduce the recycle delay up to 3 times. We anticipate that these new developments will enable the routine acquisition of multidimensional OS-ssNMR experiments.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
27
|
Miranda WE, Ngo VA, Perissinotti LL, Noskov SY. Computational membrane biophysics: From ion channel interactions with drugs to cellular function. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:1643-1653. [PMID: 28847523 PMCID: PMC5764198 DOI: 10.1016/j.bbapap.2017.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022]
Abstract
The rapid development of experimental and computational techniques has changed fundamentally our understanding of cellular-membrane transport. The advent of powerful computers and refined force-fields for proteins, ions, and lipids has expanded the applicability of Molecular Dynamics (MD) simulations. A myriad of cellular responses is modulated through the binding of endogenous and exogenous ligands (e.g. neurotransmitters and drugs, respectively) to ion channels. Deciphering the thermodynamics and kinetics of the ligand binding processes to these membrane proteins is at the heart of modern drug development. The ever-increasing computational power has already provided insightful data on the thermodynamics and kinetics of drug-target interactions, free energies of solvation, and partitioning into lipid bilayers for drugs. This review aims to provide a brief summary about modeling approaches to map out crucial binding pathways with intermediate conformations and free-energy surfaces for drug-ion channel binding mechanisms that are responsible for multiple effects on cellular functions. We will discuss post-processing analysis of simulation-generated data, which are then transformed to kinetic models to better understand the molecular underpinning of the experimental observables under the influence of drugs or mutations in ion channels. This review highlights crucial mathematical frameworks and perspectives on bridging different well-established computational techniques to connect the dynamics and timescales from all-atom MD and free energy simulations of ion channels to the physiology of action potentials in cellular models. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Williams E Miranda
- Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Van A Ngo
- Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Laura L Perissinotti
- Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sergei Yu Noskov
- Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Wu D. Dynamic water patterns change the stability of the collapsed filter conformation of the KcsA K+ channel. PLoS One 2017; 12:e0186789. [PMID: 29049423 PMCID: PMC5648213 DOI: 10.1371/journal.pone.0186789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/08/2017] [Indexed: 11/17/2022] Open
Abstract
The selectivity filter of the KcsA K+ channel has two typical conformations-the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation.
Collapse
Affiliation(s)
- Di Wu
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Visscher KM, Medeiros-Silva J, Mance D, Rodrigues JPGLM, Daniëls M, Bonvin AMJJ, Baldus M, Weingarth M. Supramolekulare Organisation und funktionale Auswirkungen von Ballungen von K +
-Kanälen in Membranen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Koen M. Visscher
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - João P. G. L. M. Rodrigues
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Mark Daniëls
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Alexandre M. J. J. Bonvin
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| |
Collapse
|
30
|
Visscher KM, Medeiros‐Silva J, Mance D, Rodrigues JPGLM, Daniëls M, Bonvin AMJJ, Baldus M, Weingarth M. Supramolecular Organization and Functional Implications of K + Channel Clusters in Membranes. Angew Chem Int Ed Engl 2017; 56:13222-13227. [PMID: 28685953 PMCID: PMC5655921 DOI: 10.1002/anie.201705723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/29/2017] [Indexed: 11/19/2022]
Abstract
The segregation of cellular surfaces in heterogeneous patches is considered to be a common motif in bacteria and eukaryotes that is underpinned by the observation of clustering and cooperative gating of signaling membrane proteins such as receptors or channels. Such processes could represent an important cellular strategy to shape signaling activity. Hence, structural knowledge of the arrangement of channels or receptors in supramolecular assemblies represents a crucial step towards a better understanding of signaling across membranes. We herein report on the supramolecular organization of clusters of the K+ channel KcsA in bacterial membranes, which was analyzed by a combination of DNP-enhanced solid-state NMR experiments and MD simulations. We used solid-state NMR spectroscopy to determine the channel-channel interface and to demonstrate the strong correlation between channel function and clustering, which suggests a yet unknown mechanism of communication between K+ channels.
Collapse
Affiliation(s)
- Koen M. Visscher
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - João Medeiros‐Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - João P. G. L. M. Rodrigues
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Mark Daniëls
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Alexandre M. J. J. Bonvin
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| |
Collapse
|
31
|
Chemical substitutions in the selectivity filter of potassium channels do not rule out constricted-like conformations for C-type inactivation. Proc Natl Acad Sci U S A 2017; 114:11145-11150. [PMID: 28973956 DOI: 10.1073/pnas.1706983114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In many K+ channels, prolonged activating stimuli lead to a time-dependent reduction in ion conduction, a phenomenon known as C-type inactivation. X-ray structures of the KcsA channel suggest that this inactivated state corresponds to a "constricted" conformation of the selectivity filter. However, the functional significance of the constricted conformation has become a matter of debate. Functional and structural studies based on chemically modified semisynthetic KcsA channels along the selectivity filter led to the conclusion that the constricted conformation does not correspond to the C-type inactivated state. The main results supporting this view include the observation that C-type inactivation is not suppressed by a substitution of D-alanine at Gly77, even though this modification is believed to lock the selectivity filter into its conductive conformation, whereas it is suppressed following amide-to-ester backbone substitutions at Gly77 and Tyr78, even though these structure-conserving modifications are not believed to prevent the selectivity filter from adopting the constricted conformation. However, several untested assumptions about the structural and functional impact of these chemical modifications underlie these arguments. To make progress, molecular dynamics simulations based on atomic models of the KcsA channel were performed. The computational results support the notion that the constricted conformation of the selectivity filter corresponds to the functional C-type inactivated state of the KcsA. Importantly, MD simulations reveal that the semisynthetic KcsAD-ala77 channel can adopt an asymmetrical constricted-like nonconductive conformation and that the amide-to-ester backbone substitutions at Gly77 and Tyr78 perturb the hydrogen bonding involving the buried water molecules stabilizing the constricted conformation.
Collapse
|
32
|
Medeiros-Silva J, Jekhmane S, Baldus M, Weingarth M. Hydrogen bond strength in membrane proteins probed by time-resolved 1H-detected solid-state NMR and MD simulations. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:80-85. [PMID: 28342732 DOI: 10.1016/j.ssnmr.2017.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
1H-detected solid-state NMR in combination with 1H/2D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong hydrogen bonds by combining time-resolved 1H-detected solid-state NMR experiments and molecular dynamics simulations. In particular, we show that the carboxyl-side chain of the highly conserved residue Glu51 is involved in ultra-strong hydrogen bonds, which are fully-water-exposed and yet stable for weeks. The astonishing stability of these hydrogen bonds is important for the structural integrity of potassium channels, which we further corroborate by computational studies.
Collapse
Affiliation(s)
- João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
33
|
Chevelkov V, Giller K, Becker S, Lange A. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 283:110-116. [PMID: 28985499 DOI: 10.1016/j.jmr.2017.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/15/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.
Collapse
Affiliation(s)
- Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
34
|
van der Cruijsen EAW, Prokofyev AV, Pongs O, Baldus M. Probing Conformational Changes during the Gating Cycle of a Potassium Channel in Lipid Bilayers. Biophys J 2017; 112:99-108. [PMID: 28076820 DOI: 10.1016/j.bpj.2016.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/08/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Ion conduction across the cellular membrane requires the simultaneous opening of activation and inactivation gates of the K+ channel pore. The bacterial KcsA channel has served as a powerful system for dissecting the structural changes that are related to four major functional states associated with K+ gating. Yet, the direct observation of the full gating cycle of KcsA has remained structurally elusive, and crystal structures mimicking these gating events require mutations in or stabilization of functionally relevant channel segments. Here, we found that changes in lipid composition strongly increased the KcsA open probability. This enabled us to probe all four major gating states in native-like membranes by combining electrophysiological and solid-state NMR experiments. In contrast to previous crystallographic views, we found that the selectivity filter and turret region, coupled to the surrounding bilayer, were actively involved in channel gating. The increase in overall steady-state open probability was accompanied by a reduction in activation-gate opening, underscoring the important role of the surrounding lipid bilayer in the delicate conformational coupling of the inactivation and activation gates.
Collapse
Affiliation(s)
- Elwin A W van der Cruijsen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Alexander V Prokofyev
- Department of Physiology, Institute of Cellular Neurophysiology, University of the Saarland, Homburg, Germany
| | - Olaf Pongs
- Department of Physiology, Institute of Cellular Neurophysiology, University of the Saarland, Homburg, Germany.
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
35
|
Applications of NMR to membrane proteins. Arch Biochem Biophys 2017; 628:92-101. [PMID: 28529197 DOI: 10.1016/j.abb.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/14/2023]
Abstract
Membrane proteins present a challenge for structural biology. In this article, we review some of the recent developments that advance the application of NMR to membrane proteins, with emphasis on structural studies in detergent-free, lipid bilayer samples that resemble the native environment. NMR spectroscopy is not only ideally suited for structure determination of membrane proteins in hydrated lipid bilayer membranes, but also highly complementary to the other principal techniques based on X-ray and electron diffraction. Recent advances in NMR instrumentation, spectroscopic methods, computational methods, and sample preparations are driving exciting new efforts in membrane protein structural biology.
Collapse
|
36
|
Wang T, Jo H, DeGrado WF, Hong M. Water Distribution, Dynamics, and Interactions with Alzheimer's β-Amyloid Fibrils Investigated by Solid-State NMR. J Am Chem Soc 2017; 139:6242-6252. [PMID: 28406028 PMCID: PMC5808936 DOI: 10.1021/jacs.7b02089] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Water is essential for protein folding and assembly of amyloid fibrils. Internal water cavities have been proposed for several amyloid fibrils, but no direct structural and dynamical data have been reported on the water dynamics and site-specific interactions of water with the fibrils. Here we use solid-state NMR spectroscopy to investigate the water interactions of several Aβ40 fibrils. 1H spectral lineshapes, T2 relaxation times, and two-dimensional (2D) 1H-13C correlation spectra show that there are five distinct water pools: three are peptide-bound water, while two are highly dynamic water that can be assigned to interfibrillar water and bulk-like matrix water. All these water pools are associated with the fibrils on the nanometer scale. Water-transferred 2D correlation spectra allow us to map out residue-specific hydration and give evidence for the presence of a water pore in the center of the three-fold symmetric wild-type Aβ40 fibril. In comparison, the loop residues and the intramolecular strand-strand interface have low hydration, excluding the presence of significant water cavities in these regions. The Osaka Aβ40 mutant shows lower hydration and more immobilized water than wild-type Aβ40, indicating the influence of peptide structure on the dynamics and distribution of hydration water. Finally, the highly mobile interfibrillar and matrix water exchange with each other on the time scale of seconds, suggesting that fibril bundling separates these two water pools, and water molecules must diffuse along the fibril axis before exchanging between these two environments. These results provide insights and experimental constraints on the spatial distribution and dynamics of water pools in these amyloid fibrils.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94143, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94143, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Grohe K, Movellan KT, Vasa SK, Giller K, Becker S, Linser R. Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins. JOURNAL OF BIOMOLECULAR NMR 2017; 68:7-17. [PMID: 28393279 DOI: 10.1007/s10858-017-0110-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate measurement of non-equilibrium backbone amide hydrogen-deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3 mm rotor. Tracking of the HN peak intensities for 2 weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.
Collapse
Affiliation(s)
- Kristof Grohe
- Department Chemie und Pharmazie, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Kumar Tekwani Movellan
- Department Chemie und Pharmazie, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Suresh Kumar Vasa
- Department Chemie und Pharmazie, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Karin Giller
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Rasmus Linser
- Department Chemie und Pharmazie, Ludwig-Maximilians-Universität München, 81377, Munich, Germany.
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
38
|
Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning. Nat Protoc 2017; 12:764-782. [PMID: 28277547 DOI: 10.1038/nprot.2016.190] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Solid-state NMR (ssNMR) is a technique that allows the study of protein structure and dynamics at atomic detail. In contrast to X-ray crystallography and cryo-electron microscopy, proteins can be studied under physiological conditions-for example, in a lipid bilayer and at room temperature (0-35 °C). However, ssNMR requires considerable amounts (milligram quantities) of isotopically labeled samples. In recent years, 1H-detection of perdeuterated protein samples has been proposed as a method of alleviating the sensitivity issue. Such methods are, however, substantially more demanding to the spectroscopist, as compared with traditional 13C-detected approaches. As a guide, this protocol describes a procedure for the chemical shift assignment of the backbone atoms of proteins in the solid state by 1H-detected ssNMR. It requires a perdeuterated, uniformly 13C- and 15N-labeled protein sample with subsequent proton back-exchange to the labile sites. The sample needs to be spun at a minimum of 40 kHz in the NMR spectrometer. With a minimal set of five 3D NMR spectra, the protein backbone and some of the side-chain atoms can be completely assigned. These spectra correlate resonances within one amino acid residue and between neighboring residues; taken together, these correlations allow for complete chemical shift assignment via a 'backbone walk'. This results in a backbone chemical shift table, which is the basis for further analysis of the protein structure and/or dynamics by ssNMR. Depending on the spectral quality and complexity of the protein, data acquisition and analysis are possible within 2 months.
Collapse
|
39
|
Quinn CM, Polenova T. Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 2017; 50:e1. [PMID: 28093096 PMCID: PMC5483179 DOI: 10.1017/s0033583516000159] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast MAS, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as human immunodeficiency virus 1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology.
Collapse
Affiliation(s)
- Caitlin M. Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| |
Collapse
|
40
|
Gianti E, Delemotte L, Klein ML, Carnevale V. On the role of water density fluctuations in the inhibition of a proton channel. Proc Natl Acad Sci U S A 2016; 113:E8359-E8368. [PMID: 27956641 PMCID: PMC5206518 DOI: 10.1073/pnas.1609964114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hv1 is a transmembrane four-helix bundle that transports protons in a voltage-controlled manner. Its crucial role in many pathological conditions, including cancer and ischemic brain damage, makes Hv1 a promising drug target. Starting from the recently solved crystal structure of Hv1, we used structural modeling and molecular dynamics simulations to characterize the channel's most relevant conformations along the activation cycle. We then performed computational docking of known Hv1 inhibitors, 2-guanidinobenzimidazole (2GBI) and analogs. Although salt-bridge patterns and electrostatic potential profiles are well-defined and distinctive features of activated versus nonactivated states, the water distribution along the channel lumen is dynamic and reflects a conformational heterogeneity inherent to each state. In fact, pore waters assemble into intermittent hydrogen-bonded clusters that are replaced by the inhibitor moieties upon ligand binding. The entropic gain resulting from releasing these conformationally restrained waters to the bulk solvent is likely a major contributor to the binding free energy. Accordingly, we mapped the water density fluctuations inside the pore of the channel and identified the regions of maximum fluctuation within putative binding sites. Two sites appear as outstanding: One is the already known binding pocket of 2GBI, which is accessible to ligands from the intracellular side; the other is a site located at the exit of the proton permeation pathway. Our analysis of the waters confined in the hydrophobic cavities of Hv1 suggests a general strategy for drug discovery that can be applied to any ion channel.
Collapse
Affiliation(s)
- Eleonora Gianti
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Lucie Delemotte
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michael L Klein
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122;
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122;
| |
Collapse
|
41
|
Chowdhury AD, Houben K, Whiting GT, Mokhtar M, Asiri AM, Al‐Thabaiti SA, Basahel SN, Baldus M, Weckhuysen BM. Initial Carbon-Carbon Bond Formation during the Early Stages of the Methanol-to-Olefin Process Proven by Zeolite-Trapped Acetate and Methyl Acetate. Angew Chem Int Ed Engl 2016; 55:15840-15845. [PMID: 27805783 PMCID: PMC5214583 DOI: 10.1002/anie.201608643] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/18/2016] [Indexed: 11/09/2022]
Abstract
Methanol-to-olefin (MTO) catalysis is a very active field of research because there is a wide variety of sometimes conflicting mechanistic proposals. An example is the ongoing discussion on the initial C-C bond formation from methanol during the induction period of the MTO process. By employing a combination of solid-state NMR spectroscopy with UV/Vis diffuse reflectance spectroscopy and mass spectrometry on an active H-SAPO-34 catalyst, we provide spectroscopic evidence for the formation of surface acetate and methyl acetate, as well as dimethoxymethane during the MTO process. As a consequence, new insights in the formation of the first C-C bond are provided, suggesting a direct mechanism may be operative, at least in the early stages of the MTO reaction.
Collapse
Affiliation(s)
- Abhishek Dutta Chowdhury
- Inorganic Chemistry and Catalysis group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Klaartje Houben
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Gareth T. Whiting
- Inorganic Chemistry and Catalysis group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Mohamed Mokhtar
- Department of ChemistryKing Abdulaziz UniversityP.O. Box 8020321589JeddahSaudi Arabia
| | - Abdullah M. Asiri
- Department of ChemistryKing Abdulaziz UniversityP.O. Box 8020321589JeddahSaudi Arabia
| | - Shaeel A. Al‐Thabaiti
- Department of ChemistryKing Abdulaziz UniversityP.O. Box 8020321589JeddahSaudi Arabia
| | - Suliman N. Basahel
- Department of ChemistryKing Abdulaziz UniversityP.O. Box 8020321589JeddahSaudi Arabia
| | - Marc Baldus
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis group Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
42
|
Affiliation(s)
- Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Hoa Q. Do
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Collin G. Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Emily P. Hardy
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
43
|
Initial Carbon-Carbon Bond Formation during the Early Stages of the Methanol-to-Olefin Process Proven by Zeolite-Trapped Acetate and Methyl Acetate. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608643] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Dicke A, Gopinath T, Wang Y, Veglia G. Probing Residue-Specific Water-Protein Interactions in Oriented Lipid Membranes via Solid-State NMR Spectroscopy. J Phys Chem B 2016; 120:10959-10968. [PMID: 27704861 DOI: 10.1021/acs.jpcb.6b08282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Water plays a central role in membrane protein folding and function. It not only catalyzes lipid membrane self-assembly but also affects the structural integrity and conformational dynamics of membrane proteins. Magic angle spinning (MAS) solid-state NMR (ssNMR) is the technique of choice for measuring water accessibility of membrane proteins, providing a measure for membrane protein topology and insertion within lipid bilayers. However, the sensitivity and resolution of membrane protein samples for MAS experiments are often dictated by hydration levels, which affect the structural dynamics of membrane proteins. Oriented-sample ssNMR (OS-ssNMR) is a complementary technique to determine both structure and topology of membrane proteins in liquid crystalline bilayers. Recent advancements in OS-ssNMR involve the use of oriented bicellar phases that have improved both sensitivity and resolution. Importantly, for bicelle formation and orientation, lipid bilayers must be well organized and hydrated, resulting in the protein's topology being similar to that found in native membranes. Under these conditions, the NMR resonances become relatively narrow, enabling a better separation of 1H-15N dipolar couplings and anisotropic 15N chemical shifts with separated local field (SLF) experiments. Here, we report a residue-specific water accessibility experiment for a small membrane protein, sarcolipin (SLN), embedded in oriented lipid bicelles as probed by new water-edited SLF (WE-SLF) experiments. We show that SLN's residues belonging to the juxtamembrane region are more exposed to the water-lipid interface than the corresponding membrane-embedded residues. The information that can be obtained from the WE-SLF experiments can be interpreted using a simple theoretical model based on spin-diffusion theory and offers a complete characterization of membrane proteins in realistic membrane bilayer systems.
Collapse
Affiliation(s)
- Alysha Dicke
- Department of Biochemistry, Molecular Biology, and Biophysics and ‡Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics and ‡Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Yingjie Wang
- Department of Biochemistry, Molecular Biology, and Biophysics and ‡Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics and ‡Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
45
|
Medeiros-Silva J, Mance D, Daniëls M, Jekhmane S, Houben K, Baldus M, Weingarth M. 1 H-Detected Solid-State NMR Studies of Water-Inaccessible Proteins In Vitro and In Situ. Angew Chem Int Ed Engl 2016; 55:13606-13610. [PMID: 27671832 PMCID: PMC5113794 DOI: 10.1002/anie.201606594] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/04/2016] [Indexed: 11/08/2022]
Abstract
1 H detection can significantly improve solid-state NMR spectral sensitivity and thereby allows studying more complex proteins. However, the common prerequisite for 1 H detection is the introduction of exchangeable protons in otherwise deuterated proteins, which has thus far significantly hampered studies of partly water-inaccessible proteins, such as membrane proteins. Herein, we present an approach that enables high-resolution 1 H-detected solid-state NMR (ssNMR) studies of water-inaccessible proteins, and that even works in highly complex environments such as cellular surfaces. In particular, the method was applied to study the K+ channel KcsA in liposomes and in situ in native bacterial cell membranes. We used our data for a dynamic analysis, and we show that the selectivity filter, which is responsible for ion conduction and highly conserved in K+ channels, undergoes pronounced molecular motion. We expect this approach to open new avenues for biomolecular ssNMR.
Collapse
Affiliation(s)
- João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Mark Daniëls
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Klaartje Houben
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
46
|
Medeiros-Silva J, Mance D, Daniëls M, Jekhmane S, Houben K, Baldus M, Weingarth M. 1
H-detektierte Festkörper-NMR-Studien wasserunzugänglicher Proteine in vitro und in situ. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- João Medeiros-Silva
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Deni Mance
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Mark Daniëls
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Shehrazade Jekhmane
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Klaartje Houben
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Marc Baldus
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Markus Weingarth
- NMR Spectroscopy; Bijvoet Center for Biomolecular Research; Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| |
Collapse
|
47
|
Abstract
AbstractIncreasing evidence suggests that most proteins occur and function in complexes rather than as isolated entities when embedded in cellular membranes. Nuclear magnetic resonance (NMR) provides increasing possibilities to study structure, dynamics and assembly of such systems. In our review, we discuss recent methodological progress to study membrane–protein complexes (MPCs) by NMR, starting with expression, isotope-labeling and reconstitution protocols. We review approaches to deal with spectral complexity and limited spectral spectroscopic sensitivity that are usually encountered in NMR-based studies of MPCs. We highlight NMR applications in various classes of MPCs, including G-protein-coupled receptors, ion channels and retinal proteins and extend our discussion to protein–protein complexes that span entire cellular compartments or orchestrate processes such as protein transport across or within membranes. These examples demonstrate the growing potential of NMR-based studies of MPCs to provide critical insight into the energetics of protein–ligand and protein–protein interactions that underlie essential biological functions in cellular membranes.
Collapse
|
48
|
Kim DM, Dikiy I, Upadhyay V, Posson DJ, Eliezer D, Nimigean CM. Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles. J Gen Physiol 2016; 148:119-32. [PMID: 27432996 PMCID: PMC4969796 DOI: 10.1085/jgp.201611602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/27/2016] [Indexed: 12/27/2022] Open
Abstract
The process of ion channel gating-opening and closing-involves local and global structural changes in the channel in response to external stimuli. Conformational changes depend on the energetic landscape that underlies the transition between closed and open states, which plays a key role in ion channel gating. For the prokaryotic, pH-gated potassium channel KcsA, closed and open states have been extensively studied using structural and functional methods, but the dynamics within each of these functional states as well as the transition between them is not as well understood. In this study, we used solution nuclear magnetic resonance (NMR) spectroscopy to investigate the conformational transitions within specific functional states of KcsA. We incorporated KcsA channels into lipid bicelles and stabilized them into a closed state by using either phosphatidylcholine lipids, known to favor the closed channel, or mutations designed to trap the channel shut by disulfide cross-linking. A distinct state, consistent with an open channel, was uncovered by the addition of cardiolipin lipids. Using selective amino acid labeling at locations within the channel that are known to move during gating, we observed at least two different slowly interconverting conformational states for both closed and open channels. The pH dependence of these conformations and the predictable disruptions to this dependence observed in mutant channels with altered pH sensing highlight the importance of conformational heterogeneity for KcsA gating.
Collapse
Affiliation(s)
- Dorothy M Kim
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Igor Dikiy
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Vikrant Upadhyay
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - David J Posson
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
49
|
Chung SH, Angelici C, Hinterding SO, Weingarth M, Baldus M, Houben K, Weckhuysen BM, Bruijnincx PC. Role of Magnesium Silicates in Wet-Kneaded Silica–Magnesia Catalysts for the Lebedev Ethanol-to-Butadiene Process. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02972] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sang-Ho Chung
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Carlo Angelici
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Stijn O.M. Hinterding
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Markus Weingarth
- NMR
Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR
Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Klaartje Houben
- NMR
Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Pieter C.A. Bruijnincx
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
50
|
Xiang S, Biernat J, Mandelkow E, Becker S, Linser R. Backbone assignment for minimal protein amounts of low structural homogeneity in the absence of deuteration. Chem Commun (Camb) 2016; 52:4002-5. [DOI: 10.1039/c5cc09160h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of higher-dimensionality 1H-detected experiments is introduced for assigning non-deuterated proteins with low sample homogeneity at fast MAS.
Collapse
Affiliation(s)
- ShengQi Xiang
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| | - Jacek Biernat
- DZNE
- German Center for Neurodegenerative Diseases
- 53175 Bonn
- Germany
- CAESAR Research Center
| | - Eckhard Mandelkow
- DZNE
- German Center for Neurodegenerative Diseases
- 53175 Bonn
- Germany
- CAESAR Research Center
| | - Stefan Becker
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| | - Rasmus Linser
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| |
Collapse
|