1
|
Zhang H, Janina N, Ütkür K, Manivannan T, Zhang L, Wang L, Grefen C, Schaffrath R, Krämer U. Diphthamide formation in Arabidopsis requires DPH1-interacting DPH2 for light and oxidative stress resistance. PLANT PHYSIOLOGY 2025; 197:kiaf128. [PMID: 40200557 DOI: 10.1093/plphys/kiaf128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 04/10/2025]
Abstract
Diphthamide is a posttranslationally modified histidine residue of eukaryotic TRANSLATION ELONGATION FACTOR 2 (eEF2) and the target of diphtheria toxin in human cells. In yeast and mammals, the 4Fe-4S cluster-containing proteins Dph1 and Dph2 catalyze the first biosynthetic step of diphthamide formation. Here, we identify Arabidopsis (Arabidopsis thaliana) DPH2 and show that it is required for diphthamide biosynthesis, localizes to the cytosol, and interacts physically with AtDPH1. Arabidopsis dph2 mutants form shorter primary roots and smaller rosettes than the wild type, similar to dph1 mutants which we characterized previously. Additionally, increased ribosomal -1 frameshifting error rates and attenuated TARGET OF RAPAMYCIN (TOR) kinase activity in dph2 mutants also phenocopy the dph1 mutant. Beyond the known heavy metal hypersensitivity and heat shock tolerance of dph1, we show here that both dph1 and dph2 mutants are hypersensitive to elevated light intensities and oxidative stress and that wild-type Arabidopsis seedlings accumulate diphthamide-unmodified eEF2 under oxidative stress. Both mutants share the deregulation of 1,186 transcripts associated with several environmental and hormone responses. AtDPH1 and AtDPH2 do not complement the corresponding mutants of Saccharomyces cerevisiae. In summary, DPH2 and DPH1 interact to function inter-dependently in diphthamide formation, the maintenance of translational fidelity, wild-type growth rates, and TOR kinase activation, and they contribute to mitigating damage from elevated light intensities and oxidative stress. Under oxidative stress, a dose-dependent loss of diphthamide could potentiate downstream effects in a feed-forward loop. This work advances our understanding of translation and its interactions with growth regulation and stress responses in plants.
Collapse
Affiliation(s)
- Hongliang Zhang
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| | - Nadežda Janina
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| | - Koray Ütkür
- Microbiology, Institute for Biology, University of Kassel, Kassel 34132, Germany
| | | | - Lei Zhang
- Molecular and Cellular Botany, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| | - Lizhen Wang
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| | - Christopher Grefen
- Molecular and Cellular Botany, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| | - Raffael Schaffrath
- Microbiology, Institute for Biology, University of Kassel, Kassel 34132, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
2
|
Gao X, He K, Zeng Z, Yin Y, Huang J, Liu X, Xiang X, Li J. Integrative analysis of the role of the DPH gene family in hepatocellular carcinoma and expression validation. Transl Cancer Res 2024; 13:4062-4084. [PMID: 39262488 PMCID: PMC11385253 DOI: 10.21037/tcr-24-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/09/2024] [Indexed: 09/13/2024]
Abstract
Background The diphthamide (DPH) gene family is a group of genes that encode a set of enzymes that specifically modify eukaryotic elongation factor 2 (eEF2). Although previous studies have shown a link between the DPH genes (DPHs) and carcinogenesis, it is still unknown how the DPHs affect hepatocellular carcinoma (HCC). This study aimed to describe the expression, clinical significance, and potential mechanisms of DPHs in HCC. Methods Real-time quantitative polymerase chain reaction (RT-qPCR), Genotype-Tissue Expression (GTEx), and The Cancer Genome Atlas (TCGA) databases were utilized to research the expression of DPHs in HCC. The relationship between the expression of DPHs and the clinicopathological characteristics of HCC patients was investigated using TCGA data, and their diagnostic value was evaluated using receiver operating characteristic (ROC) curves and their prognostic value was analyzed using Kaplan-Meier curves and univariate and multivariate Cox regression analyses. Potential reasons for the upregulation of DPH2 and DPH3 (DPH2,3) expression in HCC were analyzed using multiple databases. Additionally, this study also explored the potential biological functions of DPH2,3 in HCC via gene sets enrichment analysis (GSEA). Correlation analysis of DPH2,3 expression with immune-related genes and immune checkpoints was performed using Spearman's correlation analysis, and single-sample GSEA was used to assess the distribution of tumor-infiltrating immune cell types. Results DPH1,7 expression was downregulated in tumor tissues while DPH2,3,5,6 expression was upregulated and showed a similar expression pattern in HCC. The results of the ROC analysis suggested that DPHs had valuable diagnostic properties in HCC. Kaplan-Meier analysis demonstrated that DPH2,3,7 had prognostic predictive value in HCC. Furthermore, univariate and multivariate Cox regression suggested that DPH2,3 was an independent predictive factor for HCC. GSEA analysis revealed that DPH2,3 might be tightly associated with Pathways in cancer, cell cycles, Fc gamma R mediated phagocytosis, etc. Additionally, DPH2,3 expression and numerous immune-related genes showed a positive connection, including chemokines receptor genes, immunosuppressive genes, chemokines genes, human leukocyte antigen (HLA) genes, and immunostimulatory genes. Further analysis of the association between 24 immune infiltrating cells and DPH2,3 revealed the greatest negative correlation between natural killer (NK) cells and Th17 cells, but the greatest positive correlation with Th2 cells. Conclusions DPHs significantly influence the development and progression of HCC. DPH2,3 has significant diagnostic and prognostic potential and may be a promising target for immunotherapy.
Collapse
Affiliation(s)
- Xiaojin Gao
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Kun He
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Hepatobiliary Surgery, Jintang Second People's Hospital, Chengdu, China
| | - Zhongxiang Zeng
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yaolin Yin
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jie Huang
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xingliang Liu
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaocong Xiang
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingdong Li
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Schaffrath R, Brinkmann U. Diphthamide - a conserved modification of eEF2 with clinical relevance. Trends Mol Med 2024; 30:164-177. [PMID: 38097404 DOI: 10.1016/j.molmed.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 02/17/2024]
Abstract
Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria. Diphthamide synthesis enzymes (DPH1 and DPH3) are associated with cancer, and DPH gene mutations can cause diphthamide deficiency syndrome (DDS). Finally, new analyses provide evidence that diphthamide may restrict propagation of viruses including SARS-CoV-2 and HIV-1, and that DPH enzymes are targeted by viruses for degradation to overcome this restriction. This review describes how diphthamide is synthesized and functions in translation, and covers its clinical relevance in human development, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
4
|
Arend M, Ütkür K, Hawer H, Mayer K, Ranjan N, Adrian L, Brinkmann U, Schaffrath R. Yeast gene KTI13 (alias DPH8) operates in the initiation step of diphthamide synthesis on elongation factor 2. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:195-203. [PMID: 37662670 PMCID: PMC10468694 DOI: 10.15698/mic2023.09.804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
In yeast, Elongator-dependent tRNA modifications are regulated by the Kti11•Kti13 dimer and hijacked for cell killing by zymocin, a tRNase ribotoxin. Kti11 (alias Dph3) also controls modification of elongation factor 2 (EF2) with diphthamide, the target for lethal ADP-ribosylation by diphtheria toxin (DT). Diphthamide formation on EF2 involves four biosynthetic steps encoded by the DPH1-DPH7 network and an ill-defined KTI13 function. On further examining the latter gene in yeast, we found that kti13Δ null-mutants maintain unmodified EF2 able to escape ADP-ribosylation by DT and to survive EF2 inhibition by sordarin, a diphthamide-dependent antifungal. Consistently, mass spectrometry shows kti13Δ cells are blocked in proper formation of amino-carboxyl-propyl-EF2, the first diphthamide pathway intermediate. Thus, apart from their common function in tRNA modification, both Kti11/Dph3 and Kti13 share roles in the initiation step of EF2 modification. We suggest an alias KTI13/DPH8 nomenclature indicating dual-functionality analogous to KTI11/DPH3.
Collapse
Affiliation(s)
- Meike Arend
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Koray Ütkür
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Harmen Hawer
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Nonnenwald 2, 82377 Penzberg, Germany
| | - Namit Ranjan
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lorenz Adrian
- Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Nonnenwald 2, 82377 Penzberg, Germany
| | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
5
|
Zhang H, Quintana J, Ütkür K, Adrian L, Hawer H, Mayer K, Gong X, Castanedo L, Schulten A, Janina N, Peters M, Wirtz M, Brinkmann U, Schaffrath R, Krämer U. Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis. Nat Commun 2022; 13:4009. [PMID: 35817801 PMCID: PMC9273596 DOI: 10.1038/s41467-022-31712-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Diphthamide, a post-translationally modified histidine residue of eukaryotic TRANSLATION ELONGATION FACTOR2 (eEF2), is the human host cell-sensitizing target of diphtheria toxin. Diphthamide biosynthesis depends on the 4Fe-4S-cluster protein Dph1 catalyzing the first committed step, as well as Dph2 to Dph7, in yeast and mammals. Here we show that diphthamide modification of eEF2 is conserved in Arabidopsis thaliana and requires AtDPH1. Ribosomal -1 frameshifting-error rates are increased in Arabidopsis dph1 mutants, similar to yeast and mice. Compared to the wild type, shorter roots and smaller rosettes of dph1 mutants result from fewer formed cells. TARGET OF RAPAMYCIN (TOR) kinase activity is attenuated, and autophagy is activated, in dph1 mutants. Under abiotic stress diphthamide-unmodified eEF2 accumulates in wild-type seedlings, most strongly upon heavy metal excess, which is conserved in human cells. In summary, our results suggest that diphthamide contributes to the functionality of the translational machinery monitored by plants to regulate growth.
Collapse
Affiliation(s)
- Hongliang Zhang
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Julia Quintana
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Koray Ütkür
- Microbiology, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Lorenz Adrian
- Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Harmen Hawer
- Microbiology, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, 82377, Penzberg, Germany
| | - Xiaodi Gong
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Leonardo Castanedo
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Anna Schulten
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Nadežda Janina
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Marcus Peters
- Molecular Immunology, Medical Faculty, Ruhr University Bochum, 44801, Bochum, Germany
| | - Markus Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, 82377, Penzberg, Germany
| | - Raffael Schaffrath
- Microbiology, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany.
| |
Collapse
|
6
|
Tu WL, Chih YC, Shih YT, Yu YR, You LR, Chen CM. Context-specific roles of diphthamide deficiency in hepatocellular carcinogenesis. J Pathol 2022; 258:149-163. [PMID: 35781884 DOI: 10.1002/path.5986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022]
Abstract
Diphthamide biosynthesis protein 1 (DPH1) is biochemically involved in the first step of diphthamide biosynthesis, a post-translational modification of eukaryotic elongation factor 2 (EEF2). Earlier studies showed that DPH1, also known as ovarian cancer-associated gene 1 (OVCA1), is involved in ovarian carcinogenesis. However, the role of DPH1 in hepatocellular carcinoma (HCC) remains unclear. To investigate the impact of DPH1 in hepatocellular carcinogenesis, we have performed data mining from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. We found that reduced DPH1 levels were associated with advanced stages and poor survival of patients with HCC. Also, we generated hepatocyte-specific Dph1 deficient mice and showed that diphthamide deficient EEF2 resulted in a reduced translation elongation rate in the hepatocytes and let to mild liver damage with fatty accumulation. After N-diethylnitrosamine (DEN) -induced acute liver injury, p53-mediated pericentral hepatocyte death was increased, and compensatory proliferation was reduced in Dph1-deficient mice. Consistent with these effects, Dph1 deficiency decreased the incidence of DEN-induced pericentral-derived HCC and revealed a protective effect against p53 loss. In contrast, Dph1 deficiency combined with Trp53- or Trp53/Pten-deficient hepatocytes led to increased tumor loads associated with KRT19 (K19)-positive periportal-like cell expansion in mice. Further gene set enrichment analysis also revealed that HCC patients with lower levels of DPH1 and TP53 expression had enriched gene-sets related to the cell cycle and K19-upregulated HCC. Additionally, liver tumor organoids obtained from 6-month-old Pten/Trp53/Dph1-triple-mutant mice had a higher frequency of organoid re-initiation cells and higher proliferative index compared with those of the Pten/Trp53-double-mutant. Pten/Trp53/Dph1-triple-mutant liver tumor organoids showed expression of genes associated with stem/progenitor phenotypes, including Krt19 and Prominin-1 (Cd133) progenitor markers, combined with low hepatocyte-expressed fibrinogen genes. These findings indicate that diphthamide deficiency differentially regulates hepatocellular carcinogenesis, which inhibits pericentral hepatocytes-derived tumor and promotes periportal progenitors-associated liver tumors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wei-Ling Tu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Yu-Chan Chih
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Ya-Tung Shih
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Yu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Hawer H, Mendelsohn BA, Mayer K, Kung A, Malhotra A, Tuupanen S, Schleit J, Brinkmann U, Schaffrath R. Diphthamide-deficiency syndrome: a novel human developmental disorder and ribosomopathy. Eur J Hum Genet 2020; 28:1497-1508. [PMID: 32576952 PMCID: PMC7575589 DOI: 10.1038/s41431-020-0668-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
We describe a novel type of ribosomopathy that is defined by deficiency in diphthamidylation of translation elongation factor 2. The ribosomopathy was identified by correlating phenotypes and biochemical properties of previously described patients with diphthamide biosynthesis gene 1 (DPH1) deficiencies with a new patient that carried inactivating mutations in both alleles of the human diphthamide biosynthesis gene 2 (DPH2). The human DPH1 syndrome is an autosomal recessive disorder associated with developmental delay, abnormal head circumference (microcephaly or macrocephaly), short stature, and congenital heart disease. It is defined by variants with reduced functionality of the DPH1 gene observed so far predominantly in consanguineous homozygous patients carrying identical mutant alleles of DPH1. Here we report a child with a very similar phenotype carrying biallelic variants of the human DPH2. The gene products DPH1 and DPH2 are components of a heterodimeric enzyme complex that mediates the first step of the posttranslational diphthamide modification on the nonredundant eukaryotic translation elongation factor 2 (eEF2). Diphthamide deficiency was shown to reduce the accuracy of ribosomal protein biosynthesis. Both DPH2 variants described here severely impair diphthamide biosynthesis as demonstrated in human and yeast cells. This is the first report of a patient carrying compound heterozygous DPH2 loss-of-function variants with a DPH1 syndrome-like phenotype and implicates diphthamide deficiency as the root cause of this patient's clinical phenotype as well as of DPH1-syndrome. These findings define "diphthamide-deficiency syndrome" as a special ribosomopathy due to reduced functionality of components of the cellular machinery for eEF2-diphthamide synthesis.
Collapse
Affiliation(s)
- Harmen Hawer
- Fachgebiet Mikrobiologie, Institut für Biologie, Universität Kassel, D-34132, Kassel, Hessen, Germany
| | | | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, D-82377, Penzberg, Bavaria, Germany
| | - Ann Kung
- Kaiser Permanente Oakland Medical Center, Oakland, CA, 94611, USA
| | - Amit Malhotra
- Kaiser Permanente Oakland Medical Center, Oakland, CA, 94611, USA
| | - Sari Tuupanen
- Blueprint Genetics Oy, Keilaranta 16 A-B, 02150, Espoo, Finland
| | | | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, D-82377, Penzberg, Bavaria, Germany.
| | - Raffael Schaffrath
- Fachgebiet Mikrobiologie, Institut für Biologie, Universität Kassel, D-34132, Kassel, Hessen, Germany
| |
Collapse
|
8
|
Stack TMM, Morrison KN, Dettmer TM, Wille B, Kim C, Joyce R, Jermain M, Naing YT, Bhatti K, Francisco BS, Carter MS, Gerlt JA. Characterization of an l-Ascorbate Catabolic Pathway with Unprecedented Enzymatic Transformations. J Am Chem Soc 2020; 142:1657-1661. [PMID: 31917558 DOI: 10.1021/jacs.9b09863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
l-Ascorbate (vitamin C) is ubiquitous in both our diet and the environment. Here we report that Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699) uses l-ascorbate as sole carbon source via a novel catabolic pathway. RNaseq identified eight candidate catabolic genes, sequence similarity networks, and genome neighborhood networks guided predictions for function of the encoded proteins, and the predictions were confirmed by in vitro assays and in vivo growth phenotypes of gene deletion mutants. l-Ascorbate, a lactone, is oxidized and ring-opened by enzymes in the cytochrome b561 and gluconolactonase families, respectively, to form 2,3-diketo-l-gulonate. A protein predicted to have a WD40-like fold catalyzes an unprecedented benzilic acid rearrangement involving migration of a carboxylate group to form 2-carboxy-l-lyxonolactone; the lactone is hydrolyzed by a member of the amidohydrolase superfamily to yield 2-carboxy-l-lyxonate. A member of the PdxA family of oxidative decarboxylases catalyzes a novel decarboxylation that uses NAD+ catalytically. The product, l-lyxonate, is catabolized to α-ketoglutarate by a previously characterized pathway. The pathway is found in hundreds of bacteria, including the pathogens Pseudomonas aeruginosa and Acinetobacter baumannii.
Collapse
Affiliation(s)
- Tyler M M Stack
- Carl R. Woese Institute for Genomic Biology , University of Illinois , Urbana , Illinois 61801 , United States
| | | | | | - Brendan Wille
- Department of Biological Sciences , Salisbury University , Salisbury , Maryland 21801 , United States
| | - Chan Kim
- Department of Biological Sciences , Salisbury University , Salisbury , Maryland 21801 , United States
| | - Ryan Joyce
- Department of Biological Sciences , Salisbury University , Salisbury , Maryland 21801 , United States
| | - Madison Jermain
- Department of Biological Sciences , Salisbury University , Salisbury , Maryland 21801 , United States
| | - Yadanar Than Naing
- Department of Biological Sciences , Salisbury University , Salisbury , Maryland 21801 , United States
| | - Khadija Bhatti
- Department of Biological Sciences , Salisbury University , Salisbury , Maryland 21801 , United States
| | - Brian San Francisco
- Carl R. Woese Institute for Genomic Biology , University of Illinois , Urbana , Illinois 61801 , United States
| | - Michael S Carter
- Carl R. Woese Institute for Genomic Biology , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Biological Sciences , Salisbury University , Salisbury , Maryland 21801 , United States
| | - John A Gerlt
- Carl R. Woese Institute for Genomic Biology , University of Illinois , Urbana , Illinois 61801 , United States.,Departments of Biochemistry and Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
9
|
Fenwick MK, Dong M, Lin H, Ealick SE. The Crystal Structure of Dph2 in Complex with Elongation Factor 2 Reveals the Structural Basis for the First Step of Diphthamide Biosynthesis. Biochemistry 2019; 58:4343-4351. [PMID: 31566354 PMCID: PMC7857147 DOI: 10.1021/acs.biochem.9b00718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Elongation factor 2 (EF-2), a five-domain, GTP-dependent ribosomal translocase of archaebacteria and eukaryotes, undergoes post-translational modification to form diphthamide on a specific histidine residue in domain IV prior to binding the ribosome. The first step of diphthamide biosynthesis in archaebacteria is catalyzed by Dph2, a homodimeric radical S-adenosylmethionine (SAM) enzyme having a noncanonical architecture. Here, we describe a 3.5 Å resolution crystal structure of the Methanobrevibacter smithii (Ms) Dph2 homodimer bound to two molecules of MsEF-2, one of which is ordered and the other largely disordered. MsEF-2 is bound to both protomers of MsDph2, with domain IV bound to the active site of one protomer and domain III bound to a surface α-helix of an adjacent protomer. The histidine substrate of domain IV is inserted into the active site, which reveals for the first time the architecture of the Dph2 active site in complex with its target substrate. We also determined a high-resolution crystal structure of isolated MsDph2 bound to 5'-methylthioadenosine that shows a conserved arginine residue preoriented by conserved phenylalanine and aspartate residues for binding the carboxylate group of SAM. Mutagenesis experiments suggest that the arginine plays an important role in the first step of diphthamide biosynthesis.
Collapse
|
10
|
Ma M, Burd CG. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 2019; 21:45-59. [PMID: 31471931 DOI: 10.1111/tra.12693] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome-to-Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.
Collapse
Affiliation(s)
- Mengxiao Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Dong M, Dando EE, Kotliar I, Su X, Dzikovski B, Freed JH, Lin H. The asymmetric function of Dph1-Dph2 heterodimer in diphthamide biosynthesis. J Biol Inorg Chem 2019; 24:777-782. [PMID: 31463593 DOI: 10.1007/s00775-019-01702-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023]
Abstract
Diphthamide, the target of diphtheria toxin, is a post-translationally modified histidine residue found in archaeal and eukaryotic translation elongation factor 2 (EF2). In the first step of diphthamide biosynthesis, a [4Fe-4S] cluster-containing radical SAM enzyme, Dph1-Dph2 heterodimer in eukaryotes or Dph2 homodimer in archaea, cleaves S-adenosylmethionine and transfers the 3-amino-3-carboxypropyl group to EF2. It was demonstrated previously that for the archaeal Dph2 homodimer, only one [4Fe-4S] cluster is necessary for the in vitro activity. Here, we demonstrate that for the eukaryotic Dph1-Dph2 heterodimer, the [4Fe-4S] cluster-binding cysteine residues in each subunit are required for diphthamide biosynthesis to occur in vivo. Furthermore, our in vitro reconstitution experiments with Dph1-Dph2 mutants suggested that the Dph1 cluster serves a catalytic role, while the Dph2 cluster facilitates the reduction of the Dph1 cluster by the physiological reducing system Dph3/Cbr1/NADH. Our results reveal the asymmetric functional roles of the Dph1-Dph2 heterodimer and may help to understand how the Fe-S clusters in radical SAM enzymes are reduced in biology.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Emily E Dando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ilana Kotliar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaoyang Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Tsuda-Sakurai K, Miura M. The hidden nature of protein translational control by diphthamide: the secrets under the leather. J Biochem 2019; 165:1-8. [PMID: 30204891 DOI: 10.1093/jb/mvy071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 01/16/2023] Open
Abstract
The protein translation elongation factor eEF2 undergoes a unique posttranslational modification called diphthamidation. eEF2 is an essential factor in protein translation, and the diphthamide modification has been a famous target of the diphtheria toxin for a long time. On the other hand, the physiological function of this rare modification in vivo remains unknown. Recent studies have suggested that diphthamide has specific functions for the cellular stress response and active proliferation. In this review, we summarize the history and findings of diphthamide obtained to date and discuss the possibility of a specific function for diphthamide in regulating protein translation.
Collapse
Affiliation(s)
- Kayoko Tsuda-Sakurai
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
13
|
Hawer H, Ütkür K, Arend M, Mayer K, Adrian L, Brinkmann U, Schaffrath R. Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast. PLoS One 2018; 13:e0205870. [PMID: 30335802 PMCID: PMC6193676 DOI: 10.1371/journal.pone.0205870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 01/23/2023] Open
Abstract
In eukaryotes, the modification of an invariant histidine (His-699 in yeast) residue in translation elongation factor 2 (EF2) with diphthamide involves a conserved pathway encoded by the DPH1-DPH7 gene network. Diphthamide is the target for diphtheria toxin and related lethal ADP ribosylases, which collectively kill cells by inactivating the essential translocase function of EF2 during mRNA translation and protein biosynthesis. Although this notion emphasizes the pathological importance of diphthamide, precisely why cells including our own require EF2 to carry it, is unclear. Mining the synthetic genetic array (SGA) landscape from the budding yeast Saccharomyces cerevisiae has revealed negative interactions between EF2 (EFT1-EFT2) and diphthamide (DPH1-DPH7) gene deletions. In line with these correlations, we confirm in here that loss of diphthamide modification (dphΔ) on EF2 combined with EF2 undersupply (eft2Δ) causes synthetic growth phenotypes in the composite mutant (dphΔ eft2Δ). These reflect negative interference with cell performance under standard as well as thermal and/or chemical stress conditions, cell growth rates and doubling times, competitive fitness, cell viability in the presence of TOR inhibitors (rapamycin, caffeine) and translation indicator drugs (hygromycin, anisomycin). Together with significantly suppressed tolerance towards EF2 inhibition by cytotoxic DPH5 overexpression and increased ribosomal -1 frame-shift errors in mutants lacking modifiable pools of EF2 (dphΔ, dphΔ eft2Δ), our data indicate that diphthamide is important for the fidelity of the EF2 translocation function during mRNA translation.
Collapse
Affiliation(s)
- Harmen Hawer
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Koray Ütkür
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Meike Arend
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany
| | - Lorenz Adrian
- AG Geobiochemie, Department Isotopenbiogeochemie, Helmholtz-Zentrum für Umweltforschung GmbH–UFZ, Leipzig, Germany
- Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail:
| |
Collapse
|
14
|
Hörberg J, Saenz-Mendez P, Eriksson LA. QM/MM Studies of Dph5 - A Promiscuous Methyltransferase in the Eukaryotic Biosynthetic Pathway of Diphthamide. J Chem Inf Model 2018; 58:1406-1414. [PMID: 29927239 DOI: 10.1021/acs.jcim.8b00217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eukaryotic diphthine synthase, Dph5, is a promiscuous methyltransferase that catalyzes an extraordinary N, O-tetramethylation of 2-(3-carboxy-3-aminopropyl)-l-histidine (ACP) to yield diphthine methyl ester (DTM). These are intermediates in the biosynthesis of the post-translationally modified histidine residue diphthamide (DTA), a unique and essential residue part of the eukaryotic elongation factor 2 (eEF2). Herein, the promiscuity of Saccharomyces cerevisiae Dph5 has been studied with in silico approaches, including homology modeling to provide the structure of Dph5, protein-protein docking and molecular dynamics to construct the Dph5-eEF2 complex, and quantum mechanics/molecular mechanics (QM/MM) calculations to outline a plausible mechanism. The calculations show that the methylation of ACP follows a typical SN2 mechanism, initiating with a complete methylation (trimethylation) at the N-position, followed by the single O-methylation. For each of the three N-methylation reactions, our calculations support a stepwise mechanism, which first involve proton transfer through a bridging water to a conserved aspartate residue D165, followed by a methyl transfer. Once fully methylated, the trimethyl amino group forms a weak electrostatic interaction with D165, which allows the carboxylate group of diphthine to attain the right orientation for the final methylation step to be accomplished.
Collapse
Affiliation(s)
- Johanna Hörberg
- Department of Chemistry and Molecular Biology , University of Gothenburg , 405 30 Göteborg , Sweden
| | - Patricia Saenz-Mendez
- Computational Chemistry and Biology Group, Facultad de Química , Universidad de la República , 11800 Montevideo , Uruguay
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology , University of Gothenburg , 405 30 Göteborg , Sweden
| |
Collapse
|
15
|
Dong M, Zhang Y, Lin H. Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis. Biochemistry 2018; 57:3454-3459. [PMID: 29708734 DOI: 10.1021/acs.biochem.8b00287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes are a superfamily of enzymes that use SAM and reduced [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical to catalyze numerous challenging reactions. We have reported a type of noncanonical radical SAM enzymes in the diphthamide biosynthesis pathway. These enzymes also use SAM and reduced [4Fe-4S] clusters, but generate a 3-amino-3-carboxypropyl (ACP) radical to modify the substrate protein, translation elongation factor 2. The regioselective cleavage of a different C-S bond of the sulfonium center of SAM in these enzymes comparing to canonical radical SAM enzymes is intriguing. Here, we highlight some recent findings in the mechanism of these types of enzymes, showing that the diphthamide biosynthetic radial SAM enzymes bound SAM with a distinct geometry. In this way, the unique iron of the [4Fe-4S] cluster in the enzyme can only attack the carbon on the ACP group to form an organometallic intermediate. The homolysis of the organometallic intermediate releases the ACP radical and generates the EF2 radial.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Yugang Zhang
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
16
|
Wang Z, Sun B, Zhu F. Molecular characterization of diphthamide biosynthesis protein 7 in Marsupenaeus japonicus and its role in white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 75:8-16. [PMID: 29407614 DOI: 10.1016/j.fsi.2018.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 06/07/2023]
Abstract
Diphthamide biosynthesis protein 7 (Dph7) is a vital protein for diphthamide biosynthesis in archaea and eukaryotes. The 1143 bp cDNA sequence of Dph7 was cloned from the gills of Marsupenaeus japonicus using RT-PCR and RACE. Data showed that Dph7 was highly expressed in the gills and digestive gland of M. japonicus. Furthermore, the expression of dph7 was induced by infection with white spot syndrome virus (WSSV). When Dph7 was knocked down, immune genes such as toll, prophenoloxidase (proPO), p53, tumor necrosis factor-α (TNF-α) and signal transducer and activator of transcription (STAT) were significantly down-regulated (P < 0.01) in hemocytes. First, we demonstrated that Dph7 is very important in the progression of WSSV infection and that the time of death for WSSV-infected shrimp was significantly advanced following RNAi targeting of Dph7. We also investigated the effect of Dph7 on apoptosis rate in M. japonicas and found that Dph7-dsRNA treatment caused lower levels of apoptosis in hemocytes, both in the disease-free group and the WSSV group. Knock-down of Dph7 affected the activity of both phenoloxidase (PO) and superoxide dismutase (SOD), and total hemocyte count (THC) after infection with WSSV, indicating that Dph7 plays a regulatory role in the immunological reaction of shrimp in response to WSSV infection. Thus, we conclude that Dph7 may promote the anti-WSSV immune response of shrimp by regulating apoptosis, SOD and PO activity, and can influence the progression of WSSV infection.
Collapse
Affiliation(s)
- Ziyan Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Baozhen Sun
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Zhu
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
17
|
Elp3 and Dph3 of Schizosaccharomyces pombe mediate cellular stress responses through tRNA LysUUU modifications. Sci Rep 2017; 7:7225. [PMID: 28775286 PMCID: PMC5543170 DOI: 10.1038/s41598-017-07647-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023] Open
Abstract
Efficient protein synthesis in eukaryotes requires diphthamide modification of translation elongation factor eEF2 and wobble uridine modifications of tRNAs. In higher eukaryotes, these processes are important for preventing neurological and developmental defects and cancer. In this study, we used Schizosaccharomyces pombe as a model to analyse mutants defective in eEF2 modification (dph1Δ), in tRNA modifications (elp3Δ), or both (dph3Δ) for sensitivity to cytotoxic agents and thermal stress. The dph3Δ and elp3Δ mutants were sensitive to a range of drugs and had growth defects at low temperature. dph3Δ was epistatic with dph1Δ for sensitivity to hydroxyurea and methyl methanesulfonate, and with elp3Δ for methyl methanesulfonate and growth at 16 °C. The dph1Δ and dph3Δ deletions rescued growth defects of elp3Δ in response to thiabendazole and at 37 °C. Elevated tRNALysUUU levels suppressed the elp3Δ phenotypes and some of the dph3Δ phenotypes, indicating that lack of tRNALysUUU modifications were responsible. Furthermore, we found positive genetic interactions of elp3Δ and dph3Δ with sty1Δ and atf1Δ, indicating that Elp3/Dph3-dependent tRNA modifications are important for efficient biosynthesis of key factors required for accurate responses to cytotoxic stress conditions.
Collapse
|
18
|
A mutated dph3 gene causes sensitivity of Schizosaccharomyces pombe cells to cytotoxic agents. Curr Genet 2017; 63:1081-1091. [PMID: 28555368 PMCID: PMC5668335 DOI: 10.1007/s00294-017-0711-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/11/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Dph3 is involved in diphthamide modification of the eukaryotic translation elongation factor eEF2 and in Elongator-mediated modifications of tRNAs, where a 5-methoxycarbonyl-methyl moiety is added to wobble uridines. Lack of such modifications affects protein synthesis due to inaccurate translation of mRNAs at ribosomes. We have discovered that integration of markers at the msh3 locus of Schizosaccharomyces pombe impaired the function of the nearby located dph3 gene. Such integrations rendered cells sensitive to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. We constructed dph3 and msh3 strains with mutated ATG start codons (ATGmut), which allowed investigating drug sensitivity without potential interference by marker insertions. The dph3-ATGmut and a dph3::loxP-ura4-loxM gene disruption strain, but not msh3-ATGmut, turned out to be sensitive to hydroxyurea and methyl methanesulfonate, likewise the strains with cassettes integrated at the msh3 locus. The fungicide sordarin, which inhibits diphthamide modified eEF2 of Saccharomyces cerevisiae, barely affected survival of wild type and msh3Δ S. pombe cells, while the dph3Δ mutant was sensitive. The msh3-ATG mutation, but not dph3Δ or the dph3-ATG mutation caused a defect in mating-type switching, indicating that the ura4 marker at the dph3 locus did not interfere with Msh3 function. We conclude that Dph3 is required for cellular resistance to the fungicide sordarin and to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. This is likely mediated by efficient translation of proteins in response to DNA damage and replication stress.
Collapse
|
19
|
Lyu Z, Whitman WB. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cell Mol Life Sci 2017; 74:183-212. [PMID: 27261368 PMCID: PMC11107668 DOI: 10.1007/s00018-016-2286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/05/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
Collapse
Affiliation(s)
- Zhe Lyu
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
20
|
Cbr1 is a Dph3 reductase required for the tRNA wobble uridine modification. Nat Chem Biol 2016; 12:995-997. [PMID: 27694803 PMCID: PMC5110365 DOI: 10.1038/nchembio.2190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
Diphthamide and the tRNA wobble uridine modifications both require Dph3 (DiPHthamide biosynthesis 3) protein as an electron donor for the iron-sulfur clusters in their biosynthetic enzymes. Here, using a proteomic approach, we identified Saccharomyces cerevisiae cytochrome B5 reductase (Cbr1) as a NADH-dependent reductase for Dph3. The NADH- and Cbr1-dependent reduction of Dph3 may provide a regulatory linkage between cellular metabolic state and protein translation.
Collapse
|
21
|
Billod JM, Saenz-Mendez P, Blomberg A, Eriksson LA. Structures, Properties, and Dynamics of Intermediates in eEF2-Diphthamide Biosynthesis. J Chem Inf Model 2016; 56:1776-86. [PMID: 27525663 DOI: 10.1021/acs.jcim.6b00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eukaryotic translation Elongation Factor 2 (eEF2) is an essential enzyme in protein synthesis. eEF2 contains a unique modification of a histidine (His699 in yeast; HIS) into diphthamide (DTA), obtained via 3-amino-3-carboxypropyl (ACP) and diphthine (DTI) intermediates in the biosynthetic pathway. This essential and unique modification is also vulnerable, in that it can be efficiently targeted by NAD(+)-dependent ADP-ribosylase toxins, such as diphtheria toxin (DT). However, none of the intermediates in the biosynthesis path is equally vulnerable against the toxins. This study aims to address the different susceptibility of DTA and its precursors against bacterial toxins. We have herein undertaken a detailed in silico study of the structural features and dynamic motion of different His699 intermediates along the diphthamide synthesis pathway (HIS, ACP, DTI, DTA). The study points out that DTA forms a strong hydrogen bond with an asparagine which might explain the ADP-ribosylation mechanism caused by the diphtheria toxin (DT). Finally, in silico mutagenesis studies were performed on the DTA modified protein, in order to hamper the formation of such a hydrogen bond. The results indicate that the mutant structure might in fact be less susceptible to attack by DT and thereby behave similarly to DTI in this respect.
Collapse
Affiliation(s)
- Jean-Marc Billod
- Department of Chemical and Physical Biology, Center for Biological Research, CIB-CSIC , 28040 Madrid, Spain
| | - Patricia Saenz-Mendez
- Computational Chemistry and Biology Group, Facultad de Química, Universidad de la República , 11800 Montevideo, Uruguay
| | | | | |
Collapse
|
22
|
Philmus B, Shaffer BT, Kidarsa TA, Yan Q, Raaijmakers JM, Begley TP, Loper JE. Investigations into the Biosynthesis, Regulation, and Self-Resistance of Toxoflavin in Pseudomonas protegens Pf-5. Chembiochem 2015; 16:1782-90. [PMID: 26077901 DOI: 10.1002/cbic.201500247] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/10/2022]
Abstract
Pseudomonas spp. are prolific producers of natural products from many structural classes. Here we show that the soil bacterium Pseudomonas protegens Pf-5 is capable of producing trace levels of the triazine natural product toxoflavin (1) under microaerobic conditions. We evaluated toxoflavin production by derivatives of Pf-5 with deletions in specific biosynthesis genes, which led us to propose a revised biosynthetic pathway for toxoflavin that shares the first two steps with riboflavin biosynthesis. We also report that toxM, which is not present in the well-characterized cluster of Burkholderia glumae, encodes a monooxygenase that degrades toxoflavin. The toxoflavin degradation product of ToxM is identical to that of TflA, the toxoflavin lyase from Paenibacillus polymyxa. Toxoflavin production by P. protegens causes inhibition of several plant-pathogenic bacteria, and introduction of toxM into the toxoflavin-sensitive strain Pseudomonas syringae DC3000 results in resistance to toxoflavin.
Collapse
Affiliation(s)
- Benjamin Philmus
- College of Pharmacy, Oregon State University, 203 Pharmacy Building, Corvallis, OR 97331 (USA).
| | - Brenda T Shaffer
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Avenue, Corvallis, OR 97330 (USA)
| | - Teresa A Kidarsa
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Avenue, Corvallis, OR 97330 (USA)
| | - Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331 (USA)
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen (The Netherlands).,Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden (The Netherlands)
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, TX 77843 (USA)
| | - Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Avenue, Corvallis, OR 97330 (USA). .,Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331 (USA).
| |
Collapse
|
23
|
Abstract
Viruses have evolved intricate mechanisms to gain entry into the host cell. Identification of host proteins that serve as viral receptors has enabled insights into virus particle internalization, host and tissue tropism, and viral pathogenesis. In this review we discuss the most commonly employed methods for virus receptor discovery, specifically highlighting the use of forward genetic screens in human haploid cells. The ability to generate true knockout alleles at high saturation provides a sensitive means to study virus-host interactions. To illustrate the power of such haploid genetic screens, we highlight the discovery of the lysosomal proteins NPC1 and LAMP1 as intracellular receptors for Ebola virus and Lassa virus, respectively. From these studies emerges the notion that receptor usage by these viruses is highly dynamic, involving a programmed switch from cell surface receptor to intracellular receptor. Broad application of genetic knockout approaches will chart functional landscapes of receptors and endocytic pathways hijacked by viruses.
Collapse
Affiliation(s)
- Sirika Pillay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; ,
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; ,
| |
Collapse
|
24
|
Schaffrath R, Abdel-Fattah W, Klassen R, Stark MJR. The diphthamide modification pathway from Saccharomyces cerevisiae--revisited. Mol Microbiol 2014; 94:1213-26. [PMID: 25352115 DOI: 10.1111/mmi.12845] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 01/09/2023]
Abstract
Diphthamide is a conserved modification in archaeal and eukaryal translation elongation factor 2 (EF2). Its name refers to the target function for diphtheria toxin, the disease-causing agent that, through ADP ribosylation of diphthamide, causes irreversible inactivation of EF2 and cell death. Although this clearly emphasizes a pathobiological role for diphthamide, its physiological function is unclear, and precisely why cells need EF2 to contain diphthamide is hardly understood. Nonetheless, the conservation of diphthamide biosynthesis together with syndromes (i.e. ribosomal frame-shifting, embryonic lethality, neurodegeneration and cancer) typical of mutant cells that cannot make it strongly suggests that diphthamide-modified EF2 occupies an important and translation-related role in cell proliferation and development. Whether this is structural and/or regulatory remains to be seen. However, recent progress in dissecting the diphthamide gene network (DPH1-DPH7) from the budding yeast Saccharomyces cerevisiae has significantly advanced our understanding of the mechanisms required to initiate and complete diphthamide synthesis on EF2. Here, we review recent developments in the field that not only have provided novel, previously overlooked and unexpected insights into the pathway and the biochemical players required for diphthamide synthesis but also are likely to foster innovative studies into the potential regulation of diphthamide, and importantly, its ill-defined biological role.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK; Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, 34132, Kassel, Germany
| | | | | | | |
Collapse
|