1
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Lv J, Wan J, Wu D, Zhang X, Xu W, Wang M, Chen S, Ye Z, Tian Y, Hu Q, Han D, Niu L. Target-mediated silver deposition-based electrochemical biosensor for highly sensitive detection of human chorionic gonadotropin. Biosens Bioelectron 2025; 267:116830. [PMID: 39368294 DOI: 10.1016/j.bios.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
As a glycoprotein hormone, human chorionic gonadotropin (hCG) is an established marker for pregnancy test. On the basis of the target-mediated silver deposition (TSD), in this work, we report the development of an amplification-free electrochemical biosensor for the highly sensitive detection of hCG. The detection of hCG involves the use of the affinity peptide-modified electrode for hCG capture (the CGGSSPPLRINRHILTR peptide containing the hCG-binding domain of the PPLRINRHILTR sequence is used as the affinity peptide), the oxidation of the diol sites of the glycan chains on hCG hormones into aldehyde groups by NaIO4, and the deposition of silver nanoparticles (AgNPs) for the solid-state voltammetric stripping analysis. Due to the deposition of multiple AgNPs while the solid-state Ag/AgCl voltammetric process has a high signal-to-noise ratio, the TSD-based electrochemical biosensor can be applied to the highly sensitive detection of hCG without the need for signal amplification. Under optimal conditions, the stripping current increased linearly with an increasing hCG concentration over the range from 1.0 to 25 mIU/mL, with a detection limit of 0.45 mIU/mL. Owing to the high specificity of the hCG-binding peptide PPLRINRHILTR, this electrochemical hCG biosensor exhibits high selectivity. The results of the quantitative assay of hCG in urine samples at the concentrations of 25, 10, and 1.0 mIU/mL are desirable, indicating the good anti-interference capability. As the TSD-based electrochemical biosensor allows the amplification-free detection of low-abundance hCG, it is easy to use and cost-effective, showing great promise in point-of-care assay of hCG for pregnancy test.
Collapse
Affiliation(s)
- Junpeng Lv
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Jianwen Wan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Di Wu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xiyao Zhang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Wenhui Xu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Mengge Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Songmin Chen
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhuojun Ye
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yiyan Tian
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Qiong Hu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Li C, Ma W, Jin K. An Enabling Peptide Ligation Induced by Thiol-Salicylaldehyde Ester for Chemical Protein Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408538. [PMID: 39440515 PMCID: PMC11633502 DOI: 10.1002/advs.202408538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Chemical protein synthesis by amide-forming ligation of two unprotected peptide segments offers an effective strategy for the preparation of protein derivatives that are not accessible through bioengineering approaches. Herein, an unprecedented chemical ligation between peptides with C-terminal 2-mercaptobenzaldehyde (thiol-salicylaldehyde, TSAL) esters and peptides bearing N-terminal cysteine/penicillamine is reported. Reactive peptide TSAL esters can be obtained from peptide hydrazides in an operationally simple and highly effective manner. This chemoselective peptide ligation enables the rapid production of N,S-benzylidene acetal intermediates, which can readily be converted into native amide bonds even at sterically hindered junctions. In addition, the current method can be applied compatibly in concert with other types of ligations and subsequent desulfurization chemistry, thereby facilitating convergent protein synthesis. The effectiveness of this new method is also showcased by the total synthesis of proteins ubiquitin and hyalomin-3 (Hyal-3), the efficient synthesis of protein ubiquitin-fold modifier 1 (UFM1) via a C-to-N sequential TSAL ester-induced ligation strategy, and the chemical synthesis of protein Mtb CM through a combined strategy of Ser/Thr ligation and TSAL ester-induced ligations.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Wenge Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Kang Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
4
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
5
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
6
|
Wu H, Wei T, Ngai WL, Zhou H, Li X. Ligation Embedding Aggregation Disruptor Strategy Enables the Chemical Synthesis of PD-1 Immunoglobulin and Extracellular Domains. J Am Chem Soc 2022; 144:14748-14757. [PMID: 35918891 DOI: 10.1021/jacs.2c05350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Chemical synthesis of proteins with aggregable or colloidal peptide segments presents a formidable task, as such peptides prove to be difficult for both solid-phase peptide synthesis and peptide ligation. To address this issue, we have developed ligation embedding aggregation disruptor (LEAD) as an effective strategy for the chemical synthesis of difficult-to-obtain proteins. The N,O/S-benzylidene acetals generated from Ser/Thr ligation and Cys/Pen ligation are found to effectively disrupt peptide aggregation, and they can be carried for sequential ligations toward protein synthesis. The effectiveness and generality of this strategy have been demonstrated with total syntheses of programmed cell death protein 1 immunoglobulin like V-type domain and extracellular domain.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai Lok Ngai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
7
|
Tian J, Li Y, Ma B, Tan Z, Shang S. Automated Peptide Synthesizers and Glycoprotein Synthesis. Front Chem 2022; 10:896098. [PMID: 35601548 PMCID: PMC9117762 DOI: 10.3389/fchem.2022.896098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development and application of commercially available automated peptide synthesizers has played an essential role in almost all areas of peptide and protein research. Recent advances in peptide synthesis method and solid-phase chemistry provide new opportunities for optimizing synthetic efficiency of peptide synthesizers. The efforts in this direction have led to the successful preparation of peptides up to more than 150 amino acid residues in length. Such success is particularly useful for addressing the challenges associated with the chemical synthesis of glycoproteins. The purpose of this review is to provide a brief overview of the evolution of peptide synthesizer and glycoprotein synthesis. The discussions in this article include the principles underlying the representative synthesizers, the strengths and weaknesses of different synthesizers in light of their principles, and how to further improve the applicability of peptide synthesizers in glycoprotein synthesis.
Collapse
Affiliation(s)
- Jiekang Tian
- Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongping Tan, ; Shiying Shang,
| | - Shiying Shang
- Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- *Correspondence: Zhongping Tan, ; Shiying Shang,
| |
Collapse
|
8
|
Hosseinisadat R, Saeed L, Ashourzadeh S, Heidari SS, Habibzadeh V. Effects of human chorionic gonadotropin intrauterine injection on oocyte retrieval day on assisted reproductive techniques outcomes: An RCT. Int J Reprod Biomed 2021; 19:773-780. [PMID: 34723056 PMCID: PMC8548753 DOI: 10.18502/ijrm.v19i9.9709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/14/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Several mediators play an important role in
implantation. One of these mediators is human chorionic gonadotropin (HCG).
Objective To evaluate the effects of HCG intrauterine
injection on the day of oocyte retrieval on the result of assisted reproductive
techniques (ART). Materials and Methods In this randomized
clinical trial study, 126 women who were referred to Afzalipour Infertility
Center between December 2018 to December 2019 undergoing in vitro
fertilization/intracytoplasmic sperm injection cycles were enrolled and assigned
to two groups of: a case (n = 62) and a control group (n = 64). The protocols
for both groups were the same; except that the case group was injected with the
protocols for both groups were the same, except that the case group was injected
with 1000 IU of HCG into uterine cavity following the oocyte puncture, while no
medication was administered to the control group. The implantation rate,
chemical pregnancy, clinical pregnancy, and abortion rates were compared between
the two groups. Results Positive chemical pregnancy was seen in 15
(27.3%) cases of the case group and 14 (25.5%) of the control group. No
significant difference was seen in the chemical and clinical pregnancy rates
between the groups. The abortion rate was higher in the control group but that
was not significant. Conclusion A 1000 IU of HCG intrauterine
injection after oocyte retrieval does not improve implantation, chemical or
clinical pregnancy rates in ART cycles. Further studies are needed to clearly
understand the role of HCG intrauterine injection in the day of oocyte retrieval
in ART outcomes.
Collapse
Affiliation(s)
- Robabe Hosseinisadat
- Department of Obstetrics and Gynecology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Lida Saeed
- Department of Obstetrics and Gynecology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sareh Ashourzadeh
- Kerman Infertility Center, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Sedigheh Safar Heidari
- Kerman Infertility Center, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Victoria Habibzadeh
- Department of Obstetrics and Gynecology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Hessefort M, Hessefort H, Seeleithner S, Gross A, Lott M, Rau D, Kern L, Unverzagt C. Strategies for the highly efficient synthesis of erythropoietin N-glycopeptide hydrazides. J Pept Sci 2020; 27:e3283. [PMID: 32885544 DOI: 10.1002/psc.3283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
A convergent synthesis for erythropoietin (EPO) 1-28 N-glycopeptide hydrazides was developed. In this approach, EPO 1-28 peptides were synthesized on the solid phase and converted to C-terminal hydrazides after cleavage from the resin. After selective deprotection of the Asp24 side chain, the desired glycosylamine was coupled by pseudoproline-assisted Lansbury aspartylation. Although the initial yields of the EPO 1-28 glycopeptides were satisfactory, they could be markedly improved by increasing the purity of the peptide using a reversed-phase high-performance liquid chromatography (RP-HPLC) purification of the protected peptide.
Collapse
Affiliation(s)
- Markus Hessefort
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Hendrik Hessefort
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Simone Seeleithner
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Angelina Gross
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Marie Lott
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - David Rau
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Laura Kern
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| |
Collapse
|
10
|
Wang W, La Y, Li F, Liu S, Pan X, Li C, Zhang X. Molecular Characterization and Expression Profiles of the Ovine LHβ Gene and Its Association with Litter Size in Chinese Indigenous Small-Tailed Han Sheep. Animals (Basel) 2020; 10:ani10030460. [PMID: 32164242 PMCID: PMC7143468 DOI: 10.3390/ani10030460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Litter size is one of the most important reproductive traits in sheep, and the luteinizing hormone beta polypeptide (LHβ) plays an important role in mammalian follicular development. In this study, we cloned and analyzed the cDNA sequence of the ovine LHβ gene, and the expression patterns of LHβ were determined. Furthermore, the synonymous mutation g.727C > T detected in the LHβ gene was confirmed to be significantly associated with litter size (p < 0.01). These findings support LHβ g.727C > T as a genetic marker for litter size in sheep. Abstract The luteinizing hormone beta polypeptide (LHβ) is a glycoprotein hormone secreted by basophilic granular cells of the adenohypophysis, and plays an important role in mammalian follicular development. In this study, we cloned and analyzed the cDNA sequence of the ovine LHβ gene. RT-qPCR analysis showed that ovine LHβ was widely expressed in tissues, with significantly higher expression in the hypophysis than that in other tissues (heart, liver, spleen, lung, kidney, rumen, duodenum, muscle, fat, hypothalamus, and sex glands) (p < 0.01). Hypophyseal expression of LHβ mRNA in lamb increased with age and reached a peak at 70 days, although a slight decrease was observed at 84 days of age. In addition, the synonymous mutation g.727C > T detected in the LHβ gene was confirmed to be significantly associated with the litter size (p < 0.01). Ewes carrying the TT genotype produced more lambs than those carrying the TC and CC genotypes (0.42 and 0.39 per delivery, respectively; p < 0.05). Our results confirm the association of ovine LHβ with litter size in Small-Tailed Han Sheep and implicate LHβ as a candidate for improving reproductive traits in agricultural sheep breeding programs.
Collapse
Affiliation(s)
- Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Y.L.); (F.L.); (S.L.); (X.P.); (C.L.)
| | - Yongfu La
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Y.L.); (F.L.); (S.L.); (X.P.); (C.L.)
| | - Fadi Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Y.L.); (F.L.); (S.L.); (X.P.); (C.L.)
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 730020, China
| | - Shijia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Y.L.); (F.L.); (S.L.); (X.P.); (C.L.)
| | - Xiangyu Pan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Y.L.); (F.L.); (S.L.); (X.P.); (C.L.)
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Y.L.); (F.L.); (S.L.); (X.P.); (C.L.)
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Y.L.); (F.L.); (S.L.); (X.P.); (C.L.)
- Correspondence: ; Tel.: +86-0931-7631-225
| |
Collapse
|
11
|
Chisholm TS, Kulkarni SS, Hossain KR, Cornelius F, Clarke RJ, Payne RJ. Peptide Ligation at High Dilution via Reductive Diselenide-Selenoester Ligation. J Am Chem Soc 2019; 142:1090-1100. [DOI: 10.1021/jacs.9b12558] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Sameer S. Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Ronald J. Clarke
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Kumar A, Gannedi V, Rather SA, Vishwakarma RA, Ahmed QN. Introducing Oxo-Phenylacetyl (OPAc) as a Protecting Group for Carbohydrates. J Org Chem 2019; 84:4131-4148. [PMID: 30888192 DOI: 10.1021/acs.joc.9b00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of oxo-phenylacetyl (OPAc)-protected saccharides, with divergent base sensitivity profiles against benzoyl (Bz) and acetyl (Ac) were synthesized, and KHSO5/AcCl in methanol was identified as an easy, mild, selective, and efficient deprotecting reagent for their removal in the perspective of carbohydrate synthesis. Timely monitoring of AcCl reagent was supportive in both sequential and simultaneous deprotecting of OPAc, Bz, and Ac. The salient feature of our method is the orthogonal stability against different groups, its ease to generate different valuable acceptors using designed monosaccharides, and use of OPAc as a glycosyl donar.
Collapse
Affiliation(s)
- Atul Kumar
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Veeranjaneyulu Gannedi
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Suhail A Rather
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| |
Collapse
|
13
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
14
|
Shafaghi M, Shabani AA, Minuchehr Z. Rational design of hyper-glycosylated human luteinizing hormone analogs (a bioinformatics approach). Comput Biol Chem 2019; 79:16-23. [PMID: 30708139 DOI: 10.1016/j.compbiolchem.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 01/09/2023]
Abstract
Glycoengineering is a recently used approach to extend serum half-life of valuable protein therapeutics. One aspect of glycoengineering is to introduce new N-glycosylation site (Asn-X-Thr/Ser, where X ≠ Pro) into desirable positions in the peptide backbone, resulting in the generation of hyper-glycosylated protein. In this study, human luteinizing hormone (LH) was considered for identification of the suitable positions for the addition of new N-linked glycosylation sites. A rational in silico approach was applied for prediction of structural and functional alterations caused by changes in amino acid sequence. As the first step, we explored the amino acid sequence of LH to find out desirable positions for introducing Asn or/and Thr to create new N-glycosylation sites. This exploration led to the identification of 38 potential N-glycan sites, and then the four acceptable ones were selected for further analysis. Three-dimensional (3D) structures of the selected analogs were generated and examined by the model evaluation methods. Finally, two analogs with one additional glycosylation site were suggested as the qualified analogs for hyper-glycosylation of the LH, which can be considered for further experimental investigations. Our computational strategy can reduce laborious and time-consuming experimental analyses of the analogs.
Collapse
Affiliation(s)
- Mona Shafaghi
- Dept. & Center for Biotechnology Research, Semnan University of Medical Sciences, Semnan, Iran; Students Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Shabani
- Dept. & Center for Biotechnology Research, Semnan University of Medical Sciences, Semnan, Iran.
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
15
|
Casarini L, Santi D, Brigante G, Simoni M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG. Endocr Rev 2018; 39:549-592. [PMID: 29905829 DOI: 10.1210/er.2018-00065] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
Abstract
LH and chorionic gonadotropin (CG) are glycoproteins fundamental to sexual development and reproduction. Because they act on the same receptor (LHCGR), the general consensus has been that LH and human CG (hCG) are equivalent. However, separate evolution of LHβ and hCGβ subunits occurred in primates, resulting in two molecules sharing ~85% identity and regulating different physiological events. Pituitary, pulsatile LH production results in an ~90-minute half-life molecule targeting the gonads to regulate gametogenesis and androgen synthesis. Trophoblast hCG, the "pregnancy hormone," exists in several isoforms and glycosylation variants with long half-lives (hours) and angiogenic potential and acts on luteinized ovarian cells as progestational. The different molecular features of LH and hCG lead to hormone-specific LHCGR binding and intracellular signaling cascades. In ovarian cells, LH action is preferentially exerted through kinases, phosphorylated extracellular-regulated kinase 1/2 (pERK1/2) and phosphorylated AKT (also known as protein kinase B), resulting in irreplaceable proliferative/antiapoptotic signals and partial agonism on progesterone production in vitro. In contrast, hCG displays notable cAMP/protein kinase A (PKA)-mediated steroidogenic and proapoptotic potential, which is masked by estrogen action in vivo. In vitro data have been confirmed by a large data set from assisted reproduction, because the steroidogenic potential of hCG positively affects the number of retrieved oocytes, and LH affects the pregnancy rate (per oocyte number). Leydig cell in vitro exposure to hCG results in qualitatively similar cAMP/PKA and pERK1/2 activation compared with LH and testosterone. The supposed equivalence of LH and hCG has been disproved by such data, highlighting their sex-specific functions and thus deeming it an oversight caused by incomplete understanding of clinical data.
Collapse
Affiliation(s)
- Livio Casarini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Giulia Brigante
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
16
|
Brailsford JA, Stockdill JL, Axelrod AJ, Peterson MT, Vadola PA, Johnston EV, Danishefsky SJ. Total Chemical Synthesis of Human Thyroid-Stimulating Hormone (hTSH) β-Subunit: Application of Arginine-tagged Acetamidomethyl (Acm R) Protecting Groups. Tetrahedron 2018; 74:1951-1956. [PMID: 30853725 PMCID: PMC6402344 DOI: 10.1016/j.tet.2018.02.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The β-subunit of human thyroid stimulating hormone (hTSH) has been synthesized as a single glycoform bearing a chitobiose disaccharide at the native glycosylation site. Key to the successful completion of this synthesis was the introduction of an arginine-tagged acetamidomethyl group, which served to greatly facilitate handling of a glycopeptide fragment with poor aqueous solubility. This general solution to the challenge of working with intractable peptides is expected to find wide use in protein synthesis.
Collapse
Affiliation(s)
- John A Brailsford
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Jennifer L Stockdill
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Abram J Axelrod
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Michael T Peterson
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Paul A Vadola
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Eric V Johnston
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Samuel J Danishefsky
- Laboratory for Bioorganic Chemistry, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
17
|
Rao TD, Fernández-Tejada A, Axelrod A, Rosales N, Yan X, Thapi S, Wang A, Park KJ, Nemieboka B, Xiang J, Lewis JS, Olvera N, Levine DA, Danishefsky SJ, Spriggs DR. Antibodies Against Specific MUC16 Glycosylation Sites Inhibit Ovarian Cancer Growth. ACS Chem Biol 2017; 12:2085-2096. [PMID: 28617578 DOI: 10.1021/acschembio.7b00305] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Expression of the retained C-terminal extracellular portion of the ovarian cancer glycoprotein MUC16 induces transformation and tumor growth. However, the mechanisms of MUC16 oncogenesis related to glycosylation are not clearly defined. We establish that MUC16 oncogenic effects are mediated through MGAT5-dependent N-glycosylation of two specific asparagine sites within its 58 amino acid ectodomain. Oncogenic signaling from the C-terminal portion of MUC16 requires the presence of Galectin-3 and growth factor receptors colocalized on lipid rafts. These effects are blocked upon loss of either Galectin-3 expression or activity MGAT5. Using synthetic MUC16 glycopeptides, we developed novel N-glycosylation site directed monoclonal antibodies that block Galectin-3-mediated MUC16 interactions with cell surface signaling molecules. These antibodies inhibit invasion of ovarian cancer cells, directly blocking the in vivo growth of MUC16-bearing ovarian cancer xenografts, elucidating new therapeutic modalities.
Collapse
Affiliation(s)
| | - Alberto Fernández-Tejada
- Chemical
Immunology Laboratory, CIC bioGUNE, Biscay Science and Technology Park, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
| | | | | | | | | | | | | | | | - Jingyi Xiang
- Eureka Therapeutics Inc., 5858
Horton Street, Suite 362, Emeryville, California 94608, United States
| | - Jason S. Lewis
- Weill Cornell
Medical College, Cornell University, York Avenue, New York, New York 10021, United States
| | - Narciso Olvera
- Gynecologic
Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, 240 E. 38th Street, New York, New York 10016, United States
| | - Douglas A. Levine
- Gynecologic
Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, 240 E. 38th Street, New York, New York 10016, United States
| | - Samuel J. Danishefsky
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R. Spriggs
- Weill Cornell
Medical College, Cornell University, York Avenue, New York, New York 10021, United States
| |
Collapse
|
18
|
Zhu H, Qiu C, Ruth AC, Keire DA, Ye H. A LC-MS All-in-One Workflow for Site-Specific Location, Identification and Quantification of N-/O- Glycosylation in Human Chorionic Gonadotropin Drug Products. AAPS JOURNAL 2017; 19:846-855. [DOI: 10.1208/s12248-017-0062-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/14/2017] [Indexed: 01/01/2023]
|
19
|
Hayashi G, Kamo N, Okamoto A. Chemical synthesis of dual labeled proteins via differently protected alkynes enables intramolecular FRET analysis. Chem Commun (Camb) 2017; 53:5918-5921. [DOI: 10.1039/c7cc02612a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Differently silyl-protected alkynes enable production of a dual labeled protein through chemical protein synthesis and analysis of the protein structure by intramolecular FRET.
Collapse
Affiliation(s)
- Gosuke Hayashi
- Department of Chemistry and Biotechnology
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Naoki Kamo
- Department of Chemistry and Biotechnology
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology
- The University of Tokyo
- Tokyo 113-8656
- Japan
- Research Center for Advanced Science and Technology
| |
Collapse
|
20
|
Recent advances in the preparation of Fmoc-SPPS-based peptide thioester and its surrogates for NCL-type reactions. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0381-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Lee CL, Liu H, Wong CTT, Chow HY, Li X. Enabling N-to-C Ser/Thr Ligation for Convergent Protein Synthesis via Combining Chemical Ligation Approaches. J Am Chem Soc 2016; 138:10477-84. [DOI: 10.1021/jacs.6b04238] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chi Lung Lee
- Department of Chemistry,
The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Han Liu
- Department of Chemistry,
The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Clarence T. T. Wong
- Department of Chemistry,
The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hoi Yee Chow
- Department of Chemistry,
The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xuechen Li
- Department of Chemistry,
The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
22
|
Gui Y, Qiu L, Li Y, Li H, Dong S. Internal Activation of Peptidyl Prolyl Thioesters in Native Chemical Ligation. J Am Chem Soc 2016; 138:4890-9. [DOI: 10.1021/jacs.6b01202] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yue Gui
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lingqi Qiu
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yaohao Li
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongxing Li
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Suwei Dong
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
23
|
Gehring C, Siepmann T, Heidegger H, Jeschke U. The controversial role of human chorionic gonadotropin in the development of breast cancer and other types of tumors. Breast 2016; 26:135-40. [PMID: 27017252 DOI: 10.1016/j.breast.2016.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Breast cancer is the most often diagnosed tumor of women and one of the leading cause of cancer related death. Due to different known risk factors there are epidemiological differences. Beside genetic disorders and patient's age it is especially the age of the first full-term pregnancy and in this context the pregnancy hormone human chorionic gonadotropin that seems to play an important role. METHODS This review is based on a PubMed research in publications of the last 20 years. Only articles in English language were considered. RESULTS The effect of human chorionic gonadotropin on development of cancer is controversial. In fact, for breast cancer there is evidence that this hormone has a protective effect against tumorigenesis due the differentiation of the mammary tissue after a full term pregnancy through the downregulation of estrogen receptors. CONCLUSION Human chorionic gonadotropin has among promoting pregnancy important controversial functions especially in tumor development. The mechanisms that explain the pro- and anti-carcinogenic effects are not fully understood yet. It seems to have a protective effect on breast cancer through increasing differentiation and hereby decreasing susceptibility of the mammary tissue for toxicants. This knowledge might help developing a preventive agent in the next future that uses the anti-carcinogenic effect of human chorionic gonadotropin and thereby decrease the mortality out of breast cancer.
Collapse
Affiliation(s)
- Caroline Gehring
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University Hospital, Maistrasse 11, 80337 Munich, Germany.
| | - Timo Siepmann
- Department of Neurology, Institute of Clinical Pharmacology, University Hospital Carl Gustav Carus, Freiberger Str. 37, 01067 Dresden, Germany.
| | - Helene Heidegger
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University Hospital, Maistrasse 11, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University Hospital, Maistrasse 11, 80337 Munich, Germany.
| |
Collapse
|
24
|
Ali Shah MI, Xu ZY, Liu L, Jiang YY, Shi J. Mechanism for the enhanced reactivity of 4-mercaptoprolyl thioesters in native chemical ligation. RSC Adv 2016. [DOI: 10.1039/c6ra13793h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ring-strain-precluded strategy benefiting from entropy effects and n → π* orbital interaction, enhances the reactivity of C-terminal prolyl thioesters in NCL.
Collapse
Affiliation(s)
| | - Zhe-Yuan Xu
- Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
| | - Lei Liu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yuan-Ye Jiang
- Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
| | - Jing Shi
- Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|
25
|
Paradís-Bas M, Tulla-Puche J, Albericio F. The road to the synthesis of "difficult peptides". Chem Soc Rev 2015; 45:631-54. [PMID: 26612670 DOI: 10.1039/c5cs00680e] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last decade has witnessed a renaissance of peptides as drugs. This progress, together with advances in the structural behavior of peptides, has attracted the interest of the pharmaceutical industry in these molecules as potential APIs. In the past, major peptide-based drugs were inspired by sequences extracted from natural structures of low molecular weight. In contrast, nowadays, the peptides being studied by academic and industrial groups comprise more sophisticated sequences. For instance, they consist of long amino acid chains and show a high tendency to form aggregates. Some researchers have claimed that preparing medium-sized proteins is now feasible with chemical ligation techniques, in contrast to medium-sized peptide syntheses. The complexity associated with the synthesis of certain peptides is exemplified by the so-called "difficult peptides", a concept introduced in the 80's. This refers to sequences that show inter- or intra-molecular β-sheet interactions significant enough to form aggregates during peptide synthesis. These structural associations are stabilized and mediated by non-covalent hydrogen bonds that arise on the backbone of the peptide and-depending on the sequence-are favored. The tendency of peptide chains to aggregate is translated into a list of common behavioral features attributed to "difficult peptides" which hinder their synthesis. In this regard, this manuscript summarizes the strategies used to overcome the inherent difficulties associated with the synthesis of known "difficult peptides". Here we evaluate several external factors, as well as methods to incorporate chemical modifications into sequences, in order to describe the strategies that are effective for the synthesis of "difficult peptides". These approaches have been classified and ordered to provide an extensive guide for achieving the synthesis of peptides with the aforementioned features.
Collapse
Affiliation(s)
- Marta Paradís-Bas
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
26
|
Fernández-Tejada A, Cañada FJ, Jiménez-Barbero J. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Chemistry 2015; 21:10616-28. [PMID: 26095198 DOI: 10.1002/chem.201500831] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycans are everywhere in biological systems, being involved in many cellular events with important implications for medical purposes. Building upon a detailed understanding of the functional roles of carbohydrates in molecular recognition processes and disease states, glycans are increasingly being considered as key players in pharmacological research. On the basis of the important progress recently made in glycochemistry, glycobiology, and glycomedicine, we provide a complete overview of successful applications and future perspectives of carbohydrates in the biopharmaceutical and medical fields. This review highlights the development of carbohydrate-based diagnostics, exemplified by glycan imaging techniques and microarray platforms, synthetic oligosaccharide vaccines against infectious diseases (e.g., HIV) and cancer, and finally carbohydrate-derived therapeutics, including glycomimetic drugs and glycoproteins.
Collapse
Affiliation(s)
| | - F Javier Cañada
- Chemical and Physical Biology, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Jesús Jiménez-Barbero
- Infectious Disease Programme, Center for Cooperative Research in Biosciences, CIC-bioGUNE, Bizkaia Technology Park, 48160 Derio (Spain). .,Ikerbasque, Basque Foundation for Science, María López de Haro 13, 48009 Bilbao (Spain).
| |
Collapse
|
27
|
Fernández-Tejada A, Brailsford J, Zhang Q, Shieh JH, Moore MA, Danishefsky SJ. Total synthesis of glycosylated proteins. Top Curr Chem (Cham) 2015; 362:1-26. [PMID: 25805144 PMCID: PMC5079620 DOI: 10.1007/128_2014_622] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycoproteins are an important class of naturally occurring biomolecules which play a pivotal role in many biological processes. They are biosynthesized as complex mixtures of glycoforms through post-translational protein glycosylation. This fact, together with the challenges associated with producing them in homogeneous form, has hampered detailed structure-function studies of glycoproteins as well as their full exploitation as potential therapeutic agents. By contrast, chemical synthesis offers the unique opportunity to gain access to homogeneous glycoprotein samples for rigorous biological evaluation. Herein, we review recent methods for the assembly of complex glycopeptides and glycoproteins and present several examples from our laboratory towards the total chemical synthesis of clinically relevant glycosylated proteins that have enabled synthetic access to full-length homogeneous glycoproteins.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Laboratory for Bioorganic Chemistry, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065, USA. Chemical and Physical Biology, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - John Brailsford
- Laboratory for Bioorganic Chemistry, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065, USA
| | - Qiang Zhang
- Laboratory for Bioorganic Chemistry, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065, USA
| | - Jae-Hung Shieh
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Malcolm A.S. Moore
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Samuel J. Danishefsky
- Laboratory for Bioorganic Chemistry, Molecular Pharmacology and Chemistry Program, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|