1
|
Murata M, Satake M, Matsumori N. Conformational dynamics and molecular interactions of natural products: unveiling functional structures in biological membranes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:249-273. [PMID: 40159185 DOI: 10.2183/pjab.101.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Structural studies of natural products have been a driving force in the development of organic chemistry throughout its long history, especially in the early years. Recently, structure determination based on new concepts has also gained momentum. In this review we will mainly discuss the functional structures of natural products that account for the mechanisms of action largely from our studies. The topics include marine natural products, amphidinols, and ladder-shaped polyether compounds, which are known as potent antifungal agents and important marine biotoxins, respectively. Nuclear magnetic resonance studies for determining the stereochemistry of amphidinol 3 and its conformation in lipid-bilayer membranes will be presented in detail.
Collapse
Affiliation(s)
- Michio Murata
- Graduate School of Science, Osaka University
- Institute for Protein Research, Osaka University
- Forefront Research Center, Graduate School of Science, Osaka University
| | - Masayuki Satake
- Department of Chemistry, School of Science, The University of Tokyo
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University
| |
Collapse
|
2
|
Xu C, Ma C, Zhang Y, Zhang W, Zhang J, Li G, Xiong M, Wei Y, Yang K, Yuan B. Selective Membrane Remodeling and Fluidity Reduction by the Cationic Helical Peptide L 10-MMBen. J Phys Chem Lett 2025; 16:3788-3798. [PMID: 40194791 DOI: 10.1021/acs.jpclett.5c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Antimicrobial peptide (AMP)-based treatments have exhibited significant therapeutic potential with anti-inflammatory, anticancer, and immunomodulatory activities. While most AMPs exert effects by permeabilizing bacterial cell membranes through poration and hydrolysis, recent findings have revealed a distinct membrane interaction mechanism employed by L10-MMBen, a cationic amphiphilic helical peptide with potent antimicrobial efficacy and moderate cytotoxicity. Herein, we elucidate the ability of L10-MMBen to remodel bacterial cell membranes into double-layered structures rather than inducing permeabilization. Quantitative real-time giant unilamellar vesicle assays, atomic force microscopy characterizations, and simulations demonstrate that L10-MMBen selectively adsorbs onto phosphatidylglycerol-containing membranes with shallow insertion at approximately 0.6 nm; once reaching a threshold local concentration (peptide-to-lipid ratio of 1:20), it extracts lipids from the bilayer and facilitates the formation of double-layered peptide-membrane composite structures. Single-molecule tracking analysis indicates that peptide-induced molecular reorganization significantly reduces membrane fluidity, impeding lipid lateral diffusion from 2.8 μm2/s to an immobile state. These findings may contribute to the design of innovative membrane-active agents for biomedical applications.
Collapse
Affiliation(s)
- Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Chiyun Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yuhao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, Guangdong, China
| | - Wanting Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Junsheng Zhang
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Guanmou Li
- Dongguan People's Hospital, Dongguan 523018, Guangdong, China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, Guangdong, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| |
Collapse
|
3
|
Jakka SR, Mugesh G. Emerging Role of Noncovalent Interactions and Disulfide Bond Formation in the Cellular Uptake of Small Molecules and Proteins. Chem Asian J 2025; 20:e202401734. [PMID: 39831847 DOI: 10.1002/asia.202401734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Intracellular delivery of proteins and small molecules is an important barrier in the development of strategies to deliver functional proteins and therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. The conjugations of small molecules such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose. Molecular level interactions are governed mostly by ionic (cationic/anionic), covalent and noncovalent interactions with various molecular entities of glycocalyx matrix on plasma membrane lipid bilayer. Although the role of noncovalent interactions in cellular uptake is not fully understood, several recent advances have focused on the noncovalent interaction-based strategies of intracellular delivery of small molecules and proteins into mammalian cells. These are achieved by simple modification of protein surfaces with chemical moieties which can form noncovalent interactions other than hydrogen bonding. In this review, we describe the recent advances and the mechanistic aspects of intracellular delivery and role of noncovalent interactions in the cellular uptake of proteins and small molecules.
Collapse
Affiliation(s)
- Surendar R Jakka
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
4
|
Zan B, Ulmschneider MB, Ulmschneider JP. The difference between MelP5 and melittin membrane poration. Sci Rep 2025; 15:7442. [PMID: 40033017 PMCID: PMC11876596 DOI: 10.1038/s41598-025-91951-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Melittin, a natural peptide found in bees, has been shown to induce pore formation in cell membranes. However, its artificial mutant, MelP5 can do so at concentrations 200 times lower than melittin. The mechanism of the enhanced portion ability is not fully understood. By conducting all-atom molecular dynamics (MD) simulations, we found that MelP5 forms a stable pore that is macro-molecular sized. Our results suggest that the mutation of five amino acids from melittin reduces the electrostatic repulsion between peptides and strengthens hydrophobic interactions between MelP5 and lipid tails, resulting in the formation of a stable and larger pore. Furthermore, we found that cholesterol (CHOL), which occupies 30% in mammalian cell membranes, plays a crucial role in enhancing the pore formation of MelP5. As the amount of CHOL increases, the pore becomes larger, more stable, and forms more quickly. The presence of CHOL also promotes the formation of oligomers, which further support the pore. Our findings indicate that CHOL promotes the insertion of peptides into the membrane and reduces the amount of surface state peptides, thereby stabilizing the pore. These results highlight the important role of CHOL in membrane permeabilization by MelP5 and provide new insights into the mechanism of action of membrane-active antimicrobial peptides.
Collapse
Affiliation(s)
- Bing Zan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Department of Chemistry, King's College London, London, UK
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | | | - Jakob P Ulmschneider
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Jorgensen C, Linville RM, Galea I, Lambden E, Vögele M, Chen C, Troendle EP, Ruggiu F, Ulmschneider MB, Schiøtt B, Lorenz CD. Permeability Benchmarking: Guidelines for Comparing in Silico, in Vitro, and in Vivo Measurements. J Chem Inf Model 2025; 65:1067-1084. [PMID: 39823383 PMCID: PMC11815851 DOI: 10.1021/acs.jcim.4c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Permeability is a measure of the degree to which cells can transport molecules across biological barriers. Units of permeability are distance per unit time (typically cm/s), where accurate measurements are needed to define drug delivery in homeostasis and to model dysfunction occurring during disease. This perspective offers a set of community-led guidelines to benchmark permeability data across multidisciplinary approaches and different biological contexts. First, we lay out the analytical framework for three methodologies to calculate permeability: in silico assays using either transition-based counting or the inhomogeneous-solubility diffusion approaches, in vitro permeability assays using cells cultured in 2D or 3D geometries, and in vivo assays utilizing in situ brain perfusion or multiple time-point regression analysis. Then, we demonstrate a systematic benchmarking of in silico to both in vitro and in vivo, depicting the ways in which each benchmarking is sensitive to the choices of assay design. Finally, we outline seven recommendations for best practices in permeability benchmarking and underscore the significance of tailored permeability assays in driving advancements in drug delivery research and development. Our exploration encompasses a discussion of "generic" and tissue-specific biological barriers, including the blood-brain barrier (BBB), which is a major hurdle for the delivery of therapeutic agents into the brain. By addressing challenges in reconciling simulated data with experimental assays, we aim to provide insights essential for optimizing accuracy and reliability in permeability modeling.
Collapse
Affiliation(s)
- Christian Jorgensen
- School
of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science
& Health, University of Portsmouth, Portsmouth PO1 2DT, Hampshire, U.K.
- Dept.
of Chemistry, Aarhus University, Langelandsgade, 140 8000 Aarhus C, Denmark
| | - Raleigh M. Linville
- The
Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Ian Galea
- Clinical
Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, U.K.
| | - Edward Lambden
- Dept.
of Chemistry, King’s College London, London WC2R 2LS, U.K.
| | - Martin Vögele
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University, Stanford, California 94305, United States
- Institute
for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| | - Charles Chen
- Synthetic
Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Evan P. Troendle
- Wellcome−Wolfson
Institute for Experimental Medicine, School of Medicine, Dentistry
and Biomedical Sciences, Queen’s
University Belfast, Belfast, County
Antrim, BT9 7BL, Northern Ireland, U.K.
| | - Fiorella Ruggiu
- Kimia
Therapeutics, 740 Heinz
Avenue, Berkeley, California 94710, United States
| | | | - Birgit Schiøtt
- Dept.
of Chemistry, Aarhus University, Langelandsgade, 140 8000 Aarhus C, Denmark
| | | |
Collapse
|
6
|
Wu E, Ellis A, Bell K, Moss DL, Landry SJ, Hristova K, Wimley WC. pH-Responsive Peptide Nanoparticles Deliver Macromolecules to Cells via Endosomal Membrane Nanoporation. ACS NANO 2024; 18:33922-33936. [PMID: 39651582 PMCID: PMC11656837 DOI: 10.1021/acsnano.4c07525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
The synthetically evolved pHD family of peptides is known to self-assemble into macromolecule-sized nanopores of 2-10 nm diameter in synthetic lipid bilayers, but only when the pH is below ∼6. Here, we show that a representative family member, pHD108, has the same pH-responsive nanopore-forming activity in the endosomal membranes of living human cells, which is triggered by endosomal acidification. This enables the cytosolic delivery of endocytosed proteins and other macromolecules. Acylation of either peptide terminus significantly decreases the concentration of peptide required for macromolecule delivery to the cell cytosol while not causing any measurable cytotoxicity. Longer acyl chains are more effective. The N-terminal palmitoylated C16-pHD108 is the most potent of all of the acyl-pHD108 variants and readily delivers a cytotoxic enzyme, fluorescent proteins, and a dye-labeled dextran to the cell cytosol. C16-pHD108 forms stable monodisperse micellar nanoparticles in a buffer at pH 7 with an average diameter of around 120 nm. These nanoparticles are not cytolytic or cytotoxic because the acylated pHD peptide does not partition from the nanoparticles into cell membranes at pH 7. At pH 5, the nanoparticles are unstable, driving acylated pHD108 to bind strongly to membranes. We hypothesize that passive endocytosis of macromolecular cargo and stable peptide nanoparticles, followed by endosomal acidification-dependent destabilization of the nanoparticles, triggers the nanopore-forming activity of acylated pHD peptides in the endosomal membrane, enabling internalized macromolecules to be delivered to the cytosol.
Collapse
Affiliation(s)
- Eric Wu
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ains Ellis
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Keynon Bell
- Chemistry-Biology
Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel L. Moss
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Samuel J. Landry
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalina Hristova
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - William C. Wimley
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
7
|
Chen CH. Membrane-active peptides for anticancer therapies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:67-116. [PMID: 40122653 DOI: 10.1016/bs.pmbts.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Membrane-active peptides are found in many living organisms and play a critical role in their immune systems by combating various infectious diseases. These host defense peptides employ multiple mechanisms against different microorganisms and possess unique functions, such as anti-inflammatory and immunomodulatory effects, often working in synergy with other antimicrobial agents. Despite extensive research over the past few decades and the identification of thousands of sequences, only a few have been successfully applied in clinical settings and received approval from the U.S. Food and Drug Administration. In this chapter, we explore all peptide therapeutics that have reached the market, as well as candidates in preclinical and clinical trials, to understand their success and potential applications in cancer therapy. Our findings indicate that at least four membrane-active peptide drugs have progressed to preclinical or clinical phases, dmonstrating promising results for cancer treatment. We summarize our insights in this chapter, highlighting the potential of membrane-active anticancer peptide therapeutics and their applications as targeting ligands in various biomedical fields.
Collapse
Affiliation(s)
- Charles H Chen
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.
| |
Collapse
|
8
|
Polderdijk SGI, Limzerwala JF, Spiess C. Plasma membrane damage limits cytoplasmic delivery by conventional cell penetrating peptides. PLoS One 2024; 19:e0305848. [PMID: 39226290 PMCID: PMC11371239 DOI: 10.1371/journal.pone.0305848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 09/05/2024] Open
Abstract
Intracellular delivery of large molecule cargo via cell penetrating peptides (CPPs) is an inefficient process and despite intense efforts in past decades, improvements in efficiency have been marginal. Utilizing a standardized and comparative analysis of the delivery efficiency of previously described cationic, anionic, and amphiphilic CPPs, we demonstrate that the delivery ceiling is accompanied by irreparable plasma membrane damage that is part of the uptake mechanism. As a consequence, intracellular delivery correlates with cell toxicity and is more efficient for smaller peptides than for large molecule cargo. The delivery of pharmaceutically relevant cargo quantities with acceptable toxicity thus seems hard to achieve with the CPPs tested in our study. Our results suggest that any engineered intracellular delivery system based on conventional cationic or amphiphilic CPPs, or the design principles underlying them, needs to accept low delivery yields due to toxicity limiting efficient cytoplasmic uptake. Novel peptide designs based on detailed study of uptake mechanisms are required to overcome these limitations.
Collapse
Affiliation(s)
| | - Jazeel F. Limzerwala
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, United States of America
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, United States of America
| |
Collapse
|
9
|
Wei L, Tu W, Xu Y, Xu C, Dou Y, Ge Y, Sun S, Wei Y, Yang K, Yuan B. Assembly-Induced Membrane Selectivity of Artificial Model Peptides through Entropy-Enthalpy Competition. ACS NANO 2024; 18:18650-18662. [PMID: 38959157 DOI: 10.1021/acsnano.4c05265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Peptide design and drug development offer a promising solution for combating serious diseases or infections. In this study, using an AI-human negotiation approach, we have designed a class of minimal model peptides against tuberculosis (TB), among which K7W6 exhibits potent efficacy attributed to its assembly-induced function. Comprising lysine and tryptophan with an amphiphilic α-helical structure, the K7W6 sequence exhibits robust activity against various infectious bacteria causing TB (including clinically isolated and drug-resistant strains) both in vitro and in vivo. Moreover, it synergistically enhances the effectiveness of the first-line antibiotic rifampicin while displaying low potential for inducing drug resistance and minimal toxicity toward mammalian cells. Biophysical experiments and simulations elucidate that K7W6's exceptional performance can be ascribed to its highly selective and efficient membrane permeabilization activity induced by its distinctive self-assembly behavior. Additionally, these assemblies regulate the interplay between enthalpy and entropy during K7W6-membrane interaction, leading to the peptide's two-step mechanism of membrane interaction. These findings provide valuable insights into rational design principles for developing advanced peptide-based drugs while uncovering the functional role played by assembly.
Collapse
Affiliation(s)
- Lin Wei
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenqiang Tu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yiwei Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yujiang Dou
- School of Electronic Information, Dongguan Polytechnic, Dongguan, Guangdong 523808, China
| | - Yuke Ge
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Shuqing Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
10
|
Sun L, Hristova K, Bondar AN, Wimley WC. Structural Determinants of Peptide Nanopore Formation. ACS NANO 2024; 18:15831-15844. [PMID: 38844421 PMCID: PMC11191747 DOI: 10.1021/acsnano.4c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024]
Abstract
We have evolved the nanopore-forming macrolittin peptides from the bee venom peptide melittin using successive generations of synthetic molecular evolution. Despite their sequence similarity to the broadly membrane permeabilizing cytolytic melittin, the macrolittins have potent membrane selectivity. They form nanopores in synthetic bilayers made from 1-palmitoyl, 2-oleoyl-phosphatidylcholine (POPC) at extremely low peptide concentrations and yet have essentially no cytolytic activity against any cell membrane, even at high concentration. Here, we explore the structural determinants of macrolittin nanopore stability in POPC bilayers using atomistic molecular dynamics simulations and experiments on macrolittins and single-site variants. Simulations of macrolittin nanopores in POPC bilayers show that they are stabilized by an extensive, cooperative hydrogen bond network comprised of the many charged and polar side chains interacting with each other via bridges of water molecules and lipid headgroups. Lipid molecules with unusual conformations participate in the H-bond network and are an integral part of the nanopore structure. To explore the role of this H-bond network on membrane selectivity, we swapped three critical polar residues with the nonpolar residues found in melittin. All variants have potency, membrane selectivity, and cytotoxicity that were intermediate between a cytotoxic melittin variant called MelP5 and the macrolittins. Simulations showed that the variants had less organized H-bond networks of waters and lipids with unusual structures. The membrane-spanning, cooperative H-bond network is a critical determinant of macrolittin nanopore stability and membrane selectivity. The results described here will help guide the future design and optimization of peptide nanopore-based applications.
Collapse
Affiliation(s)
- Leisheng Sun
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalina Hristova
- Department
of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ana-Nicoleta Bondar
- Faculty
of Physics, University of Bucharest, Atomiştilor 405, Măgurele 077125, Romania
- Forschungszentrum
Jülich, Institute of Computational
Biomedicine, IAS-5/INM-9,
Wilhelm-Johnen Straße, 5428 Jülich, Germany
| | - William C. Wimley
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
11
|
Jafari Z, Sadeghi S, Dehaghi MM, Bigham A, Honarmand S, Tavasoli A, Hoseini MHM, Varma RS. Immunomodulatory activities and biomedical applications of melittin and its recent advances. Arch Pharm (Weinheim) 2024; 357:e2300569. [PMID: 38251938 DOI: 10.1002/ardp.202300569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Melittin (MLT), a peptide containing 26 amino acids, is a key constituent of bee venom. It comprises ∼40%-60% of the venom's dry weight and is the main pricing index for bee venom, being the causative factor of pain. The unique properties of MLT extracted from bee venom have made it a very valuable active ingredient in the pharmaceutical industry as this cationic and amphipathic peptide has propitious effects on human health in diverse biological processes. It has the ability to strongly impact the membranes of cells and display hemolytic activity with anticancer characteristics. However, the clinical application of MLT has been limited by its severe hemolytic activity, which poses a challenge for therapeutic use. By employing more efficient mechanisms, such as modifying the MLT sequence, genetic engineering, and nano-delivery systems, it is anticipated that the limitations posed by MLT can be overcome, thereby enabling its wider application in therapeutic contexts. This review has outlined recent advancements in MLT's nano-delivery systems and genetically engineered cells expressing MLT and provided an overview of where the MLTMLT's platforms are and where they will go in the future with the challenges ahead. The focus is on exploring how these approaches can overcome the limitations associated with MLT's hemolytic activity and improve its selectivity and efficacy in targeting cancer cells. These advancements hold promise for the creation of innovative and enhanced therapeutic approaches based on MLT for the treatment of cancer.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirzarazi Dehaghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Shokouh Honarmand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Department of Chemistry, Centre of Excellence for Research in Sustainable Chemistry, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
12
|
Has C, Das SL. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation. J Membr Biol 2023; 256:343-372. [PMID: 37650909 DOI: 10.1007/s00232-023-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Proteins and peptides with hydrophobic and amphiphilic segments are responsible for many biological functions. The sensing and generation of membrane curvature are the functions of several protein domains or motifs. While some specific membrane proteins play an essential role in controlling the curvature of distinct intracellular membranes, others participate in various cellular processes such as clathrin-mediated endocytosis, where several proteins sort themselves at the neck of the membrane bud. A few membrane-inserting proteins form nanopores that permeate selective ions and water to cross the membrane. In addition, many natural and synthetic small peptides and protein toxins disrupt the membrane by inducing nonspecific pores in the membrane. The pore formation causes cell death through the uncontrolled exchange between interior and exterior cellular contents. In this article, we discuss the insertion depth and orientation of protein/peptide helices, and their role as a sensor and inducer of membrane curvature as well as a pore former in the membrane. We anticipate that this extensive review will assist biophysicists to gain insight into curvature sensing, generation, and pore formation by membrane insertion.
Collapse
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, GSFC University, Vadodara, 391750, Gujarat, India.
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory and Department of Mechanical Engineering, Indian Institute of Technology, Palakkad, 678623, Kerala, India
| |
Collapse
|
13
|
Deng Z, You X, Lin Z, Dong X, Yuan B, Yang K. Membrane-Active Peptides Attack Cell Membranes in a Lipid-Regulated Curvature-Generating Mode. J Phys Chem Lett 2023:6422-6430. [PMID: 37432779 DOI: 10.1021/acs.jpclett.3c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Membrane-active peptides (MAPs) exhibit great potential in biomedical applications due to their unique ability to overcome the cell membrane barrier. However, the interactions between MAPs and membranes are complex, and little is known about the possibility of MAP action being specific to certain types of membranes. In this study, a combination of molecular dynamics simulations and theoretical analysis was utilized to investigate the interactions between typical MAPs and realistic cell membrane systems. Remarkably, the simulations revealed that MAPs can attack membranes by generating and sensing positive mean curvature, which is dependent on lipid composition. Furthermore, theoretical calculations demonstrated that this lipid-regulated curvature-based membrane attack mechanism is an integrated result of multiple effects, including peptide-induced membrane wedge and softening effects, the lipid shape effect, the area-difference elastic effect, and the boundary edge effect of formed peptide-lipid nanodomains. This study enhances our comprehension of MAP-membrane interactions and highlights the potential for developing membrane-specific MAP-based agents.
Collapse
Affiliation(s)
- Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Xin You
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhao Lin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuewei Dong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808 Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
- Songshan Lake Materials Laboratory, Dongguan 523808 Guangdong, China
| |
Collapse
|
14
|
Chen CH, Bepler T, Pepper K, Fu D, Lu TK. Synthetic molecular evolution of antimicrobial peptides. Curr Opin Biotechnol 2022; 75:102718. [PMID: 35395425 DOI: 10.1016/j.copbio.2022.102718] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 01/18/2023]
Abstract
As we learn more about how peptide structure and activity are related, we anticipate that antimicrobial peptides will be engineered to have strong potency and distinct functions and that synthetic peptides will have new biomedical applications, such as treatments for emerging infectious diseases. As a result of the enormous number of possible amino acid sequences and the low-throughput nature of antimicrobial peptide assays, computational tools for peptide design and optimization are needed for direct experimentation toward obtaining functional sequences. Recent developments in computational tools have improved peptide design, saving labor, reagents, costs, and time. At the same time, improvements in peptide synthesis and experimental platforms continue to reduce the cost and increase the throughput of peptide-drug screening. In this review, we discuss the current methods of peptide design and engineering, including in silico methods and peptide synthesis and screening, and highlight areas of potential improvement.
Collapse
Affiliation(s)
- Charles H Chen
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tristan Bepler
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Karen Pepper
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Debbie Fu
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Timothy K Lu
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA; Senti Biosciences, South San Francisco, CA 94080, USA.
| |
Collapse
|
15
|
Delvaux NA, Rice KG. The Reduced-Charge Melittin Analogue MelP5 Improves the Transfection of Non-Viral DNA Nanoparticles. J Pept Sci 2022; 28:e3404. [PMID: 35001445 PMCID: PMC10069327 DOI: 10.1002/psc.3404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/07/2022]
Abstract
Melittin is a 26 amino acid amphiphilic alpha-helical peptide derived from honeybee venom. Prior studies have incorporated melittin into non-viral delivery systems to effect endosomal escape of DNA nanoparticles and improve transfection efficiency. Recent advances have led to the development of two newer melittin analogues, MelP5 and Macrolittin 70, with improved pore formation in lipid bilayers while possessing fewer positive charges relative to natural melittin. Consequently, MelP5 and Macrolittin 70 were conjugated through a disulfide bond to a DNA binding polyacridine peptide. The resulting peptide conjugates were used to prepare DNA nanoparticles to compare their relative endosomolytic potency by transfection of HepG2 cells. Melittin and MelP5 conjugates were equally potent at mediating in vitro gene transfer, whereas PEGylation of DNA nanoparticles revealed improved transfection with MelP5 relative to melittin. The results demonstrate the ability to substitute a potent, reduced charge analogue of melittin to improve overall DNA nanoparticle biocompatibility needed for in vivo testing.
Collapse
Affiliation(s)
- Nathan A Delvaux
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA
| |
Collapse
|
16
|
Schaefer KG, Pittman AE, Barrera FN, King GM. Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling. Methods 2022; 197:20-29. [PMID: 33164792 DOI: 10.1016/j.ymeth.2020.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.
Collapse
Affiliation(s)
- K G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - A E Pittman
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - F N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - G M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
17
|
Chen CH, Pepper K, Ulmschneider JP, Ulmschneider MB, Lu TK. Predicting Membrane-Active Peptide Dynamics in Fluidic Lipid Membranes. Methods Mol Biol 2022; 2405:115-136. [PMID: 35298811 DOI: 10.1007/978-1-0716-1855-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the interactions between peptides and lipid membranes could not only accelerate the development of antimicrobial peptides as treatments for infections but also be applied to finding targeted therapies for cancer and other diseases. However, designing biophysical experiments to study molecular interactions between flexible peptides and fluidic lipid membranes has been an ongoing challenge. Recently, with hardware advances, algorithm improvements, and more accurate parameterizations (i.e., force fields), all-atom molecular dynamics (MD) simulations have been used as a "computational microscope" to investigate the molecular interactions and mechanisms of membrane-active peptides in cell membranes (Chen et al., Curr Opin Struct Biol 61:160-166, 2020; Ulmschneider and Ulmschneider, Acc Chem Res 51(5):1106-1116, 2018; Dror et al., Annu Rev Biophys 41:429-452, 2012). In this chapter, we describe how to utilize MD simulations to predict and study peptide dynamics and how to validate the simulations by circular dichroism, intrinsic fluorescent probe, membrane leakage assay, electrical impedance, and isothermal titration calorimetry. Experimentally validated MD simulations open a new route towards peptide design starting from sequence and structure and leading to desirable functions.
Collapse
Affiliation(s)
- Charles H Chen
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Karen Pepper
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jakob P Ulmschneider
- Department of Physics, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | | | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Wimley WC. Synthetic Molecular Evolution of Cell Penetrating Peptides. Methods Mol Biol 2022; 2383:73-89. [PMID: 34766283 DOI: 10.1007/978-1-0716-1752-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Rational design and optimization of cell penetrating peptides (CPPs) is difficult to accomplish because of the lack of quantitative sequence-structure-function rules describing the activity and because of the complex, poorly understood mechanisms of CPPs. Synthetic molecular evolution is a powerful method to identify gain-of-function cell penetrating peptide variants in this situation. Synthetic molecular evolution requires the design and synthesis of iterative, knowledge-based peptide libraries and the screening of such libraries in complex orthogonal cell-based screens for improved activity. In this chapter, we describe methods for synthesizing powerful combinatorial peptide libraries for synthetic molecular evolution.
Collapse
Affiliation(s)
- William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
19
|
Guha S, Ferrie RP, Ghimire J, Ventura CR, Wu E, Sun L, Kim SY, Wiedman GR, Hristova K, Wimley WC. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol 2021; 193:114769. [PMID: 34543656 DOI: 10.1016/j.bcp.2021.114769] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Melittin, the main venom component of the European Honeybee, is a cationic linear peptide-amide of 26 amino acid residues with the sequence: GIGAVLKVLTTGLPALISWIKRKRQQ-NH2. Melittin binds to lipid bilayer membranes, folds into amphipathic α-helical secondary structure and disrupts the permeability barrier. Since melittin was first described, a remarkable array of activities and potential applications in biology and medicine have been described. Melittin is also a favorite model system for biophysicists to study the structure, folding and function of peptides and proteins in membranes. Melittin has also been used as a template for the evolution of new activities in membranes. Here we overview the rich history of scientific research into the many activities of melittin and outline exciting future applications.
Collapse
Affiliation(s)
- Shantanu Guha
- University of Texas Health Science Center at Houston, Department of Microbiology and Molecular Genetics, Houston, TX, USA
| | - Ryan P Ferrie
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Jenisha Ghimire
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Cristina R Ventura
- Seton Hall University, Department of Chemistry and Biochemistry, South Orange, NJ, USA
| | - Eric Wu
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Leisheng Sun
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Sarah Y Kim
- Duke University, Department of Biomedical Engineering, Durham, NC, USA
| | - Gregory R Wiedman
- Seton Hall University, Department of Chemistry and Biochemistry, South Orange, NJ, USA
| | - Kalina Hristova
- Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, MD, USA.
| | - Wimley C Wimley
- University of Texas Health Science Center at Houston, Department of Microbiology and Molecular Genetics, Houston, TX, USA.
| |
Collapse
|
20
|
Sun L, Hristova K, Wimley WC. Membrane-selective nanoscale pores in liposomes by a synthetically evolved peptide: implications for triggered release. NANOSCALE 2021; 13:12185-12197. [PMID: 34190297 PMCID: PMC9265991 DOI: 10.1039/d1nr03084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Peptides that form nanoscale pores in lipid bilayers have potential applications in triggered release, but only if their selectivity for target synthetic membranes over bystander biomembranes can be optimized. Previously, we identified a novel family of α-helical pore-forming peptides called "macrolittins", which release macromolecular cargoes from phosphatidylcholine (PC) liposomes at concentrations as low as 1 peptide per 1000 lipids. In this work, we show that macrolittins have no measurable cytolytic activity against multiple human cell types even at high peptide concentration. This unprecedented selectivity for PC liposomes over cell plasma membranes is explained, in part, by the sensitivity of macrolittin activity to physical chemical properties of the bilayer hydrocarbon core. In the presence of cells, macrolittins release all vesicle-entrapped cargoes (proteins and small molecule drugs) which are then readily uptaken by cells. Triggered release occurs without any direct effect of the peptide on the cells, and without vesicle-vesicle or vesicle-cell interactions.
Collapse
Affiliation(s)
- Leisheng Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
21
|
Fennouri A, List J, Ducrey J, Dupasquier J, Sukyte V, Mayer SF, Vargas RD, Pascual Fernandez L, Bertani F, Rodriguez Gonzalo S, Yang J, Mayer M. Tuning the Diameter, Stability, and Membrane Affinity of Peptide Pores by DNA-Programmed Self-Assembly. ACS NANO 2021; 15:11263-11275. [PMID: 34128638 DOI: 10.1021/acsnano.0c10311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein pores recently enabled a breakthrough in bioanalytics by making it possible to sequence individual DNA and RNA strands during their translocation through the lumen of the pore. Despite this success and the overall promise of nanopore-based single-molecule analytics, protein pores have not yet reached their full potential for the analysis and characterization of globular biomolecules such as natively folded proteins. One reason is that the diameters of available protein pores are too small for accommodating the translocation of most folded globular proteins through their lumen. The work presented here provides a step toward overcoming this limitation by programmed self-assembly of α-helical pore-forming peptides with covalently attached single-stranded DNA (ssDNA). Specifically, hybridization of the peptide ceratotoxin A (CtxA) with N-terminally attached ssDNA to a complementary DNA template strand with 4, 8, or 12 hybridization sites made it possible to trigger the assembly of pores with various diameters ranging from approximately 0.5 to 4 nm. Hybridization of additional DNA strands to these assemblies achieved extended functionality in a modular fashion without the need for modifying the amino acid sequence of the peptides. For instance, functionalization of these semisynthetic biological nanopores with DNA-cholesterol anchors increased their affinity to lipid membranes compared to pores formed by native CtxA, while charged transmembrane segments prolonged their open-state lifetime. Assembly of these hybrid DNA-peptides by a template increased their cytotoxic activity and made it possible to kill cancer cells at 20-fold lower total peptide concentrations than nontemplated CtxA.
Collapse
Affiliation(s)
- Aziz Fennouri
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jonathan List
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Julie Ducrey
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jessica Dupasquier
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Viktorija Sukyte
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Simon F Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Reyner D Vargas
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Laura Pascual Fernandez
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Frederick Bertani
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sandra Rodriguez Gonzalo
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
22
|
Sarkar T, Chetia M, Chatterjee S. Antimicrobial Peptides and Proteins: From Nature's Reservoir to the Laboratory and Beyond. Front Chem 2021; 9:691532. [PMID: 34222199 PMCID: PMC8249576 DOI: 10.3389/fchem.2021.691532] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid rise of antimicrobial resistance against conventional antimicrobials, resurgence of multidrug resistant microbes and the slowdown in the development of new classes of antimicrobials, necessitates the urgent development of alternate classes of therapeutic molecules. Antimicrobial peptides (AMPs) are small proteins present in different lifeforms in nature that provide defense against microbial infections. They have been effective components of the host defense system for a very long time. The fact that the development of resistance by the microbes against the AMPs is relatively slower or delayed compared to that against the conventional antibiotics, makes them prospective alternative therapeutics of the future. Several thousands of AMPs have been isolated from various natural sources like microorganisms, plants, insects, crustaceans, animals, humans, etc. to date. However, only a few of them have been translated commercially to the market so far. This is because of some inherent drawbacks of the naturally obtained AMPs like 1) short half-life owing to the susceptibility to protease degradation, 2) inactivity at physiological salt concentrations, 3) cytotoxicity to host cells, 4) lack of appropriate strategies for sustained and targeted delivery of the AMPs. This has led to a surge of interest in the development of synthetic AMPs which would retain or improve the antimicrobial potency along with circumventing the disadvantages of the natural analogs. The development of synthetic AMPs is inspired by natural designs and sequences and strengthened by the fusion with various synthetic elements. Generation of the synthetic designs are based on various strategies like sequence truncation, mutation, cyclization and introduction of unnatural amino acids and synthons. In this review, we have described some of the AMPs isolated from the vast repertoire of natural sources, and subsequently described the various synthetic designs that have been developed based on the templates of natural AMPs or from de novo design to make commercially viable therapeutics of the future. This review entails the journey of the AMPs from their natural sources to the laboratory.
Collapse
Affiliation(s)
| | | | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
23
|
Tuning of a Membrane-Perforating Antimicrobial Peptide to Selectively Target Membranes of Different Lipid Composition. J Membr Biol 2021; 254:75-96. [PMID: 33564914 DOI: 10.1007/s00232-021-00174-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
The use of designed antimicrobial peptides as drugs has been impeded by the absence of simple sequence-structure-function relationships and design rules. The likely cause is that many of these peptides permeabilize membranes via highly disordered, heterogeneous mechanisms, forming aggregates without well-defined tertiary or secondary structure. We suggest that the combination of high-throughput library screening with atomistic computer simulations can successfully address this challenge by tuning a previously developed general pore-forming peptide into a selective pore-former for different lipid types. A library of 2916 peptides was designed based on the LDKA template. The library peptides were synthesized and screened using a high-throughput orthogonal vesicle leakage assay. Dyes of different sizes were entrapped inside vesicles with varying lipid composition to simultaneously screen for both pore size and affinity for negatively charged and neutral lipid membranes. From this screen, nine different LDKA variants that have unique activity were selected, sequenced, synthesized, and characterized. Despite the minor sequence changes, each of these peptides has unique functional properties, forming either small or large pores and being selective for either neutral or anionic lipid bilayers. Long-scale, unbiased atomistic molecular dynamics (MD) simulations directly reveal that rather than rigid, well-defined pores, these peptides can form a large repertoire of functional dynamic and heterogeneous aggregates, strongly affected by single mutations. Predicting the propensity to aggregate and assemble in a given environment from sequence alone holds the key to functional prediction of membrane permeabilization.
Collapse
|
24
|
Kim SY, Bondar AN, Wimley WC, Hristova K. pH-triggered pore-forming peptides with strong composition-dependent membrane selectivity. Biophys J 2021; 120:618-630. [PMID: 33460594 PMCID: PMC7896028 DOI: 10.1016/j.bpj.2021.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Peptides that self-assemble into nanometer-sized pores in lipid bilayers could have utility in a variety of biotechnological and clinical applications if we can understand their physical chemical properties and learn to control their membrane selectivity. To empower such control, we have used synthetic molecular evolution to identify the pH-dependent delivery peptides, a family of peptides that assemble into macromolecule-sized pores in membranes at low peptide concentration but only at pH < ∼6. Further advancements will also require better selectivity for specific membranes. Here, we determine the effect of anionic headgroups and bilayer thickness on the mechanism of action of the pH-dependent delivery peptides by measuring binding, secondary structure, and macromolecular poration. The peptide pHD15 partitions and folds equally well into zwitterionic and anionic membranes but is less potent at pore formation in phosphatidylserine-containing membranes. The peptide also binds and folds similarly in membranes of various thicknesses, but its ability to release macromolecules changes dramatically. It causes potent macromolecular poration in vesicles made from phosphatidylcholine with 14 carbon acyl chains, but macromolecular poration decreases sharply with increasing bilayer thickness and does not occur at any peptide concentration in fluid bilayers made from phosphatidylcholine lipids with 20-carbon acyl chains. The effects of headgroup and bilayer thickness on macromolecular poration cannot be accounted for by the amount of peptide bound but instead reflect an inherent selectivity of the peptide for inserting into the membrane-spanning pore state. Molecular dynamics simulations suggest that the effect of thickness is due to hydrophobic match/mismatch between the membrane-spanning peptide and the bilayer hydrocarbon. This remarkable degree of selectivity based on headgroup and especially bilayer thickness is unusual and suggests ways that pore-forming peptides with exquisite selectivity for specific membranes can be designed or evolved.
Collapse
Affiliation(s)
- Sarah Y Kim
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany.
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana.
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
25
|
Gong H, Sani MA, Hu X, Fa K, Hart JW, Liao M, Hollowell P, Carter J, Clifton LA, Campana M, Li P, King SM, Webster JRP, Maestro A, Zhu S, Separovic F, Waigh TA, Xu H, McBain AJ, Lu JR. How do Self-Assembling Antimicrobial Lipopeptides Kill Bacteria? ACS APPLIED MATERIALS & INTERFACES 2020; 12:55675-55687. [PMID: 33259204 DOI: 10.1021/acsami.0c17222] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides are promising alternatives to traditional antibiotics. A group of self-assembling lipopeptides was formed by attaching an acyl chain to the N-terminus of α-helix-forming peptides with the sequence Cx-G(IIKK)yI-NH2 (CxGy, x = 4-12 and y = 2). CxGy self-assemble into nanofibers above their critical aggregation concentrations (CACs). With increasing x, the CACs decrease and the hydrophobic interactions increase, promoting secondary structure transitions within the nanofibers. Antimicrobial activity, determined by the minimum inhibition concentration (MIC), also decreases with increasing x, but the MICs are significantly smaller than the CACs, suggesting effective bacterial membrane-disrupting power. Unlike conventional antibiotics, both C8G2 and C12G2 can kill Staphylococcus aureus and Escherichia coli after only minutes of exposure under the concentrations studied. C12G2 nanofibers have considerably faster killing dynamics and lower cytotoxicity than their nonaggregated monomers. Antimicrobial activity of peptide aggregates has, to date, been underexploited, and it is found to be a very promising mechanism for peptide design. Detailed evidence for the molecular mechanisms involved is provided, based on superresolution fluorescence microscopy, solid-state nuclear magnetic resonance, atomic force microscopy, neutron scattering/reflectivity, circular dichroism, and Brewster angle microscopy.
Collapse
Affiliation(s)
- Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ke Fa
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jack William Hart
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Peter Hollowell
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jessica Carter
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Luke A Clifton
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Peixun Li
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Stephen M King
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - John R P Webster
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Armando Maestro
- Institute Laue Langevin, 71 Avenue des Martyrs, CS-20156, Grenoble 38042, France
| | - Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Thomas A Waigh
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
26
|
Wu E, Jenschke RM, Hristova K, Wimley WC. Rational Modulation of pH-Triggered Macromolecular Poration by Peptide Acylation and Dimerization. J Phys Chem B 2020; 124:8835-8843. [PMID: 32892626 DOI: 10.1021/acs.jpcb.0c05363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthetically evolved pH-dependent delivery (pHD) peptides are a unique family that bind to membranes, fold into α-helices, and form macromolecule-sized pores at low concentration at pH < 6. These peptides have potential applications in drug delivery and tumor targeting. Here, we show how pHD peptide activity can be modulated without changing the amino acid sequence. We increased the hydrophobicity of a representative peptide, pHD108 (GIGEVLHELAEGLPELQEWIHAAQQLGC-amide), by coupling hydrophobic acyl groups of 6-16 carbons and by forming dimers. Unlike the parent peptide, almost all variants showed activity at pH 7. This was due to strong partitioning into phosphatidylcholine vesicle bilayers and induced helix formation. The dimer maintained some pH sensitivity while being the most active peptide studied in this work, with macromolecular poration occurring at 1:2000 peptide:lipid at pH 5. These results confirm that membrane binding, rather than pH, is the determining factor in activity, while also showing that acylation and dimerization are viable methods to modulate pHD108 activity. We propose a possible toroidal pore architecture with peptides in a parallel or mixed parallel/antiparallel orientation without strong electrostatic interactions between peptides in the pore as evidenced by a lack of dependence of activity on either pH or salt concentration.
Collapse
Affiliation(s)
- Eric Wu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ramsey M Jenschke
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
27
|
Rotem R, Micale A, Rizzuto MA, Migliavacca M, Giustra M, Salvioni L, Tasin F, Prosperi D, Colombo M. Modeling the interaction of amphiphilic polymer nanoparticles with biomembranes to Guide rational design of drug delivery systems. Colloids Surf B Biointerfaces 2020; 196:111366. [PMID: 32992287 DOI: 10.1016/j.colsurfb.2020.111366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/05/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Nanoparticle assisted drug delivery to the cytoplasm is limited by sequestration of nanoparticles in endosomes. Endosomal escape through polymer-induced membrane destabilization is one of a few well characterized mechanisms to overcome it. Aiming to utilize this method in vivo, it is necessary to understand how modulating the structural and chemical features of the polymer and the presence of proteins in biological fluids can affect this activity. Here, as a model for the endosomal membrane, we use the membrane of red blood cells to evaluate the membrane destabilization ability of a model amphiphilic polymer in the presence of blood plasma using a hemolysis assay. This allows determination of red blood cells membrane permeabilization through the quantification of hemoglobin leakage. Our results showed a strong inhibitory effect of plasma, and that hemolytic activity can be improved by chemical modification of the polymeric micelle, reducing its interaction with plasma proteins. Finally, a second mechanism of pH-induced direct diffusion is proposed and tested using an oil/water partitioning model. These results offer a body of knowledge to improve delivery of drugs across biological membranes using carefully designed polymeric nanocarriers.
Collapse
Affiliation(s)
- Rany Rotem
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Angelo Micale
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Maria Antonietta Rizzuto
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Martina Migliavacca
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Marco Giustra
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Lucia Salvioni
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Federico Tasin
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Davide Prosperi
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; Nanomedicine Laboratory, ICS Maugeri S.p.A. SB, via S. Maugeri 10, 27100, Pavia, Italy.
| | - Miriam Colombo
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| |
Collapse
|
28
|
Kmeck A, Tancer RJ, Ventura CR, Wiedman GR. Synergies with and Resistance to Membrane-Active Peptides. Antibiotics (Basel) 2020; 9:antibiotics9090620. [PMID: 32961656 PMCID: PMC7559582 DOI: 10.3390/antibiotics9090620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Membrane-active peptides (MAPs) have long been thought of as the key to defeating antimicrobial-resistant microorganisms. Such peptides, however, may not be sufficient alone. In this review, we seek to highlight some of the common pathways for resistance, as well as some avenues for potential synergy. This discussion takes place considering resistance, and/or synergy in the extracellular space, at the membrane, and during interaction, and/or removal. Overall, this review shows that researchers require improved definitions of resistance and a more thorough understanding of MAP-resistance mechanisms. The solution to combating resistance may ultimately come from an understanding of how to harness the power of synergistic drug combinations.
Collapse
|
29
|
Ma W, Sun S, Li W, Zhang Z, Lin Z, Xia Y, Yuan B, Yang K. Individual Roles of Peptides PGLa and Magainin 2 in Synergistic Membrane Poration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7190-7199. [PMID: 32529830 DOI: 10.1021/acs.langmuir.0c00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Synergy between antimicrobial peptides PGLa and Magainin 2 (MAG2) provides an efficient way to enhance their antimicrobial ability. However, the underlying molecular mechanism of such synergy, especially the individual roles of each peptide, remains poorly understood. We combined a giant unilamellar vesicle leakage assay, in situ interfacial photovoltage testing, and molecular dynamics to investigate membrane poration under the action of PGLa, MAG2, or a PGLa/MAG2 mixture. Our results clearly show the different membrane action modes of the three systems and demonstrate the importance of forming PGLa-MAG2 heterodimers in the membrane poration process. PGLa inserted into and extracted from a membrane rapidly and continually with minimal aggregation and produced only transient, small pores. In contrast, MAG2 peptides tended to aggregate together on the membrane surface or only shallowly embed in the membrane. Additionally, the PGLa and MAG2 residues were well integrated into the membrane via the formation of PGLa-MAG2 heterodimers. The membrane defect produced by the rapid insertion of PGLa was stabilized by MAG2, which further recruited other peptides for the formation of PGLa-MAG2 heterodimers and even heterodimer clusters. Growth in pore size then occurred in a step-by-step process involving the formation and assembly of heterodimer clusters within the membrane. Our results provide insight into the complicated synergy that occurs between PGLa and MAG2 during membrane poration and will assist in the design of new antimicrobial peptides.
Collapse
Affiliation(s)
- Wendong Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Shuqing Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Wenwen Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Zhihong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Zhao Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Yu Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
30
|
Deng Z, Lu X, Xu C, Yuan B, Yang K. Lipid-specific interactions determine the organization and dynamics of membrane-active peptide melittin. SOFT MATTER 2020; 16:3498-3504. [PMID: 32215386 DOI: 10.1039/d0sm00046a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cell membranes of different cells deviate significantly in lipid compositions and thus provide varying biological environments to modulate the diffusion, organization and the resultant function of biomacromolecules. However, the detailed modulation mechanism remains elusive especially in consideration of the current overuse of the simplified membrane models such as the pure phosphatidylcholine (PC) membrane. In this work, with the typical membrane-active peptide melittin, we demonstrated that a more complicated membrane environment, such as the bacterial (IME) or plasma membrane (PM), would significantly change the organization and dynamics of melittin, by using molecular dynamics simulations as a "computational microscope". It was found that in these membrane systems, adding melittin would cause a varying degree of reduction in the lateral diffusion of lipids due to the different assembly states of peptides. Melittin tended to aggregate to oligomers in the pure PC membrane, mostly as a tetramer or trimer, while in IME or PM, its degree of oligomerization was significantly reduced. More surprisingly, melittin displayed a strong affinity with ganglioside GM3 in PM, leading to the formation of melittin-GM3 nanoclusters, which hindered its diffusion and further oligomerization. Additionally, small changes in the residue sequence of melittin could modulate the degree or structure of the peptide oligomer. Our work provides a typical example of a study on the organization and dynamics of pore-forming peptides in specific membrane environments and has great significance on the optimization of peptide sequences and the design of helix bundles in the membrane for target biological function.
Collapse
Affiliation(s)
- Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Xuemei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Cheng Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China. and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China. and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
31
|
Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria. Proc Natl Acad Sci U S A 2020; 117:8437-8448. [PMID: 32241895 DOI: 10.1073/pnas.1918427117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Novel classes of antibiotics and new strategies to prevent and treat infections are urgently needed because the rapid rise in drug-resistant bacterial infections in recent decades has been accompanied by a parallel decline in development of new antibiotics. Membrane permeabilizing antimicrobial peptides (AMPs) have long been considered a potentially promising, novel class of antibiotic, especially for wound protection and treatment to prevent the development of serious infections. Yet, despite thousands of known examples, AMPs have only infrequently proceeded as far as clinical trials, especially the chemically simple, linear examples. In part, this is due to impediments that often limit their applications in vivo. These can include low solubility, residual toxicity, susceptibility to proteolysis, and loss of activity due to host cell, tissue, and protein binding. Here we show how synthetic molecular evolution can be used to evolve potentially advantageous antimicrobial peptides that lack these impediments from parent peptides that have at least some of them. As an example of how the antibiotic discovery pipeline can be populated with more promising candidates, we evolved and optimized one family of linear AMPs into a new generation with high solubility, low cytotoxicity, potent broad-spectrum sterilizing activity against a panel of gram-positive and gram-negative ESKAPE pathogens, and antibiofilm activity against gram-positive and gram-negative biofilms. The evolved peptides have these activities in vitro even in the presence of concentrated host cells and also in vivo in the complex, cell- and protein-rich environment of a purulent animal wound model infected with drug-resistant bacteria.
Collapse
|
32
|
Chen CH, Melo MC, Berglund N, Khan A, de la Fuente-Nunez C, Ulmschneider JP, Ulmschneider MB. Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly. Curr Opin Struct Biol 2020; 61:160-166. [PMID: 32006812 DOI: 10.1016/j.sbi.2019.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
Abstract
Atomic detail simulations are starting to reveal how flexible polypeptides interact with fluid lipid bilayers. These insights are transforming our understanding of one of the fundamental processes in biology: membrane protein folding and assembly. Advanced molecular dynamics (MD) simulation techniques enable accurate prediction of protein structure, folding pathways and assembly in microsecond-timescales. Such simulations show how membrane-active peptides self-assemble in cell membranes, revealing their binding, folding, insertion, and aggregation, while at the same time providing atomic resolution details of peptide-lipid interactions. Essential to the impact of simulations are experimental approaches that enable calibration and validation of the computational models and techniques. In this review, we summarize the current development of applying unbiased atomic detail MD simulations and the relation to experimental techniques, to study peptide folding and provide our perspective of the field.
Collapse
Affiliation(s)
- Charles H Chen
- Department of Chemistry, King's College London, London, UK
| | - Marcelo Cr Melo
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nils Berglund
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Ayesha Khan
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Jakob P Ulmschneider
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
33
|
Sepehri A, PeBenito L, Pino-Angeles A, Lazaridis T. What Makes a Good Pore Former: A Study of Synthetic Melittin Derivatives. Biophys J 2020; 118:1901-1913. [PMID: 32183940 DOI: 10.1016/j.bpj.2020.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/25/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Pore formation by membrane-active peptides, naturally encountered in innate immunity and infection, could have important medical and technological applications. Recently, the well-studied lytic peptide melittin has formed the basis for the development of combinatorial libraries from which potent pore-forming peptides have been derived, optimized to work under different conditions. We investigate three such peptides, macrolittin70, which is most active at neutral pH; pHD15, which is active only at low pH; and MelP5_Δ6, which was rationally designed to be active at low pH but formed only small pores. There are three, six, and six acidic residues in macrolittin70, pHD15, and MelP5_Δ6, respectively. We perform multi-microsecond simulations in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) of hexamers of these peptides starting from transmembrane orientations at neutral pH (all residues at standard protonation), low pH (acidic residues and His protonated), and highly acidic environments in which C-termini are also protonated. Previous simulations of the parent peptides melittin and MelP5 in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are repeated in POPC. We find that the most potent pore-forming peptides exhibit strong interpeptide interactions, including salt bridges, H-bonds, and polar interactions. Protonation of the C-terminus promotes helicity and pore size. The proximity of the peptides allows fewer lipid headgroups to line the pores than in previous simulations, making the pores intermediate between barrel stave and toroidal. Based on these structures and geometrical arguments, we attempt to rationalize the factors that under different conditions can increase or decrease pore stability and propose mutations that could be tested experimentally.
Collapse
Affiliation(s)
- Aliasghar Sepehri
- Department of Chemistry & Biochemistry, The City College of New York, New York, New York
| | - Leo PeBenito
- Department of Chemistry & Biochemistry, The City College of New York, New York, New York; Graduate Program in Chemistry, The Graduate Center, City University of New York, New York, New York
| | - Almudena Pino-Angeles
- Department of Chemistry & Biochemistry, The City College of New York, New York, New York
| | - Themis Lazaridis
- Department of Chemistry & Biochemistry, The City College of New York, New York, New York; Graduate Program in Chemistry, The Graduate Center, City University of New York, New York, New York.
| |
Collapse
|
34
|
Effective Therapeutic Drug Delivery by GALA3, an Endosomal Escape Peptide with Reduced Hydrophobicity. J Membr Biol 2020; 253:139-152. [DOI: 10.1007/s00232-020-00109-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
|
35
|
Chen CH, Lu TK. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics (Basel) 2020; 9:antibiotics9010024. [PMID: 31941022 PMCID: PMC7168295 DOI: 10.3390/antibiotics9010024] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
More than 3000 antimicrobial peptides (AMPs) have been discovered, seven of which have been approved by the U.S. Food and Drug Administration (FDA). Now commercialized, these seven peptides have mostly been utilized for topical medications, though some have been injected into the body to treat severe bacterial infections. To understand the translational potential for AMPs, we analyzed FDA-approved drugs in the FDA drug database. We examined their physicochemical properties, secondary structures, and mechanisms of action, and compared them with the peptides in the AMP database. All FDA-approved AMPs were discovered in Gram-positive soil bacteria, and 98% of known AMPs also come from natural sources (skin secretions of frogs and toxins from different species). However, AMPs can have undesirable properties as drugs, including instability and toxicity. Thus, the design and construction of effective AMPs require an understanding of the mechanisms of known peptides and their effects on the human body. This review provides an overview to guide the development of AMPs that can potentially be used as antimicrobial drugs.
Collapse
Affiliation(s)
- Charles H. Chen
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: (C.H.C.); (T.K.L.)
| | - Timothy K. Lu
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA
- Correspondence: (C.H.C.); (T.K.L.)
| |
Collapse
|
36
|
Chen CH, Ulmschneider JP, Ulmschneider MB. Mechanisms of a Small Membrane-Active Antimicrobial Peptide from Hyla punctata. Aust J Chem 2020. [DOI: 10.1071/ch19429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thousands of antimicrobial peptides have been observed and studied in the past decades; however, their membrane-active mechanisms are ambiguous due to their dynamic structure in the cell membrane. Here, we applied both molecular dynamics (MD) simulations and biophysical experiments to study the small membrane-active antimicrobial peptide Hylaseptin P1 (HSP1), which has significant selectivity towards anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG) and bacterial model membranes. HSP1 does not bind and fold onto human red blood cell model membranes, and it only binds, but does not fold, in zwitterionic 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) membranes. This suggests that the lipid chemistry and membrane rigidity are key to prevent HSP1 binding onto membranes, and the lipid headgroup charge may further promote peptide folding in the membrane. Our experiment-validated MD simulations suggest a carpet-like model mechanism for HSP1 through peptide binding, folding, aggregation, and assembly. HSP1 is shorter than the membrane thickness; therefore, the folded peptides aggregate on the surface, cross the membrane, and the oligomeric structure is supported by several surface-bound peptides in both bilayer leaflets.
Collapse
|
37
|
Belluati A, Mikhalevich V, Yorulmaz Avsar S, Daubian D, Craciun I, Chami M, Meier WP, Palivan CG. How Do the Properties of Amphiphilic Polymer Membranes Influence the Functional Insertion of Peptide Pores? Biomacromolecules 2019; 21:701-715. [DOI: 10.1021/acs.biomac.9b01416] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Viktoria Mikhalevich
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Davy Daubian
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Wolfgang P. Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
38
|
Wimley WC, Hristova K. The Mechanism of Membrane Permeabilization by Peptides: Still an Enigma. Aust J Chem 2019; 73:96-103. [PMID: 32341596 DOI: 10.1071/ch19449] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptide-induced permeabilization of lipid vesicles has been measured for decades and has provided many insights into the sequence-structure-function relationships of membrane-active peptides. However, researchers in the field have noted that many experiments show transient permeabilization, in which a burst of leakage occurs immediately after peptide addition, followed by a slowdown or cessation of leakage before all contents have been released. This widely observed, but rarely studied, phenomenon is not explained by standard equilibrium pore models that are commonly invoked in both experimental and computational studies. Here we discuss observations of transient permeabilization, and we outline a pathway towards understanding this enigmatic phenomenon.
Collapse
Affiliation(s)
- William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
39
|
Effects of Peptide Charge, Orientation, and Concentration on Melittin Transmembrane Pores. Biophys J 2019; 114:2865-2874. [PMID: 29925023 DOI: 10.1016/j.bpj.2018.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 11/21/2022] Open
Abstract
Melittin is a short cationic peptide that exerts cytolytic effects on bacterial and eukaryotic cells. Experiments suggest that in zwitterionic membranes, melittin forms transmembrane toroidal pores supported by four to eight peptides. A recently constructed melittin variant with a reduced cationic charge, MelP5, is active at 10-fold lower concentrations. In previous work, we performed molecular dynamics simulations on the microsecond timescale to examine the supramolecular pore structure of a melittin tetramer in zwitterionic and partially anionic membranes. We now extend that study to include the effects of peptide charge, initial orientation, and number of monomers on the pore formation and stabilization processes. Our results show that parallel transmembrane orientations of melittin and MelP5 are more consistent with experimental data. Whereas a MelP5 parallel hexamer forms a large stable pore during the 5-μs simulation time, a melittin hexamer and an octamer are not fully stable, with several monomers dissociating during the simulation time. Interaction-energy analysis shows that this difference in behavior between melittin and MelP5 is not due to stronger electrostatic repulsion between neighboring melittin peptides but to peptide-lipid interactions that disfavor the isolated MelP5 transmembrane monomer. The ability of melittin monomers to diffuse freely in the 1,2-dimyristoyl-SN-glycero-3-phosphocholine membrane leads to dynamic pores with varying molecularity.
Collapse
|
40
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
41
|
Hong J, Lu X, Deng Z, Xiao S, Yuan B, Yang K. How Melittin Inserts into Cell Membrane: Conformational Changes, Inter-Peptide Cooperation, and Disturbance on the Membrane. Molecules 2019; 24:molecules24091775. [PMID: 31067828 PMCID: PMC6539814 DOI: 10.3390/molecules24091775] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/27/2023] Open
Abstract
Antimicrobial peptides (AMPs), as a key component of the immune defense systems of organisms, are a promising solution to the serious threat of drug-resistant bacteria to public health. As one of the most representative and extensively studied AMPs, melittin has exceptional broad-spectrum activities against microorganisms, including both Gram-positive and Gram-negative bacteria. Unfortunately, the action mechanism of melittin with bacterial membranes, especially the underlying physics of peptide-induced membrane poration behaviors, is still poorly understood, which hampers efforts to develop melittin-based drugs or agents for clinical applications. In this mini-review, we focus on recent advances with respect to the membrane insertion behavior of melittin mostly from a computational aspect. Membrane insertion is a prerequisite and key step for forming transmembrane pores and bacterial killing by melittin, whose occurrence is based on overcoming a high free-energy barrier during the transition of melittin molecules from a membrane surface-binding state to a transmembrane-inserting state. Here, intriguing simulation results on such transition are highlighted from both kinetic and thermodynamic aspects. The conformational changes and inter-peptide cooperation of melittin molecules, as well as melittin-induced disturbances to membrane structure, such as deformation and lipid extraction, are regarded as key factors influencing the insertion of peptides into membranes. The associated intermediate states in peptide conformations, lipid arrangements, membrane structure, and mechanical properties during this process are specifically discussed. Finally, potential strategies for enhancing the poration ability and improving the antimicrobial performance of AMPs are included as well.
Collapse
Affiliation(s)
- Jiajia Hong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Xuemei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Shufeng Xiao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| |
Collapse
|
42
|
Kim SY, Pittman AE, Zapata-Mercado E, King GM, Wimley WC, Hristova K. Mechanism of Action of Peptides That Cause the pH-Triggered Macromolecular Poration of Lipid Bilayers. J Am Chem Soc 2019; 141:6706-6718. [DOI: 10.1021/jacs.9b01970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sarah Y. Kim
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Elmer Zapata-Mercado
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - William C. Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
43
|
Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. J Am Chem Soc 2019; 141:4839-4848. [PMID: 30839209 DOI: 10.1021/jacs.8b11939] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the age of failing small-molecule antibiotics, tapping the near-infinite structural and chemical repertoire of antimicrobial peptides (AMPs) offers one of the most promising routes toward developing next-generation antibacterial compounds. One of the key impediments en route is the lack of methodologies for systematic rational design and optimization of new AMPs. Here we present a new simulation-guided rational design approach and apply it to develop a potent new AMP. We show that unbiased atomic detail molecular dynamics (MD) simulations are able to predict structures formed by evolving peptide designs enabling structure-based rational fine-tuning of functional properties. Starting from a 14-residue poly leucine template we demonstrate the design of a minimalistic potent new AMP. Consisting of only four types of amino acids (LDKA), this peptide forms large pores in microbial membranes at very low peptide-to-lipid ratios (1:1000) and exhibits low micromolar activity against common Gram-positive and Gram-negative pathogenic bacteria. Remarkably, the four amino acids were sufficient to encode preferential poration of bacterial membranes with negligible damage to red blood cells at bactericidal concentrations. As the sequence is too short to span cellular membranes, pores are formed by stacking of channels in each bilayer leaflet.
Collapse
|
44
|
Melittin-Induced Permeabilization, Re-sealing, and Re-permeabilization of E. coli Membranes. Biophys J 2019; 114:368-379. [PMID: 29401434 DOI: 10.1016/j.bpj.2017.10.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
The permeabilization of model lipid bilayers by cationic peptides has been studied extensively over decades, with the bee-sting toxin melittin perhaps serving as the canonical example. However, the relevance of these studies to the permeabilization of real bacterial membranes by antimicrobial peptides remains uncertain. Here, we employ single-cell fluorescence microscopy in a detailed study of the interactions of melittin with the outer membrane (OM) and the cytoplasmic membrane (CM) of live Escherichia coli. Using periplasmic green fluorescent protein (GFP) as a probe, we find that melittin at twice the minimum inhibitory concentration first induces abrupt cell shrinkage and permeabilization of the OM to GFP. Within ∼4 s of OM permeabilization, the CM invaginates to form inward facing "periplasmic bubbles." Seconds later the bubbles begin to leak periplasmic GFP into the cytoplasm. Permeabilization is localized, consistent with possible formation of toroidal pores. Within ∼20 s, first the OM and then the CM re-seals to GFP. Some 2-20 min later, both CM and OM are re-permeabilized to GFP. We invoke a mechanism based on curvature stress concepts derived from model bilayer studies. The permeabilization and re-sealing events involve sequential, time-dependent build-up of melittin density within the outer and inner leaflets of each bilayer. We also propose a mechanical explanation for the early cell shrinkage event induced by melittin and a variety of other cationic peptides. As peptides gain access to the periplasm, they bind to the anionic peptido-crosslinks of the lipopolysaccharide layer, increasing its longitudinal elastic modulus. The cell wall shrinks because it can withstand the same turgor pressure with smaller overall extension. Shrinkage in turn induces invagination of the CM, preserving its surface area. We conclude by comparing the behavior of different peptides.
Collapse
|
45
|
Wu Q, Patočka J, Kuča K. Insect Antimicrobial Peptides, a Mini Review. Toxins (Basel) 2018; 10:toxins10110461. [PMID: 30413046 PMCID: PMC6267271 DOI: 10.3390/toxins10110461] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are crucial effectors of the innate immune system. They provide the first line of defense against a variety of pathogens. AMPs display synergistic effects with conventional antibiotics, and thus present the potential for combined therapies. Insects are extremely resistant to bacterial infections. Insect AMPs are cationic and comprise less than 100 amino acids. These insect peptides exhibit an antimicrobial effect by disrupting the microbial membrane and do not easily allow microbes to develop drug resistance. Currently, membrane mechanisms underlying the antimicrobial effects of AMPs are proposed by different modes: the barrel-stave mode, toroidal-pore, carpet, and disordered toroidal-pore are the typical modes. Positive charge quantity, hydrophobic property and the secondary structure of the peptide are important for the antibacterial activity of AMPs. At present, several structural families of AMPs from insects are known (defensins, cecropins, drosocins, attacins, diptericins, ponericins, metchnikowins, and melittin), but new AMPs are frequently discovered. We reviewed the biological effects of the major insect AMPs. This review will provide further information that facilitates the study of insect AMPs and shed some light on novel microbicides.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic.
| | - Jiří Patočka
- Department of Radiology and Toxicology, Faculty of Health and Social Studies, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic.
- Biomedical Research Centre, University Hospital, 500 03 Hradec Kralove, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic.
| |
Collapse
|
46
|
Pittman AE, Marsh BP, King GM. Conformations and Dynamic Transitions of a Melittin Derivative That Forms Macromolecule-Sized Pores in Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8393-8399. [PMID: 29933696 DOI: 10.1021/acs.langmuir.8b00804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Systematically evolved from the primary active component of bee venom, MelP5 is a lipophilic peptide with important physical properties that differ from wild-type melittin, including the ability to create large equilibrium pores in lipid bilayers at low peptide to lipid ratios. Self-assembly into stable membrane spanning pores makes MelP5 a promising candidate for future applications in the pharmaceutical arena. Despite significant interest, little is known about the mechanism by which MelP5 remodels the lipid bilayer upon binding. We demonstrate by direct atomic force microscope imaging of supported lipid bilayers in solution that MelP5 remodels 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) in one of two ways. It creates either highly localized voids in the bilayer or diffuse nonlocalized thinning. Thinning of the bilayer was measured to be 3.0 ± 1.4 Å (mean ± standard deviation) below the surface of the upper leaflet of the bilayer. Pores, defined as highly localized voids in the bilayer, exhibited several sizes. Approximately 20% of pores exhibited large footprint areas (47 ± 20 nm2) which appear capable of passing bulky macromolecules. The peptide-effected bilayer was observed to reversibly exchange between membrane-thinned and pore states in an apparent dynamic equilibrium. Analysis of time-lapsed images suggested upper and lower bounds (0.2 < τ < 180 s) on the characteristic time scale of transitions between the membrane-thinned and pore states. Moreover, pores were found to colocalize with membrane-thinned regions, a novel observation that is consistent with the notion of cooperativity among membrane-bound peptides when forming pores.
Collapse
|
47
|
Li S, Kim SY, Pittman AE, King GM, Wimley WC, Hristova K. Potent Macromolecule-Sized Poration of Lipid Bilayers by the Macrolittins, A Synthetically Evolved Family of Pore-Forming Peptides. J Am Chem Soc 2018; 140:6441-6447. [DOI: 10.1021/jacs.8b03026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sijia Li
- Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sarah Y. Kim
- Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anna E. Pittman
- Physics and Astronomy, University of Missouri, Columbia, Missouri 65201, United States
| | - Gavin M. King
- Physics and Astronomy, University of Missouri, Columbia, Missouri 65201, United States
- Biochemistry, University of Missouri, Columbia, Missouri 65201, United States
| | - William C. Wimley
- Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalina Hristova
- Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
48
|
Lipkin R, Lazaridis T. Computational studies of peptide-induced membrane pore formation. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630158 DOI: 10.1098/rstb.2016.0219] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A variety of peptides induce pores in biological membranes; the most common ones are naturally produced antimicrobial peptides (AMPs), which are small, usually cationic, and defend diverse organisms against biological threats. Because it is not possible to observe these pores directly on a molecular scale, the structure of AMP-induced pores and the exact sequence of steps leading to their formation remain uncertain. Hence, these questions have been investigated via molecular modelling. In this article, we review computational studies of AMP pore formation using all-atom, coarse-grained, and implicit solvent models; evaluate the results obtained and suggest future research directions to further elucidate the pore formation mechanism of AMPs.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Richard Lipkin
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA.,Graduate Program in Chemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
49
|
Li QQ, Chen PG, Hu ZW, Cao Y, Chen LX, Chen YX, Zhao YF, Li YM. Selective inhibition of cancer cells by enzyme-induced gain of function of phosphorylated melittin analogues. Chem Sci 2017; 8:7675-7681. [PMID: 29568430 PMCID: PMC5849211 DOI: 10.1039/c7sc03217j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/12/2017] [Indexed: 01/16/2023] Open
Abstract
The selective killing of cancer cells and the avoidance of drug resistance are still difficult challenges in cancer therapy. Here, we report a new strategy that uses enzyme-induced gain of function (EIGF) to regulate the structure and function of phosphorylated melittin analogues (MelAs). Original MelAs have the capacity to disrupt plasma membranes and induce cell death without selectivity. However, phosphorylation of Thr23 on one of the MelAs (MelA2-P) efficiently ameliorated the membrane lysis potency as well as the cytotoxicity for normal mammalian cells. After treatment with alkaline phosphatase (ALP), which is more active in cancer cells than normal cells, MelA2-P restored the pore-forming function around the cancer cells and induced cancer cell death selectively. This mechanism was independent of the receptor proteins and the cell uptake process, which may partially bypass the development of drug resistance in cancer cells.
Collapse
Affiliation(s)
- Qian-Qian Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China . ; ; Tel: +86-10-62796197
| | - Pu-Guang Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China . ; ; Tel: +86-10-62796197
| | - Zhi-Wen Hu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China . ; ; Tel: +86-10-62796197
| | - Yuan Cao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China . ; ; Tel: +86-10-62796197
| | - Liang-Xiao Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China . ; ; Tel: +86-10-62796197
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China . ; ; Tel: +86-10-62796197
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China . ; ; Tel: +86-10-62796197
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China . ; ; Tel: +86-10-62796197
- Beijing Institute for Brain Disorders , Beijing 100069 , P. R. China
| |
Collapse
|
50
|
Fennouri A, Mayer SF, Schroeder TBH, Mayer M. Single channel planar lipid bilayer recordings of the melittin variant MelP5. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:2051-2057. [PMID: 28720433 DOI: 10.1016/j.bbamem.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022]
Abstract
MelP5 is a 26 amino acid peptide derived from melittin, the main active constituent of bee venom, with five amino acid replacements. The pore-forming activity of MelP5 in lipid membranes is attracting attention because MelP5 forms larger pores and induces dye leakage through liposome membranes at a lower concentration than melittin. Studies of MelP5 have so far focused on ensemble measurements of membrane leakage and impedance; here we extend this characterization with an electrophysiological comparison between MelP5 and melittin using planar lipid bilayer recordings. These experiments reveal that MelP5 pores in lipid membranes composed of 3:1 phosphatidylcholine:cholesterol consist of an average of 10 to 12 monomers compared to an average of 3 to 9 monomers for melittin. Both peptides form transient pores with dynamically varying conductance values similar to previous findings for melittin, but MelP5 occasionally also forms stable, well-defined pores with single channel conductance values that vary greatly and range from 50 to 3000pS in an electrolyte solution containing 100mM KCl.
Collapse
Affiliation(s)
- Aziz Fennouri
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Simon Finn Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; Biberach University of Applied Sciences, Karlstraße 11, 88400 Biberach, Germany
| | - Thomas B H Schroeder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|