1
|
Yu A, He X, Shen T, Yu X, Mao W, Chi W, Liu X, Wu H. Design strategies for tetrazine fluorogenic probes for bioorthogonal imaging. Chem Soc Rev 2025; 54:2984-3016. [PMID: 39936362 DOI: 10.1039/d3cs00520h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Tetrazine fluorogenic probes play a critical role in bioorthogonal chemistry, selectively activating fluorescence upon reaction to enhance precision in imaging and sensing within complex biological environments. Recent structural innovations-such as varied fluorophore choices, spacer optimization, and direct tetrazine integration within a fluorophore's π-conjugated system-have expanded their spectral range from visible to NIR, enhancing adaptability across various applications. This review examines advancements in the rational design and synthesis of these probes. We examine key fluorogenic mechanisms, such as energy transfer, internal conversion, and electron/charge transfer, that significantly influence fluorescence activation. We also highlight representative applications in live-cell imaging, super-resolution microscopy, and therapeutic monitoring, underscoring the expanding role of tetrazine probes in biomedical research and diagnostics. Collectively, these insights provide a strategic foundation for developing next-generation tetrazine probes with tailored properties to address evolving diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Aiwen Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Xinyu Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Shen T, Liu X. Unveiling the photophysical mechanistic mysteries of tetrazine-functionalized fluorogenic labels. Chem Sci 2025; 16:4595-4613. [PMID: 39906389 PMCID: PMC11789511 DOI: 10.1039/d4sc07018f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Tetrazine-based fluorogenic labels are widely utilized in medical and biological studies, exhibiting substantial fluorescence enhancement (FE) following tetrazine degradation through bio-orthogonal reactions. However, the underlying mechanisms driving this fluorogenic response remain only partially resolved, particularly regarding the diminished FE efficiency in the deep-red and near-infrared (NIR) regions. This knowledge gap has impeded efforts to optimize these labels for extended emission wavelengths and improved FE ratios. This review offers a photophysical perspective, discussing the fluorescence quenching pathways (i.e., energy flows and charge separation) that regulate the fluorogenic properties exhibited in various types of tetrazine labels. Moreover, this work examines the emerging role of intramolecular rotations in certain tetrazine-based structures and the integration of additional quencher units. The proposed alternative quenching channel offers the potential to surpass traditional wavelength constraints while achieving improved FE. By examining these photophysical mechanisms, this review aims to advance the understanding of tetrazine-functionalized fluorogenic labels and provide guiding principles for their future design and practical applications.
Collapse
Affiliation(s)
- Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
3
|
Mao W, Dong P, Du W, Wu H. Fluorogenic Tetrazine Bioorthogonal Probes for Advanced Application in Bioimaging and Biomedicine. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:1-4. [PMID: 39886223 PMCID: PMC11775852 DOI: 10.1021/cbmi.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 02/01/2025]
Abstract
A variety of bioorthogonal chemical tools have been developed and widely used in the study of biological phenomena in situ. Tetrazine bioorthogonal chemistry exhibits ultrafast reaction kinetics, excellent biocompatibility, and precise optical regulatory capabilities. Fluorogenic tetrazine bioorthogonal probes have achieved particularly diverse applications in bioimaging and disease diagnosis and treatment. This Viewpoint briefly introduces the characteristics and advantages of tetrazine bioorthogonal chemistry, some design strategies of fluorogenic tetrazine probes, and the status of applications of these tools to in vivo imaging, as well as disease diagnosis and treatment. Finally, we discuss challenges and propose future trends in the field of fluorogenic tetrazine probes. This Viewpoint offers insights into the development of new bioorthogonal tools for chemical biology research and for the design of new drugs.
Collapse
Affiliation(s)
- Wuyu Mao
- Department
of Respiratory and Critical Care Medicine, Institute of Respiratory
Health, Frontiers Science Center for Disease-Related Molecular Network,
State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Dong
- Department
of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key
Laboratory of Drug-Targeting and Drug Delivery System of the Education
Ministry and Sichuan Province, and Sichuan Research Center for Drug
Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Department
of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology
and Medical Imaging and Functional and Molecular lmaging Key Laboratory
of Sichuan Province, West China Hospital
of Sichuan University. Chengdu 610041, Sichuan, China
| |
Collapse
|
4
|
Fu Y, Zhang X, Wu L, Wu M, James TD, Zhang R. Bioorthogonally activated probes for precise fluorescence imaging. Chem Soc Rev 2025; 54:201-265. [PMID: 39555968 DOI: 10.1039/d3cs00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, in situ imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated in situ fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise in situ imaging, while also discussing future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Youxin Fu
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
5
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
6
|
Devi G, Hedger AK, Whitby RJ, Watts JK. Double Click: Unexpected 1:2 Stoichiometry in a Norbornene-Tetrazine Reaction. J Org Chem 2023; 88:5341-5347. [PMID: 37058436 PMCID: PMC10167953 DOI: 10.1021/acs.joc.2c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 04/15/2023]
Abstract
We report a new reactivity for the inverse electron demand Diels-Alder (iEDDA) reaction between norbornene and tetrazine. Instead of simple 1:1 condensation between norbornene- and tetrazine-conjugated biomolecules, we observed that dimeric products were preferentially formed. As such, an olefinic intermediate formed after the addition of the first tetrazine unit to norbornene rapidly undergoes a consecutive cycloaddition reaction with a second tetrazine unit to result in a conjugate with a 1:2 stoichiometric ratio. This unexpected dimer formation was consistently observed in the reactions of both small-molecule norbornenes and tetrazines, as well as oligonucleotide conjugates. When norbornene was replaced with bicyclononyne to bypass the formation of this olefinic reaction intermediate, the reactions resulted exclusively in rapid formation of the expected 1:1 stoichiometric conjugates.
Collapse
Affiliation(s)
- Gitali Devi
- RNA
Therapeutics Institute, UMass Chan Medical
School, Worcester, Massachusetts 01605, United States
| | - Adam K. Hedger
- RNA
Therapeutics Institute, UMass Chan Medical
School, Worcester, Massachusetts 01605, United States
- Department
of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Richard J. Whitby
- Department
of Chemistry, University of Southampton, SO17 1BJ Southampton, U.K.
| | - Jonathan K. Watts
- RNA
Therapeutics Institute, UMass Chan Medical
School, Worcester, Massachusetts 01605, United States
- Department
of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts 01605, United States
- Li Weibo
Rare Disease Institute, UMass Chan Medical
School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
7
|
Dong R, Yang X, Wang B, Ji X. Mutual leveraging of proximity effects and click chemistry in chemical biology. Med Res Rev 2023; 43:319-342. [PMID: 36177531 DOI: 10.1002/med.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Nature has the remarkable ability to realize reactions under physiological conditions that normally would require high temperature and other forcing conditions. In doing so, often proximity effects such as simultaneous binding of two reactants in the same pocket and/or strategic positioning of catalytic functional groups are used as ways to achieve otherwise kinetically challenging reactions. Though true biomimicry is challenging, there have been many beautiful examples of how to leverage proximity effects in realizing reactions that otherwise would not readily happen under near-physiological conditions. Along this line, click chemistry is often used to endow proximity effects, and proximity effects are also used to further leverage the facile and bioorthogonal nature of click chemistry. This review brings otherwise seemingly unrelated topics in chemical biology and drug discovery under one unifying theme of mutual leveraging of proximity effects and click chemistry and aims to critically analyze the biomimicry use of such leveraging effects as powerful approaches in chemical biology and drug discovery. We hope that this review demonstrates the power of employing mutual leveraging proximity effects and click chemistry and inspires the development of new strategies that will address unmet needs in chemistry and biology.
Collapse
Affiliation(s)
- Ru Dong
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Chen Z, Wang WT, Wang W, Huang J, Liao JY, Zeng S, Qian L. Sensitive Imaging of Cellular RNA via Cascaded Proximity-Induced Fluorogenic Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44054-44064. [PMID: 36153979 DOI: 10.1021/acsami.2c10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Owing to its important biological functions, RNA has become a promising molecular biomarker of various diseases. With a dynamic change in its expression level and a relatively low amount within the complicated biological matrix, signal amplification detection based on DNA probes has been put forward, which is helpful for early diagnosis and prognostic prediction. However, conventional methods are confined to cell lysates or dead cells and are not only time-consuming in sample preparation but also inaccessible to the spatial-temporal information of target RNAs. To achieve live-cell imaging of specific RNAs, both the detection sensitivity and intracellular delivery issues should be addressed. Herein, a new cascaded fluorogenic system based on the combination of hybridization chain reactions (HCRs) and proximity-induced bioorthogonal chemistry is developed, in which a bioorthogonal reaction pair (a tetrazine-quenched dye and its complementary dienophile) is brought into spatial proximity upon target RNA triggering the HCR to turn on and amplify the fluorescence in one step, sensitively indicating the cellular distribution of RNA with minimal false positive results caused by unspecific degradation. Facilitated by a biodegradable carrier based on black phosphorus with high loading capacity and excellent biocompatibility, the resulting imaging platform allows wash-free tracking of target RNAs inside living cells.
Collapse
Affiliation(s)
- Zhiyan Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wen-Tao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenchao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Huang
- Department of Liver Disease, Hangzhou Xixi Hospital, Hangzhou 310023, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Wang Z, Yang J, Qin G, Zhao C, Ren J, Qu X. An Intelligent Nanomachine Guided by DNAzyme Logic System for Precise Chemodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202204291. [DOI: 10.1002/anie.202204291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
10
|
Wang Z, Yang J, Qin G, Zhao C, Ren J, Qu X. An Intelligent Nanomachine Guided by DNAzyme Logic System for Precise Chemodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhao Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jie Yang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Geng Qin
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Chuanqi Zhao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jinsong Ren
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Xiaogang Qu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry 5625 Renmin Street 130022 Changchun CHINA
| |
Collapse
|
11
|
Zhang X, Gubu A, Xu J, Yan N, Su W, Feng D, Wang Q, Tang X. Tetrazine-Induced Bioorthogonal Activation of Vitamin E-Modified siRNA for Gene Silencing. Molecules 2022; 27:molecules27144377. [PMID: 35889249 PMCID: PMC9316517 DOI: 10.3390/molecules27144377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The temporal activation of siRNA provides a valuable strategy for the regulation of siRNA activity and conditional gene silencing. The bioorthogonal bond-cleavage reaction of benzonorbonadiene and tetrazine is a promising trigger in siRNA temporal activation. Here, we developed a new method for the bio-orthogonal chemical activation of siRNA based on the tetrazine-induced bond-cleavage reaction. Small-molecule activatable caged siRNAs were developed with the 5'-vitamin E-benzonobonadiene-modified antisense strand targeting the green fluorescent protein (GFP) gene and the mitotic kinesin-5 (Eg5) gene. The addition of tetrazine triggered the reaction with benzonobonadiene linker and induced the linker cleavage to release the active siRNA. Additionally, the conditional gene silencing of both exogenous GFP and endogenous Eg5 genes was successfully achieved with 5'-vitamin E-benzonobonadiene-caged siRNAs, which provides a new uncaging strategy with small molecules.
Collapse
Affiliation(s)
- Xueli Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Amu Gubu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Jianfei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Ning Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Wenbo Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Di Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
- Correspondence:
| |
Collapse
|
12
|
Gluhacevic von Krüchten D, Roth M, Seitz O. DNA-Templated Reactions with High Catalytic Efficiency Achieved by a Loss-of-Affinity Principle. J Am Chem Soc 2022; 144:10700-10704. [PMID: 35696276 DOI: 10.1021/jacs.2c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic-acid-templated chemical reactions are currently explored for applications in DNA-encoded drug discovery, nucleic acid diagnostics, and theranostics. Of particular interest are reactions enabling the template to gain catalytic activity, so that enzymatic amplification of low copy targets would no longer be necessary. Herein, we introduce a new reaction design relying on the template-controlled cleavage of PNA-spermine conjugates. With turnover frequencies in the range of 3-10 min-1 and a kcat/KM = 1.3 × 106 M-1 s-1, the loss of affinity upon reaction provides a catalytic efficiency equal to most enzymatic conversions and superior to nucleic-acid-templated reactions reported to date.
Collapse
Affiliation(s)
| | - Magdalena Roth
- Department of Chemistry, Humboldt University of Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University of Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
13
|
Loehr MO, Luedtke NW. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids. Angew Chem Int Ed Engl 2022; 61:e202112931. [PMID: 35139255 DOI: 10.1002/anie.202112931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Chemical modification of nucleic acids in living cells can be sterically hindered by tight packing of bioorthogonal functional groups in chromatin. To address this limitation, we report here a dual enhancement strategy for nucleic acid-templated reactions utilizing a fluorogenic intercalating agent capable of undergoing inverse electron-demand Diels-Alder (IEDDA) reactions with DNA containing 5-vinyl-2'-deoxyuridine (VdU) or RNA containing 5-vinyl-uridine (VU). Reversible high-affinity intercalation of a novel acridine-tetrazine conjugate "PINK" (KD =5±1 μM) increases the reaction rate of tetrazine-alkene IEDDA on duplex DNA by 60 000-fold (590 M-1 s-1 ) as compared to the non-templated reaction. At the same time, loss of tetrazine-acridine fluorescence quenching renders the reaction highly fluorogenic and detectable under no-wash conditions. This strategy enables live-cell dynamic imaging of acridine-modified nucleic acids in dividing cells.
Collapse
Affiliation(s)
- Morten O Loehr
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3A 0B8, Canada
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3A 0B8, Canada.,Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
14
|
Loehr MO, Luedtke NW. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Morten O. Loehr
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec, H3A 0B8 Canada
| | - Nathan W. Luedtke
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec, H3A 0B8 Canada
- Department of Pharmacology and Therapeutics McGill University 3655 Prom. Sir William Osler Montréal Québec H3G 1Y6 Canada
| |
Collapse
|
15
|
Dai Y, Teng X, Li J. Single‐Cell Visualization of Monogenic RNA G‐quadruplex and Occupied G‐quadruplex Ratio through a Module‐Assembled Multifunctional Probes Assay (MAMPA). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yicong Dai
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Xucong Teng
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jinghong Li
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
16
|
Zhao SJ, Zheng P, Wu Z, Jiang JH. DNA-Templated Bioorthogonal Reactions via Catalytic Hairpin Assembly for Precise RNA Imaging in Live Cells. Anal Chem 2022; 94:2693-2698. [PMID: 35119262 DOI: 10.1021/acs.analchem.1c05509] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There has been a significant interest in developing proximity-induced bioorthogonal reactions for nucleic acid detection and imaging, owing to their high specificity and tunable reaction kinetics. Herein, we reported the first design of a fluorogenic sensor by coupling a bioorthogonal reaction with a DNA cascade circuit for precise RNA imaging in live cells. Two DNA hairpin probes bearing tetrazines or vinyl ether caged fluorophores were designed and synthesized. Upon target mRNA triggering catalytic hairpin assembly, the chemical reaction partners were brought in a spatial proximity to yield high effective concentrations, which dramatically facilitated the bioorthogonal reaction efficiency to unmask the vinyl ether group to activate fluorescence. The proposed fluorogenic sensor was demonstrated to have a high signal-to-noise ratio up to ∼30 fold and enabled the sensitive detection of target mRNA with a detection limit of 4.6 pM. Importantly, the fluorogenic sensor presented low background signals in biological environments due to the unique "click to release" feature, avoiding false positive results caused by unspecific degradation. We also showed that the fluorogenic sensor could accurately image mRNA in live cells and distinguish the relative mRNA expression levels in both tumor and normal cells. Benefiting from these significant advantages, our method provides a useful tool for basic studies of bioorthogonal chemistry and early clinical diagnosis.
Collapse
Affiliation(s)
- Su-Jing Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ping Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
17
|
Sun H, Xue Q, Zhang C, Wu H, Feng P. Derivatization based on tetrazine scaffolds: synthesis of tetrazine derivatives and their biomedical applications. Org Chem Front 2022. [DOI: 10.1039/d1qo01324f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recent advances in tetrazine scaffold-based derivatizations have been summarized. The advantages and limitations of derivatization methods and applications of the developed tetrazine derivatives in bioorthogonal chemistry have been highlighted.
Collapse
Affiliation(s)
- Hongbao Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinghe Xue
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Feng
- Clinical Trial Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Bujalska A, Basran K, Luedtke NW. [4+2] and [2+4] cycloaddition reactions on single- and double-stranded DNA: a dual-reactive nucleoside. RSC Chem Biol 2022; 3:698-701. [PMID: 35755194 PMCID: PMC9175100 DOI: 10.1039/d2cb00062h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Here we report dual reactivity of diene-modified duplex DNA containing 5-(1,3-butadienyl)-2'-deoxyuridine “BDdU”. Regular-electron demand [4+2] cycloaddition proceeded upon addition of a maleimide, whereas inversed-electron demand [2+4] cycloaddition occurred upon addition...
Collapse
Affiliation(s)
- Anna Bujalska
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Kaleena Basran
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montréal Québec H3A 0B8 Canada
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190 8057 Zurich Switzerland
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montréal Québec H3A 0B8 Canada
| |
Collapse
|
19
|
He Z, Ishizuka T, Hishikawa Y, Xu Y. Click chemistry for fluorescence imaging via combination of a BODIPY-based ‘turn-on’ probe and a norbornene glucosamine. Chem Commun (Camb) 2022; 58:12479-12482. [DOI: 10.1039/d2cc05359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we synthesized a novel near-infrared turn-on BODIPY probe and a new norbornene-modified glucosamine derivative.
Collapse
Affiliation(s)
- Zhiyong He
- Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yan Xu
- Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan
| |
Collapse
|
20
|
Zhang X, Xu H, Li J, Su D, Mao W, Shen G, Li L, Wu H. Isonitrile induced bioorthogonal activation of fluorophores and mutually orthogonal cleavage in live cells. Chem Commun (Camb) 2021; 58:573-576. [PMID: 34913446 DOI: 10.1039/d1cc05774j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fluorophores with different emission wavelengths were efficiently quenched by a tert-butyl terminated tetrazylmethyl group and activated by an isonitrile-tetrazine click-to-release reaction. Nucleic acid templated chemistry significantly accelerated this bioorthogonal cleavage. Moreover, two mutually orthogonal fluorogenic cleavage reactions were simultaneously conducted in live cells for the first time.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Xu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jie Li
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dunyan Su
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wuyu Mao
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Guohua Shen
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Abstract
Bioorthogonal chemistry is a set of methods using the chemistry of non-native functional groups to explore and understand biology in living organisms. In this review, we summarize the most common reactions used in bioorthogonal methods, their relative advantages and disadvantages, and their frequency of occurrence in the published literature. We also briefly discuss some of the less common but potentially useful methods. We then analyze the bioorthogonal-related publications in the CAS Content Collection to determine how often different types of biomolecules such as proteins, carbohydrates, glycans, and lipids have been studied using bioorthogonal chemistry. The most prevalent biological and chemical methods for attaching bioorthogonal functional groups to these biomolecules are elaborated. We also analyze the publication volume related to different types of bioorthogonal applications in the CAS Content Collection. The use of bioorthogonal chemistry for imaging, identifying, and characterizing biomolecules and for delivering drugs to treat disease is discussed at length. Bioorthogonal chemistry for the surface attachment of proteins and in the use of modified carbohydrates is briefly noted. Finally, we summarize the state of the art in bioorthogonal chemistry and its current limitations and promise for its future productive use in chemistry and biology.
Collapse
Affiliation(s)
- Robert E Bird
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Steven A Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xiang Yu
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
22
|
Dai Y, Teng X, Li J. Single-cell Visualization of Monogenic RNA G-quadruplex and Occupied G-quadruplex Ratio through Module Assembled Multifunctional Probes Assay (MAMPA). Angew Chem Int Ed Engl 2021; 61:e202111132. [PMID: 34773681 DOI: 10.1002/anie.202111132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Indexed: 11/12/2022]
Abstract
G-quadruplexes (G4s), non-canonical nucleic acid secondary structure, regulate many biological functions and are considered as potential molecular targets for therapeutics of cancers. However, due to the lack of analytical methods, the regulating mechanism of monogenic G4s is still unclear. Here, we developed a Module Assembled Multifunctional Probes Assay (MAMPA) for visualizing endogenous G4s in individual genes in single cells. Two modular probes separately recognize G4 structures and the adjacent RNA sequences, and the module assembly enables imaging of G4s in an individual RNA with high specificity. Through imaging G4s in several individual genes, we found that G4s were steadily occupied by G4 Binding Proteins (G4BPs) in various mRNAs in every cell line and defined "Occupied G4 Ratio". In all, we demonstrated MAMPA was suitable for most experiment situations and found that Occupied G4 Ratios had the potential to become a new parameter for the study of G4s in living cells.
Collapse
Affiliation(s)
- Yicong Dai
- Tsinghua University, Department of Chemistry, 100084, CHINA
| | - Xucong Teng
- Tsinghua University, Department of Chemistry, CHINA
| | - Jinghong Li
- Tsinghua University, Department of Chemistry, Haidian Street, Beijing, CHINA
| |
Collapse
|
23
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 783] [Impact Index Per Article: 195.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
24
|
Houska R, Stutz MB, Seitz O. Expanding the scope of native chemical ligation - templated small molecule drug synthesis via benzanilide formation. Chem Sci 2021; 12:13450-13457. [PMID: 34777764 PMCID: PMC8528049 DOI: 10.1039/d1sc00513h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
We describe a reaction system that enables the synthesis of Bcr–Abl tyrosine kinase inhibitors (TKI) via benzanilide formation in water. The reaction is based on native chemical ligation (NCL). In contrast to previous applications, we used the NCL chemistry to establish aromatic rather than aliphatic amide bonds in coupling reactions between benzoyl and o-mercaptoaniline fragments. The method was applied for the synthesis of thiolated ponatinib and GZD824 derivatives. Acid treatment provided benzothiazole structures, which opens opportunities for diversification. Thiolation affected the affinity for Abl1 kinase only moderately. Of note, a ponatinib-derived benzothiazole also showed nanomolar affinity. NCL-enabled benzanilide formation may prove useful for fragment-based drug discovery. To show that benzanilide synthesis can be put under the control of a template, we connected the benzoyl and o-mercaptoaniline fragments to DNA and peptide nucleic acid (PNA) oligomers. Complementary RNA templates enabled adjacent binding of reactive conjugates triggering a rapid benzoyl transfer from a thioester-linked DNA conjugate to an o-mercaptoaniline-DNA or -PNA conjugate. We evaluated the influence of linker length and unpaired spacer nucleotides within the RNA template on the product yield. The data suggest that nucleic acid-templated benzanilide formation could find application in the establishment of DNA-encoded combinatorial libraries (DEL). The templated native chemical ligation between benzoyl thioesters and o-mercaptoaniline fragments proceeds in water and provides benzanilides that have nanomolar affinity for Abl1 kinase.![]()
Collapse
Affiliation(s)
- Richard Houska
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Marvin Björn Stutz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
25
|
Roth M, Seitz O. A Self-immolative Molecular Beacon for Amplified Nucleic Acid Detection*. Chemistry 2021; 27:14189-14194. [PMID: 34516006 PMCID: PMC8597011 DOI: 10.1002/chem.202102600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 01/18/2023]
Abstract
Fluorogenic hybridization probes allow the detection of RNA and DNA sequences in homogeneous solution. Typically, one target molecule activates the fluorescence of a single probe molecule. This limits the sensitivity of nucleic acid detection. Herein, we report a self‐immolative molecular beacon (iMB) that escapes the one‐target/one‐probe paradigm. The iMB probe includes a photoreductively cleavable N‐alkyl‐picolinium (NAP) linkage within the loop region. A fluorophore at the 5’‐end serves, on the one hand, as a reporter group and, on the other hand, as a photosensitizer of a NAP‐linker cleavage reaction. In the absence of target, the iMB adopts a hairpin shape. Quencher groups prevent photo‐induced cleavage. The iMB opens upon hybridization with a target, and both fluorescent emission as well as photo‐reductive cleavage of the NAP linker can occur. In contrast to previous chemical amplification reactions, iMBs are unimolecular probes that undergo cleavage leading to products that have lower target affinity than the probes before reaction. Aided by catalysis, the method allowed the detection of 5 pm RNA target within 100 min.
Collapse
Affiliation(s)
- Magdalena Roth
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
26
|
Li Z, Chen Q, Wang J, Pan X, Lu W. Research Progress and Application of Bioorthogonal Reactions in Biomolecular Analysis and Disease Diagnosis. Top Curr Chem (Cham) 2021; 379:39. [PMID: 34590223 DOI: 10.1007/s41061-021-00352-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Bioorthogonal reactions are rapid, specific and high yield reactions that can be performed in in vivo microenvironments or simulated microenvironments. At present, the main biorthogonal reactions include Staudinger ligation, copper-catalyzed azide alkyne cycloaddition, strain-promoted [3 + 2] reaction, tetrazine ligation, metal-catalyzed coupling reaction and photo-induced biorthogonal reactions. To date, many reviews have reported that bioorthogonal reactions have been used widely as a powerful tool in the field of life sciences, such as in target recognition, drug discovery, drug activation, omics research, visualization of life processes or exogenous bacterial infection processes, signal transduction pathway research, chemical reaction dynamics analysis, disease diagnosis and treatment. In contrast, to date, few studies have investigated the application of bioorthogonal reactions in the analysis of biomacromolecules in vivo. Therefore, the application of bioorthogonal reactions in the analysis of proteins, nucleic acids, metabolites, enzyme activities and other endogenous molecules, and the determination of disease-related targets is reviewed. In addition, this review discusses the future development opportunities and challenges of biorthogonal reactions. This review presents an overview of recent advances for application in biomolecular analysis and disease diagnosis, with a focus on proteins, metabolites and RNA detection.
Collapse
Affiliation(s)
- Zilong Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
27
|
Pahwa M, Jain P, Das Saha N, Narayana C, Agasti SS. Interfacial tetrazine click chemistry mediated assembly of multifunctional colloidosomes. Chem Commun (Camb) 2021; 57:9534-9537. [PMID: 34546265 DOI: 10.1039/d1cc03886a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrate that tetrazine ligation chemistry can be employed to cross-link and assemble gold nanoparticles at the water-oil interface to create plasmonic colloidosomes. These biocompatible colloidosomes exhibit size tunability via controllable ligation kinetics and display high encapsulation efficiency, size-selective permeability, and surface-enhanced Raman scattering (SERS)-based sensing modality.
Collapse
Affiliation(s)
- Meenakshi Pahwa
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.
| | - Priyanka Jain
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.
| | - Nilanjana Das Saha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Chandrabhas Narayana
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.
| | - Sarit S Agasti
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India. .,New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
28
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Dzijak R, Galeta J, Vázquez A, Kozák J, Matoušová M, Fulka H, Dračínský M, Vrabel M. Structurally Redesigned Bioorthogonal Reagents for Mitochondria-Specific Prodrug Activation. JACS AU 2021; 1:23-30. [PMID: 33554213 PMCID: PMC7851953 DOI: 10.1021/jacsau.0c00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 06/05/2023]
Abstract
The development of abiotic chemical reactions that can be performed in an organelle-specific manner can provide new opportunities in drug delivery and cell and chemical biology. However, due to the complexity of the cellular environment, this remains a significant challenge. Here, we introduce structurally redesigned bioorthogonal tetrazine reagents that spontaneously accumulate in mitochondria of live mammalian cells. The attributes leading to their efficient accumulation in the organelle were optimized to include the right combination of lipophilicity and positive delocalized charge. The best performing mitochondriotropic tetrazines enable subcellular chemical release of TCO-caged compounds as we show using fluorogenic substrates and mitochondrial uncoupler niclosamide. Our work demonstrates that a shrewd redesign of common bioorthogonal reagents can lead to their transformation into organelle-specific probes, opening the possibility to activate prodrugs and manipulate biological processes at the subcellular level by using purely chemical tools.
Collapse
Affiliation(s)
- Rastislav Dzijak
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Juraj Galeta
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Arcadio Vázquez
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Jaroslav Kozák
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Marika Matoušová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Helena Fulka
- Department
of Cell Nucleus Plasticity, Institute of
Experimental Medicine of the Czech Academy of Sciences, Víden̆ská 1083, 14220 Prague, Czech Republic
| | - Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Milan Vrabel
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| |
Collapse
|
30
|
Sun J, Li J, Sun H, Li C, Wu H. Concise Synthesis of Functionalized Cyclobutene Analogues for Bioorthogonal Tetrazine Ligation. Molecules 2021; 26:E276. [PMID: 33429851 PMCID: PMC7827859 DOI: 10.3390/molecules26020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
Novel bioorthogonal tools enable the development of new biomedical applications. Here we report the concise synthesis of a series of aryl-functionalized cyclobutene analogues using commercially available starting materials. Our study demonstrates that cyclobutene acts as a small, strained dienophile to generate stable substrates suitable for bioorthogonal tetrazine ligation.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China; (J.S.); (J.L.); (H.S.)
| | - Jie Li
- Department of Radiology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China; (J.S.); (J.L.); (H.S.)
| | - Hongbao Sun
- Department of Radiology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China; (J.S.); (J.L.); (H.S.)
| | - Chunling Li
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Haoxing Wu
- Department of Radiology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China; (J.S.); (J.L.); (H.S.)
| |
Collapse
|
31
|
Lipunova GN, Nosova EV, Zyryanov GV, Charushin VN, Chupakhin ON. 1,2,4,5-Tetrazine derivatives as components and precursors of photo- and electroactive materials. Org Chem Front 2021. [DOI: 10.1039/d1qo00465d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic approaches to 3,6-disubstituted-1,2,4,5-tetrazine systems are analyzed, and their properties attractive to practical applications in photo- and electroactive materials are overviewed.
Collapse
Affiliation(s)
- Galina N. Lipunova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
| | - Emiliya V. Nosova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| | - Grigory V. Zyryanov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| | - Valery N. Charushin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| | - Oleg N. Chupakhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| |
Collapse
|
32
|
Meng X, Wang H, Yang M, Li J, Yang F, Zhang K, Dong H, Zhang X. Target-Cell-Specific Bioorthogonal and Endogenous ATP Control of Signal Amplification for Intracellular MicroRNA Imaging. Anal Chem 2020; 93:1693-1701. [PMID: 33378158 DOI: 10.1021/acs.analchem.0c04302] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A stringent signal amplification method to profile microRNA (miRNA) expression within a specific cell remains a key challenge in biology. To address this issue, we report a target-cell-specific DNA nanosystem for endogenous adenosine-5'-triphosphate (ATP) bioorthogonal activation of the hybridization chain reaction (HCR) to spatiotemporally controlled signal amplification detection of miRNA in vitro and in vivo. The system consists of ATP aptamer-sealed engineered HCR functional units combined with a cancer cell membrane-encapsulated glutathione (GSH)-responsive metal-organic framework (MOF). Once the nanosystem is specifically and efficiently internalized into a cancer cell through membrane-mediated homing targeting, the MOF structure degrades and releases HCR functional units. The endogenous high expressional ATP recognizes the aptamer, allowing the HCR functional units to adopt its active modality. The activated HCR functional units are then able to spatiotemporally and bioorthogonally image miRNA with high sensitivity in vitro and in vivo.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Haijie Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Meihuan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jing Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Kai Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
33
|
Abstract
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Collapse
Affiliation(s)
- Nils Klöcker
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, D-48149 Münster, Germany.
| | | | | |
Collapse
|
34
|
Wang Y, Zhang C, Wu H, Feng P. Activation and Delivery of Tetrazine-Responsive Bioorthogonal Prodrugs. Molecules 2020; 25:E5640. [PMID: 33266075 PMCID: PMC7731009 DOI: 10.3390/molecules25235640] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 02/05/2023] Open
Abstract
Prodrugs, which remain inert until they are activated under appropriate conditions at the target site, have emerged as an attractive alternative to drugs that lack selectivity and show off-target effects. Prodrugs have traditionally been activated by enzymes, pH or other trigger factors associated with the disease. In recent years, bioorthogonal chemistry has allowed the creation of prodrugs that can be chemically activated with spatio-temporal precision. In particular, tetrazine-responsive bioorthogonal reactions can rapidly activate prodrugs with excellent biocompatibility. This review summarized the recent development of tetrazine bioorthogonal cleavage reaction and great promise for prodrug systems.
Collapse
Affiliation(s)
- Yayue Wang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Chang Zhang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Ping Feng
- Institute of Clinical Trials, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Walunj MB, Srivatsan SG. Nucleic Acid Conformation Influences Postsynthetic Suzuki-Miyaura Labeling of Oligonucleotides. Bioconjug Chem 2020; 31:2513-2521. [PMID: 33089687 PMCID: PMC7611128 DOI: 10.1021/acs.bioconjchem.0c00466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemoselective transformations that work under physiological conditions have emerged as powerful tools to label nucleic acids in cell-free and cellular environments. However, detailed studies investigating the influence of nucleic acid conformation on the performance of such chemoselective nucleic labeling methods are less explored. Given that nucleic acids adopt complex structures, it is highly important to study the scope of the chemical modification method in the context of nucleic acid conformations. Here we report a systematic study on the effect of local conformation on the postsynthetic Suzuki-Miyaura functionalization of human telomeric (H-Telo) DNA repeat oligonucleotide (ON) sequences, which form multiple G-quadruplex (GQ) structures. 5-Iodo-2'-deoxyuridine (IdU)-modified H-Telo ONs were synthesized by the solid-phase method, and when subjected to Suzuki-Miyaura cross-coupling reaction, its efficiency was found to depend on the type of conformation and the position of IdU label in different loops of the GQ structure. IdU-labeled GQs gave better yields as compared to single-stranded random coil structures. However, the IdU-labeled duplex under different ionic conditions did not undergo the coupling reaction. Further, using this method, we directly installed an environment-sensitive fluorescent probe, which photophysically reported the formation as well as distinguished different GQ topologies of telomeric repeat. Collectively, this systematic study underscores the influence of nucleic acid conformation, which has to be taken into account when establishing postsynthetic chemoselective functionalization strategies.
Collapse
Affiliation(s)
- Manisha B. Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| |
Collapse
|
36
|
Xian L, Ge H, Xu N, Xu F, Yao Q, Fan J, Long S, Peng X. Self-Assembly Trigger Signal Amplification for MicroRNA Sensing in Living Cells with GSH-Cleavable Nanoprobes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liman Xian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, High-tech District, Dalian 116024, People’s Republic of China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, High-tech District, Dalian 116024, People’s Republic of China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, High-tech District, Dalian 116024, People’s Republic of China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, High-tech District, Dalian 116024, People’s Republic of China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, High-tech District, Dalian 116024, People’s Republic of China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, High-tech District, Dalian 116024, People’s Republic of China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, People’s Republic China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, High-tech District, Dalian 116024, People’s Republic of China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, High-tech District, Dalian 116024, People’s Republic of China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, People’s Republic China
| |
Collapse
|
37
|
Manicardi A, Cadoni E, Madder A. Visible-light triggered templated ligation on surface using furan-modified PNAs. Chem Sci 2020; 11:11729-11739. [PMID: 34094412 PMCID: PMC8162948 DOI: 10.1039/d0sc04875e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022] Open
Abstract
Oligonucleotide-templated reactions are frequently exploited for target detection in biosensors and for the construction of DNA-based materials and probes in nanotechnology. However, the translation of the specifically used template chemistry from solution to surfaces, with the final aim of achieving highly selective high-throughput systems, has been difficult to reach and therefore, poorly explored. Here, we show the first example of a visible light-triggered templated ligation on a surface, employing furan-modified peptide nucleic acids (PNAs). Tailored photo-oxidation of the pro-reactive furan moiety is ensured by the simultaneous introduction of a weak photosensitizer as well as a nucleophilic moiety in the reacting PNA strand. This allows one to ensure a localized production of singlet oxygen for furan activation, which is not affected by probe dilution or reducing conditions. Simple white light irradiation in combination with target-induced proximity between reactive functionalities upon recognition of a short 22mer DNA or RNA sequence that functions as a template, allows sensitive detection of nucleic acid targets in a 96 well plate format.
Collapse
Affiliation(s)
- Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| |
Collapse
|
38
|
Janett E, Diep KL, Fromm KM, Bochet CG. A Simple Reaction for DNA Sensing and Chemical Delivery. ACS Sens 2020; 5:2338-2343. [PMID: 32804492 DOI: 10.1021/acssensors.0c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions templated by nucleic acids are currently at the heart of applications in biosensing and drug release. The number of chemical reactions selectively occurring only in the presence of the template, in aqueous solutions, and at room temperature and able to release a chemical moiety is still very limited. Here, we report the use of the p-nitrophenyl carbonate (NPC) as a new reactive moiety for DNA templated reactions releasing a colored reporter by reaction with a simple amine. The easily synthesized p-nitrophenyl carbonate was integrated in an oligonucleotide and showed a very good stability as well as a high reactivity toward amines, without the need for any supplementary reagent, quantitatively releasing the red p-nitrophenolate with a half-life of about 1 h.
Collapse
Affiliation(s)
- Elia Janett
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Kim-Long Diep
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Katharina M. Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Christian G. Bochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
39
|
Ganz D, Harijan D, Wagenknecht HA. Labelling of DNA and RNA in the cellular environment by means of bioorthogonal cycloaddition chemistry. RSC Chem Biol 2020; 1:86-97. [PMID: 34458750 PMCID: PMC8341813 DOI: 10.1039/d0cb00047g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Labelling of nucleic acids as biologically important cellular components is a crucial prerequisite for the visualization and understanding of biological processes. Efficient bioorthogonal chemistry and in particular cycloadditions fullfill the requirements for cellular applications. The broadly applied Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC), however, is limited to labellings in vitro and in fixed cells due to the cytotoxicity of copper salts. Currently, there are three types of copper-free cycloadditions used for nucleic acid labelling in the cellular environment: (i) the ring-strain promoted azide-alkyne cycloaddition (SPAAC), (ii) the "photoclick" 1,3-dipolar cycloadditions, and (iii) the Diels-Alder reactions with inverse electron demand (iEDDA). We review only those building blocks for chemical synthesis on solid phase of DNA and RNA and for enzymatic DNA and RNA preparation, which were applied for labelling of DNA and RNA in situ or in vivo, i.e. in the cellular environment, in fixed or in living cells, by the use of bioorthogonal cycloaddition chemistry. Additionally, we review the current status of orthogonal dual and triple labelling of DNA and RNA in vitro to demonstrate their potential for future applications in situ or in vivo.
Collapse
Affiliation(s)
- Dorothée Ganz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Dennis Harijan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
40
|
Jin S, Brea RJ, Rudd AK, Moon SP, Pratt MR, Devaraj NK. Traceless native chemical ligation of lipid-modified peptide surfactants by mixed micelle formation. Nat Commun 2020; 11:2793. [PMID: 32493905 PMCID: PMC7270136 DOI: 10.1038/s41467-020-16595-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
Biology utilizes multiple strategies, including sequestration in lipid vesicles, to raise the rate and specificity of chemical reactions through increases in effective molarity of reactants. We show that micelle-assisted reaction can facilitate native chemical ligations (NCLs) between a peptide-thioester – in which the thioester leaving group contains a lipid-like alkyl chain – and a Cys-peptide modified by a lipid-like moiety. Hydrophobic lipid modification of each peptide segment promotes the formation of mixed micelles, bringing the reacting peptides into close proximity and increasing the reaction rate. The approach enables the rapid synthesis of polypeptides using low concentrations of reactants without the need for thiol catalysts. After NCL, the lipid moiety is removed to yield an unmodified ligation product. This micelle-based methodology facilitates the generation of natural peptides, like Magainin 2, and the derivatization of the protein Ubiquitin. Formation of mixed micelles from lipid-modified reactants shows promise for accelerating chemical reactions in a traceless manner. Sequestration of reactants in lipid vesicles is a strategy prevalent in biological systems to raise the rate and specificity of chemical reactions. Here, the authors show that micelle-assisted reactions facilitate native chemical ligation between a peptide-thioester and a Cys-peptide modified by a lipid-like moiety.
Collapse
Affiliation(s)
- Shuaijiang Jin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew K Rudd
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Stuart P Moon
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
41
|
Zhou QY, Zhong XY, Zhao LL, Wang LJ, Zhou YL, Zhang XX. High-throughput ultra-sensitive discrimination of single nucleotide polymorphism via click chemical ligation. Analyst 2020; 145:172-176. [PMID: 31724655 DOI: 10.1039/c9an01672d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single nucleotide polymorphisms (SNPs) have been proven to be important biomarkers for disease diagnosis, prognosis and disease pathogenesis. Here, taking the advantages of a self-assembled oligonucleotide sandwich structure and robust chemical reactions, we have developed a simple, high-throughput and effective colorimetric analytical technique termed CuAAC-based ligation-assisted assays (CuAAC-LA) for SNP detection using a DNA-BIND 96-well plate. With the 5'-azide and 3'-alkyne groups labelled on two oligonucleotide probes, the target DNA can direct a Cu(i)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction. Since the small difference in duplex stability caused by a single-nucleotide mismatch was amplified by the steric effects of these reactive groups for the ligation reaction of an unstable duplex, CuAAC-LA exhibited an ultra-sensitive discrimination ability for a mutant type target in the presence of large amounts of wild type targets. As low as 0.05% SNP could be clearly detected, which was better than most previously reported methods by various DNA ligases, indicating that a simple and rapid synthetic method i.e., the DNA template-directed click reaction held the potential to replace the ligase for SNP detection.
Collapse
Affiliation(s)
- Qian-Yu Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
42
|
Agramunt J, Ginesi R, Pedroso E, Grandas A. Inverse Electron-Demand Diels–Alder Bioconjugation Reactions Using 7-Oxanorbornenes as Dienophiles. J Org Chem 2020; 85:6593-6604. [DOI: 10.1021/acs.joc.0c00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jordi Agramunt
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rebecca Ginesi
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enrique Pedroso
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- IBUB, Facultat de Quı́mica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Anna Grandas
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- IBUB, Facultat de Quı́mica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
43
|
Krell K, Harijan D, Ganz D, Doll L, Wagenknecht HA. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjug Chem 2020; 31:990-1011. [DOI: 10.1021/acs.bioconjchem.0c00072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katja Krell
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dennis Harijan
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dorothée Ganz
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Larissa Doll
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
44
|
Nguyen VT, Pandith A, Seo YJ. Propargylamine-selective dual fluorescence turn-on method for post-synthetic labeling of DNA. Chem Commun (Camb) 2020; 56:3199-3202. [PMID: 32068200 DOI: 10.1039/d0cc00255k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed a propargylamine-selective dual fluorescence turn-on system, using ylidenemalononitrile enamines, for post-synthetic DNA labeling, allowing the direct monitoring of DNA using dual emission in living cells.
Collapse
Affiliation(s)
- Van Thang Nguyen
- Department of Bioactive Material Sciences, Jeonbuk National University, South Korea
| | - Anup Pandith
- Department of Chemistry, Jeonbuk National University, South Korea.
| | - Young Jun Seo
- Department of Bioactive Material Sciences, Jeonbuk National University, South Korea and Department of Chemistry, Jeonbuk National University, South Korea.
| |
Collapse
|
45
|
Gil de Montes E, Istrate A, Navo CD, Jiménez-Moreno E, Hoyt EA, Corzana F, Robina I, Jiménez-Osés G, Moreno-Vargas AJ, Bernardes GJL. Stable Pyrrole-Linked Bioconjugates through Tetrazine-Triggered Azanorbornadiene Fragmentation. Angew Chem Int Ed Engl 2020; 59:6196-6200. [PMID: 31981460 DOI: 10.1002/anie.201914529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/22/2020] [Indexed: 01/22/2023]
Abstract
An azanorbornadiene bromovinyl sulfone reagent for cysteine-selective bioconjugation has been developed. Subsequent reaction with dipyridyl tetrazine leads to bond cleavage and formation of a pyrrole-linked conjugate. The latter involves ligation of the tetrazine to the azanorbornadiene-tagged protein through inverse electron demand Diels-Alder cycloaddition with subsequent double retro-Diels-Alder reactions to form a stable pyrrole linkage. The sequence of site-selective bioconjugation followed by bioorthogonal bond cleavage was efficiently employed for the labelling of three different proteins. This method benefits from easy preparation of these reagents, selectivity for cysteine, and stability after reaction with a commercial tetrazine, which has potential for the routine preparation of protein conjugates for chemical biology studies.
Collapse
Affiliation(s)
- Enrique Gil de Montes
- Departamento de Química Orgánica, Facultad de Química), Universidad de Sevilla, C/ Prof. García González, 1, 41012-, Sevilla, Spain
| | - Alena Istrate
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Ester Jiménez-Moreno
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Emily A Hoyt
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006, Logroño, Spain
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química), Universidad de Sevilla, C/ Prof. García González, 1, 41012-, Sevilla, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química), Universidad de Sevilla, C/ Prof. García González, 1, 41012-, Sevilla, Spain
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
46
|
Gil de Montes E, Istrate A, Navo CD, Jiménez‐Moreno E, Hoyt EA, Corzana F, Robina I, Jiménez‐Osés G, Moreno‐Vargas AJ, Bernardes GJL. Stable Pyrrole‐Linked Bioconjugates through Tetrazine‐Triggered Azanorbornadiene Fragmentation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Enrique Gil de Montes
- Departamento de Química OrgánicaFacultad de Química)Universidad de Sevilla C/ Prof. García González, 1 41012- Sevilla Spain
| | - Alena Istrate
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Claudio D. Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNEBasque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 801A 48160 Derio Spain
| | - Ester Jiménez‐Moreno
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Emily A. Hoyt
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Francisco Corzana
- Departamento de QuímicaCentro de Investigación en Síntesis QuímicaUniversidad de La Rioja 26006 Logroño Spain
| | - Inmaculada Robina
- Departamento de Química OrgánicaFacultad de Química)Universidad de Sevilla C/ Prof. García González, 1 41012- Sevilla Spain
| | - Gonzalo Jiménez‐Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNEBasque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 801A 48160 Derio Spain
| | - Antonio J. Moreno‐Vargas
- Departamento de Química OrgánicaFacultad de Química)Universidad de Sevilla C/ Prof. García González, 1 41012- Sevilla Spain
| | - Gonçalo J. L. Bernardes
- Department of ChemistryUniversity of Cambridge Lensfield Road CB2 1EW Cambridge UK
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
47
|
Mboyi CD, Vivier D, Daher A, Fleurat‐Lessard P, Cattey H, Devillers CH, Bernhard C, Denat F, Roger J, Hierso J. Bridge‐Clamp Bis(tetrazine)s with [N]
8
π‐Stacking Interactions and Azido‐
s
‐Aryl Tetrazines: Two Classes of Doubly Clickable Tetrazines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Clève D. Mboyi
- Université de Bourgogne Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302— Université de Bourgogne Franche-Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Delphine Vivier
- Université de Bourgogne Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302— Université de Bourgogne Franche-Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Ahmad Daher
- Université de Bourgogne Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302— Université de Bourgogne Franche-Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Paul Fleurat‐Lessard
- Université de Bourgogne Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302— Université de Bourgogne Franche-Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Hélène Cattey
- Université de Bourgogne Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302— Université de Bourgogne Franche-Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Charles H. Devillers
- Université de Bourgogne Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302— Université de Bourgogne Franche-Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Claire Bernhard
- Université de Bourgogne Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302— Université de Bourgogne Franche-Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Franck Denat
- Université de Bourgogne Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302— Université de Bourgogne Franche-Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Julien Roger
- Université de Bourgogne Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302— Université de Bourgogne Franche-Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Jean‐Cyrille Hierso
- Université de Bourgogne Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302— Université de Bourgogne Franche-Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| |
Collapse
|
48
|
Subiros-Funosas R, Ho VCL, Barth ND, Mendive-Tapia L, Pappalardo M, Barril X, Ma R, Zhang CB, Qian BZ, Sintes M, Ghashghaei O, Lavilla R, Vendrell M. Fluorogenic Trp(redBODIPY) cyclopeptide targeting keratin 1 for imaging of aggressive carcinomas. Chem Sci 2019; 11:1368-1374. [PMID: 34123261 PMCID: PMC8148049 DOI: 10.1039/c9sc05558d] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Keratin 1 (KRT1) is overexpressed in squamous carcinomas and associated with aggressive pathologies in breast cancer. Herein we report the design and preparation of the first Trp-based red fluorogenic amino acid, which is synthetically accessible in a few steps and displays excellent photophysical properties, and its application in a minimally-disruptive labelling strategy to prepare a new fluorogenic cyclopeptide for imaging of KRT1+ cells in whole intact tumour tissues.
Collapse
Affiliation(s)
- Ramon Subiros-Funosas
- Centre for Inflammation Research, University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Vivian Cheuk Lam Ho
- Centre for Inflammation Research, University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Nicole D Barth
- Centre for Inflammation Research, University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Morena Pappalardo
- Laboratory of Physical Chemistry, Facultat de Farmàcia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB) Av. Joan XXIII s/n 08028 Barcelona Spain
| | - Xavier Barril
- Laboratory of Physical Chemistry, Facultat de Farmàcia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB) Av. Joan XXIII s/n 08028 Barcelona Spain
| | - Ruoyu Ma
- MRC Centre for Reproductive Health, University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Cheng-Bin Zhang
- MRC Centre for Reproductive Health, University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Bin-Zhi Qian
- MRC Centre for Reproductive Health, University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Miquel Sintes
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, University of Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB) Avda Joan XXIII 27-30 Barcelona 08028 Spain
| | - Ouldouz Ghashghaei
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, University of Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB) Avda Joan XXIII 27-30 Barcelona 08028 Spain
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, University of Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB) Avda Joan XXIII 27-30 Barcelona 08028 Spain
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh 47 Little France Crescent EH16 4TJ Edinburgh UK
| |
Collapse
|
49
|
Liu J, Abdullah MAA, Yang L, Wang J. Fast Affinity Induced Reaction Sensor Based on a Fluorogenic Click Reaction for Quick Detection of Protein Biomarkers. Anal Chem 2019; 92:647-653. [PMID: 31790589 DOI: 10.1021/acs.analchem.9b04502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite numerous biosensors currently available, the routine biomarker detection still largely relies on traditional ELISA and Western blot. Those standard techniques are labor intensive and time-consuming. Herein we introduce a fast affinity induced reaction sensor (FAIRS) that overcomes a few limitations of traditional and emerging biosensors. FAIRS is a general, one-step method and is naturally specific in detection. FAIRS probes are composed of a sandwich ELISA antibody pair that is conjugated with two fluorogenic click chemicals. This technology leverages significant differences of antibody affinity and chemical reaction rate, which are characterized to guide probe design. The stability, sensitivity, detection range, and response time are fully characterized. Application to IL-6 detection using blood serum and cell culture medium demonstrates that FAIRS can quantify IL-6 with high sensitivity in one step. With the unique features, FAIRS probes may find broad applications in medical sciences and clinical diagnostics, where quick detection of biomarkers is demanded.
Collapse
Affiliation(s)
- Jingxin Liu
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering , State University of New York at Stony Brook , Stony Brook , New York 11788 , United States
| | - Mohammed A A Abdullah
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering , State University of New York at Stony Brook , Stony Brook , New York 11788 , United States.,Department of Chemistry , State University of New York, University at Albany , Albany , New York 12222 , United States
| | - Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering , State University of New York at Stony Brook , Stony Brook , New York 11788 , United States
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering , State University of New York at Stony Brook , Stony Brook , New York 11788 , United States
| |
Collapse
|
50
|
Xian L, Xu F, Liu J, Xu N, Li H, Ge H, Shao K, Fan J, Xiao G, Peng X. MicroRNA Detection with Turnover Amplification via Hybridization-Mediated Staudinger Reduction for Pancreatic Cancer Diagnosis. J Am Chem Soc 2019; 141:20490-20497. [PMID: 31774664 DOI: 10.1021/jacs.9b11272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The occurrence of and development in the early pathological stage of pancreatic cancer has proved to be associated with microRNAs. However, it remains a great challenge to directly monitor low-expression, and downregulation of, microRNA among living cells, tissues, and serum samples. In this work, Staudinger reduction is first applied in intracellular microRNA detection, establishing a set of smart hybridization-mediated Staudinger reduction probes (HMSR-probe) which contain designed oligonucleotide sequences. Meanwhile, 40 serum samples (healthy people (6), patients with pancreatitis (22), and pancreatic cancer patients (12)) are tested for exploring the potential clinical application. Of note, the molecules bound to nucleic acid confine the reactive site to close proximity in a compact space, and nonconnected product from Staudinger reaction facilitates turnover amplification to an ameliorative detection limit (1.3 × 10-15 M). Moreover, compared with qRT-PCR, a low false positive signal and an excellent specificity makes the probe more suitable and convenient for pancreatic cancer diagnosis in blood samples. For practical applications, HMSR-probe enable accurate differentiation in cell and tissue samples under both 488 and 785 nm and have good coherence to known research. As a proof of concept, the reliable results in distinguishing pancreatic cancer patients from different morbid stages might supply a feasible method for endogenous microRNA detection in fundamental research and clinical diagnostics.
Collapse
Affiliation(s)
- Liman Xian
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-tech District, Dalian 116024 , PR China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-tech District, Dalian 116024 , PR China
| | - Jianzhou Liu
- School of Pharmaceutical Science and Technology , Dalian University of Technology , 2 Linggong Road , High-tech District, Dalian 116024 , PR China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-tech District, Dalian 116024 , PR China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-tech District, Dalian 116024 , PR China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-tech District, Dalian 116024 , PR China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-tech District, Dalian 116024 , PR China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-tech District, Dalian 116024 , PR China.,Shenzhen Research Institute , Dalian University of Technology , Nanshan District , Shenzhen 518057 , PR China
| | - Guishan Xiao
- School of Pharmaceutical Science and Technology , Dalian University of Technology , 2 Linggong Road , High-tech District, Dalian 116024 , PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-tech District, Dalian 116024 , PR China.,Shenzhen Research Institute , Dalian University of Technology , Nanshan District , Shenzhen 518057 , PR China
| |
Collapse
|