1
|
Szkaradek K, Góra RW. Theoretical insight into photodeactivation mechanisms of adenine-uracil and adenine-thymine nucleobase pairs. Phys Chem Chem Phys 2024; 26:27807-27816. [PMID: 39470622 DOI: 10.1039/d4cp02817a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this work, several plausible intra- and intermolecular photoinduced processes of the Watson-Crick base pairs of adenine with uracil (A-U) or thymine (A-T) according to the results of spin component scaling variant of algebraic diagrammatic construction up to the second order [SCS-ADC(2)] calculations are discussed. Although widely explored, these systems lack complete characterization of possible intramolecular relaxation channels perturbed by intermolecular interactions. In particular, we address the still open debate on photodeactivation via purine-ring puckering at the C2 or C6-atom position of adenine. We also show that the presence of low-lying, long-lived 1nπ* states can be a significant factor in hindering relaxation via an electron-driven proton transfer process, as the population of these states can lead to an efficient intersystem crossing to a triplet manifold, the estimated rate of which is 1.6 × 1010 s-1 which exceeds the corresponding internal conversion to the ground state by an order of magnitude. Additionally, the SCS variant of the ADC(2) method is shown to provide a more balanced description of valence and charge-transfer excited states.
Collapse
Affiliation(s)
- Kinga Szkaradek
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Robert W Góra
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
2
|
Sardar S. An Exhaustive Quantum-Classical Study of C 6F 6+ Using the Newly Formulated Parallel TDDVR Method. J Phys Chem A 2024; 128:5777-5795. [PMID: 38979982 DOI: 10.1021/acs.jpca.4c02108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We recently implemented our parallelized quantum-classical dynamical approach, known as the Time-Dependent Discrete Variable Representation (TDDVR) method, which is applied to the spectroscopically important hexafluorobenzene (HFBz) radical cation, where several conical intersections exist in their seven lowest excited electronic states (S11B2u, S21E1g, S31B1u, S41E1u, and S51A2u) considering degeneracy among potential energy surfaces (PESs), to demonstrate their various dynamical aspects. This new parallel version shows almost linear scalability with increasing number of computing processors. To get photoelectron (PE) spectra, Mass-Analyzed Threshold Ionization (MATI) spectra, population dynamics, and many other dynamical observables, the first-principles dynamics is applied at the state-of-the-art level to the corresponding Hamiltonian, where the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) type interactions are involved in those coupled seven electronic states. The quantum-classical method is used to thoroughly analyze the effects of these couplings on the nuclear dynamics of the involved electronic states, and the findings are compared with those observables obtained from experiments. Intrinsic dynamical properties are explained using the reduced densities of the wave packet (WP) in a coupled electronic manifold. The PE and MATI spectra of HFBz computed using TDDVR are found to be in good agreement with earlier experimental data and other theoretically simulated spectra.
Collapse
Affiliation(s)
- Subhankar Sardar
- Department of Chemistry, Bhatter College, Dantan, P.O. Dantan, Paschim Medinipur, Pin 721426, India
| |
Collapse
|
3
|
Koga M, Kang DH, Heim ZN, Meyer P, Erickson BA, Haldar N, Baradaran N, Havenith M, Neumark DM. Extreme ultraviolet time-resolved photoelectron spectroscopy of adenine, adenosine and adenosine monophosphate in a liquid flat jet. Phys Chem Chem Phys 2024; 26:13106-13117. [PMID: 38629206 DOI: 10.1039/d4cp00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Time-resolved photoelectron spectroscopy using an extreme-ultraviolet (XUV) probe pulse was used to investigate the UV photoinduced dynamics of adenine (Ade), adenosine (Ado), and adenosine-5-monophosphate (AMP) in a liquid water jet. In contrast to previous studies using UV probe pulses, the XUV pulse at 21.7 eV can photoionize all excited states of a molecule, allowing for full relaxation pathways to be addressed after excitation at 4.66 eV. This work was carried out using a gas-dynamic flat liquid jet, resulting in considerably enhanced signal compared to a cylindrical jet. All three species decay on multiple time scales that are assigned based on their decay associated spectra; the fastest decay of ∼100 fs is assigned to ππ* decay to the ground state, while a smaller component with a lifetime of ∼500 fs is attributed to the nπ* state. An additional slower channel in Ade is assigned to the 7H Ade conformer, as seen previously. This work demonstrates the capability of XUV-TRPES to disentangle non-adiabatic dynamics in an aqueous solution in a state-specific manner and represents the first identification of the nπ* state in the relaxation dynamics of adenine and its derivatives.
Collapse
Affiliation(s)
- Masafumi Koga
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Do Hyung Kang
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Zachary N Heim
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Philipp Meyer
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801, Germany
| | - Blake A Erickson
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Neal Haldar
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Negar Baradaran
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801, Germany
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Baños J, Avilés A, Colmenares F. Disruptive Model That Explains for the Long-Lived Triplet States Observed for 2-Thiocytosine upon UVA Radiation. ACS OMEGA 2024; 9:13059-13066. [PMID: 38524487 PMCID: PMC10955585 DOI: 10.1021/acsomega.3c09471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
The possible role of radical species in the formation of the long-lived triplet states observed for 2-thiocytosine upon UV irradiation was theoretically investigated. It is predicted that the radical fragments arising from the homolytic rupture of the NH group of the thiobase can be yielded upon ultraviolet-A radiation. Recombination of the radicals through the most favorable singlet channel yields the lowest-lying tautomer of the 2-thiocytosine (the amino-thiol form) through a barrierless pathway. The rebounding of the radical fragments along the triplet channels that emerge from the attack of the hydrogen to the nitrogen atoms next to the C-S bond leads to stable structures for the amino-thion-N1H and amino-thion-N3H tautomers. These results allow for the rationalization of the near-unity triplet yields observed when this pure light-atom organic molecule is exposed to UV irradiation, without invoking intersystem crossings between the electronic states of different spin-multiplicities. A similar study for cytosine showed that the energy required to induce the homolytic breaking of the N-H bond of the nucleobase is not attainable under UVA radiation. This result is consistent with the experimental fact that no triplet states are observed when this molecule is exposed to that light.
Collapse
Affiliation(s)
- Jorge Baños
- Departamento de Física y Química
Teórica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | | | - Fernando Colmenares
- Departamento de Física y Química
Teórica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| |
Collapse
|
5
|
Gate G, Williams A, Boldissar S, Šponer J, Szabla R, de Vries M. The tautomer-specific excited state dynamics of 2,6-diaminopurine using resonance-enhanced multiphoton ionization and quantum chemical calculations. Photochem Photobiol 2024; 100:404-418. [PMID: 38124372 DOI: 10.1111/php.13897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
2,6-Diaminopurine (2,6-dAP) is an alternative nucleobase that potentially played a role in prebiotic chemistry. We studied its excited state dynamics in the gas phase by REMPI, IR-UV hole burning, and ps pump-probe spectroscopy and performed quantum chemical calculations at the SCS-ADC(2) level of theory to interpret the experimental results. We found the 9H tautomer to have a small barrier to ultrafast relaxation via puckering of its 6-membered ring. The 7H tautomer has a larger barrier to reach a conical intersection and also has a sizable triplet yield. These results are discussed relative to other purines, for which 9H tautomerization appears to be more photostable than 7H and homosubstituted purines appear to be less photostable than heterosubstituted or singly substituted purines.
Collapse
Affiliation(s)
- Gregory Gate
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Ann Williams
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Samuel Boldissar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Olomouc-Holice, Czech Republic
| | - Rafal Szabla
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Mattanjah de Vries
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| |
Collapse
|
6
|
Lamas I, Montero R, Martínez-Martínez V, Longarte A. Photodynamics of azaindoles in polar media: the influence of the environment. Phys Chem Chem Phys 2024; 26:3240-3252. [PMID: 38193884 DOI: 10.1039/d3cp03412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We have studied the relaxation dynamics of a family of azaindole (AI) structural isomers, 4-, 5-, 6- and 7-AI, by steady-state and time-resolved methods (fs-transient absorption and fluorescence up-conversion), in solvents of different polarity. The measurements in aprotic solvents show distinctive fluorescence yields and excited state lifetimes among the isomers, which are tuned by the polarity of the medium. Guided by simple TD-DFT calculations and based on the behavior observed in the isolated species, it has been possible to address the influence of the environment polarity on the relaxation route. According to the obtained picture, the energy of the nπ* state, which is strongly dependent on the position of the pyridinic nitrogen, controls the rate of the internal conversion channel that accounts for the distinctive photophysical behavior of the isomers. On the other hand, preliminary measurements in protic media (methanol) show a very different photodynamical behavior, in which the anomalous measured fluorescent patterns are very likely the result of reactive channels (proton transfer) triggered by the electronic excitation.
Collapse
Affiliation(s)
- Iker Lamas
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| | - Raúl Montero
- SGIKER Laser Facility Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) 48940, Leioa, Spain.
| | - Virginia Martínez-Martínez
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| | - Asier Longarte
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| |
Collapse
|
7
|
Cuéllar-Zuquin J, Pepino AJ, Fdez. Galván I, Rivalta I, Aquilante F, Garavelli M, Lindh R, Segarra-Martí J. Characterizing Conical Intersections in DNA/RNA Nucleobases with Multiconfigurational Wave Functions of Varying Active Space Size. J Chem Theory Comput 2023; 19:8258-8272. [PMID: 37882796 PMCID: PMC10851440 DOI: 10.1021/acs.jctc.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) algorithms. We benchmark two different basis set contractions and several active spaces for each nucleobase and conical intersection type, measuring for the first time how active space size affects conical intersection topographies in these systems and the potential implications these may have toward their description of photoinduced phenomena. Our results show that conical intersection topographies are highly sensitive to the electron correlation included in the model: by changing the amount (and type) of correlated orbitals, conical intersection topographies vastly change, and the changes observed do not follow any converging pattern toward the topographies obtained with the largest and most correlated active spaces. Comparison across systems shows analogous topographies for almost all intersections mediating population transfer to the dark 1nO/Nπ* states, while no similarities are observed for the "ethylene-like" conical intersection ascribed to mediate the ultrafast decay component to the ground state in all DNA/RNA nucleobases. Basis set size seems to have a minor effect, appearing to be relevant only for purine-based derivatives. We rule out structural changes as a key factor in classifying the different conical intersections, which display almost identical geometries across active space and basis set change, and we highlight instead the importance of correctly describing the electronic states involved at these crossing points. Our work shows that careful active space selection is essential to accurately describe conical intersection topographies and therefore to adequately account for their active role in molecular photochemistry.
Collapse
Affiliation(s)
- Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Ana Julieta Pepino
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Francesco Aquilante
- Theory
and Simulation of Materials (THEOS), and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
8
|
Beal R, Valverde D, Gonçalvez PFB, Borin AC. Photophysics of tz Adenine and tz Guanine fluorescent nucleobases embedded into DNA and RNA. J Comput Chem 2023; 44:2246-2255. [PMID: 37486177 DOI: 10.1002/jcc.27194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
UV-VIS photoinduced events of tz A and tz G embedded into DNA and RNA are described by combining the Extended Multi-State Second-Order Perturbation Theory (XMS-CASPT2) and electrostatic embedding molecular mechanics methods (QM/MM). Our results point out that the S1 1 (ππ* La ) state is the bright state in both environments. After the photoexcitation to the S1 1 (ππ* La ) state, the electronic population evolves barrierless towards its minimum, from where the excess of energy can be dissipated by fluorescence. As the minimum energy crossing point structure between the ground and first bright states lies in a high-energy region, the direct internal conversion to the ground state is an unviable mechanism. Other spectroscopic properties (for instance, absorption and Stokes shifts) and comparisons with photochemical properties of canonical nucleobases are also provided.
Collapse
Affiliation(s)
- Roiney Beal
- Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Danillo Valverde
- Unité de Chimie Physique Théorique et Structurale, Namur Institute of Structured Matter, Université de Namur, Namur, Belgium
| | - Paulo F B Gonçalvez
- Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Eun HJ, Ishiuchi SI, Yoo IT, Heo J, Park JW, Fujii M, Kim NJ. Cryogenic Ion Spectroscopy of Protonated and Sodiated Methyladenine Derivatives. J Phys Chem A 2023; 127:2472-2480. [PMID: 36895090 DOI: 10.1021/acs.jpca.2c09083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Ultraviolet photodissociation (UVPD) spectra of protonated 9-methyladenine (H+9MA), protonated 7-methyl adenine (H+7MA), protonated 3-methyladenine (H+3MA), and sodiated 7-methyladenine (Na+7MA) near the origin bands of the S0-S1 transition were obtained using cryogenic ion spectroscopy. The UV-UV hole burning, infrared (IR) ion-dip, and IR-UV double resonance spectra showed that all the ions were present as single isomers in a cryogenic ion trap. The UVPD spectrum of H+9MA exhibited only a broad absorption band, whereas the spectra of H+7MA, H+3MA, and Na+7MA displayed moderately or well-resolved vibronic bands. Potential energy profiles were computed to understand the reason for the different bandwidths of the vibronic bands in the spectra. The broadening of the bands was correlated with the slopes between the Franck-Condon point and the conical intersection between the S1 and S0 states in the potential energy profiles, thus reflecting the deactivation rates in the S1 state.
Collapse
Affiliation(s)
- Han Jun Eun
- Gas Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Shun-Ichi Ishiuchi
- Department of Chemistry, Tokyo Institute of Technology, Ookayama 2-12-1, Tokyo 152-8550, Japan
| | - Il Tae Yoo
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| | - Jiyoung Heo
- Department of Green Chemical Engineering, Sangmyung University, Chungnam 31066, Korea
| | - Jae Woo Park
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama 226-8503, Japan
| | - Nam Joon Kim
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| |
Collapse
|
10
|
Fang Y, Huang H, Lin K, Xu C, Gu FL, Lan Z. The impact of different geometrical restrictions on the nonadiabatic photoisomerization of biliverdin chromophores. Phys Chem Chem Phys 2022; 24:26190-26199. [PMID: 36278817 DOI: 10.1039/d2cp02941c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The photoisomerization mechanism of the chromophore of bacterial biliverdin (BV) phytochromes is explored via nonadiabatic dynamics simulation by using the on-the-fly trajectory surface-hopping method at the semi-empirical OM2/MRCI level. Particularly, the current study focuses on the influence of geometrical constrains on the nonadiabatic photoisomerization dynamics of the BV chromophore. Here a rather simplified approach is employed in the nonadiabatic dynamics to capture the features of geometrical constrains, which adds mechanical restrictions to the specific moieties of the BV chromophore. This simplified method provides a rather quick approach to examine the influence of geometrical restrictions on photoisomerization. As expected, different constrains bring distinctive influences on the photoisomerization mechanism of the BV chromophore, giving either strong or minor modification of both involved reaction channels and excited-state lifetimes after the constrains are added in different ring moieties. These observations not only contribute to the primary understanding of the role of the spatial restriction caused by biological environments in photoinduced dynamics of the BV chromophore, but also provide useful ideas for the artificial regulation of the photoisomerization reaction channels of phytochrome proteins.
Collapse
Affiliation(s)
- Yuan Fang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
| | - Haiyi Huang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
| | - Kunni Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
11
|
Mandal S, Srinivasan V. Rationalizing the Unexpected Sensitivity in Excited State Lifetimes of Adenine to Tautomerization by Nonadiabatic Molecular Dynamics. J Phys Chem B 2022; 126:7077-7087. [PMID: 36083211 DOI: 10.1021/acs.jpcb.2c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The remarkable photostability of canonical nucleobases makes them ideal building blocks for DNA and RNA. Even minor structural changes are expected to lead to drastic alteration of their subpicosecond excited state lifetimes. However, it is interesting to note that while the 9H- and 7H-amino tautomers of adenine possess drastically different lifetimes, 9H- and 7H-keto guanine possess similar excited state lifetimes. With an aim to explain this unexpected difference in sensitivity of lifetimes to tautomerization, we have investigated the excited state relaxation mechanism of UV-excited adenine and guanine tautomers using surface hopping based nonadiabatic molecular dynamics. We find that internal conversion in both guanine tautomers is almost barrierless while both adenine tautomers encounter significant barriers before they can deactivate. Moreover, the major deactivation channel (C2-puckering) in 9H-amino adenine is overall more efficient than the one (C6-puckering) in the 7H-amino form. We trace this difference to the frequent rotation of the amino group which disrupts its conjugation with the heterocyclic ring thereby reducing the strength of nonadiabatic coupling and, hence, delaying internal conversion.
Collapse
Affiliation(s)
- Satyajit Mandal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Varadharajan Srinivasan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
12
|
Shakiba M, Stippell E, Li W, Akimov AV. Nonadiabatic Molecular Dynamics with Extended Density Functional Tight-Binding: Application to Nanocrystals and Periodic Solids. J Chem Theory Comput 2022; 18:5157-5180. [PMID: 35758936 DOI: 10.1021/acs.jctc.2c00297] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we report a new methodology for nonadiabatic molecular dynamics calculations within the extended tight-binding (xTB) framework. We demonstrate the applicability of the developed approach to finite and periodic systems with thousands of atoms by modeling "hot" electron relaxation dynamics in silicon nanocrystals and electron-hole recombination in both a graphitic carbon nitride monolayer and a titanium-based metal-organic framework (MOF). This work reports the nonadiabatic dynamic simulations in the largest Si nanocrystals studied so far by the xTB framework, with diameters up to 3.5 nm. For silicon nanocrystals, we find a non-monotonic dependence of "hot" electron relaxation rates on the nanocrystal size, in agreement with available experimental reports. We rationalize this relationship by a combination of decreasing nonadiabatic couplings related to system size and the increase of available coherent transfer pathways in systems with higher densities of states. We emphasize the importance of proper treatment of coherences for obtaining such non-monotonic dependences. We characterize the electron-hole recombination dynamics in the graphitic carbon nitride monolayer and the Ti-containing MOF. We demonstrate the importance of spin-adaptation and proper sampling of surface hopping trajectories in modeling such processes. We also assess several trajectory surface hopping schemes and highlight their distinct qualitative behavior in modeling the excited-state dynamics in superexchange-like models depending on how they handle coherences between nearly parallel states.
Collapse
Affiliation(s)
- Mohammad Shakiba
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Elizabeth Stippell
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
13
|
Ray J, Ramesh SG. Excited-state proton transfer in the 2-aminopyridine dimer: A surface hopping study. Phys Chem Chem Phys 2022; 24:7274-7292. [DOI: 10.1039/d1cp05517h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a theoretical investigation of the excited-state intermolecular proton transfer process in the 2-aminopyridine dimer. Prior experimental and theoretical studies on this doubly hydrogen bonded system have attributed an...
Collapse
|
14
|
Understanding the Photolysis of CH 3ONO 2 with the On-the-fly Nonadiabatic Dynamics Simulation at the ADC(2) Level. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
15
|
Shahrokh L, Omidyan R, Azimi G. Excited State Deactivation Mechanisms of Protonated Adenine: a Theoretical study. Phys Chem Chem Phys 2022; 24:14898-14908. [DOI: 10.1039/d2cp00106c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemical computational method as well as the adiabatic dynamics simulation have been employed to investigate the non-radiative relaxation mechanism of protonated 9H- and 7H-adenine (AH+). We have located three...
Collapse
|
16
|
Jouybari M, Green JA, Improta R, Santoro F. The Ultrafast Quantum Dynamics of Photoexcited Adenine-Thymine Basepair Investigated with a Fragment-based Diabatization and a Linear Vibronic Coupling Model. J Phys Chem A 2021; 125:8912-8924. [PMID: 34609880 PMCID: PMC9281421 DOI: 10.1021/acs.jpca.1c08132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this contribution we present a quantum dynamical study of the photoexcited hydrogen bonded base pair adenine-thymine (AT) in a Watson-Crick arrangement. To that end, we parametrize Linear Vibronic Coupling (LVC) models with Time-Dependent Density Functional Theory (TD-DFT) calculations, exploiting a fragment diabatization scheme (FrD) we have developed to define diabatic states on the basis of individual chromophores in a multichromophoric system. Wavepacket propagations were run with the multilayer extension of the Multiconfiguration Time-Dependent Hartree method. We considered excitations to the three lowest bright states, a ππ* state of thymine and two ππ* states (La and Lb) of adenine, and we found that on the 100 fs time scale the main decay pathways involve intramonomer population transfers toward nπ* states of the same nucleobase. In AT this transfer is less effective than in the isolated nucleobases, because hydrogen bonding destabilizes the nπ* states. The population transfer to the A → T charge transfer state is negligible, making the ultrafast (femtosecond) decay through the proton coupled electron transfer mechanism unlikely, in line with experimental results in apolar solvents. The excitation energy transfer is also very small. We carefully compare the predictions of LVC Hamiltonians obtained with different sets of diabatic states, defined so to match either local states of the two separated monomers or the base pair adiabatic states in the Franck-Condon region. To that end we also extend the flexibility of the FrD-LVC approach, introducing a new strategy to define fragments diabatic states that account for the effect of the rest of the multichromohoric system through a Molecular Mechanics potential.
Collapse
Affiliation(s)
- Martha
Yaghoubi Jouybari
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo
Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - James A. Green
- Consiglio
Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Roberto Improta
- Consiglio
Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Fabrizio Santoro
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo
Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
17
|
Castellani ME, Avagliano D, Verlet JRR. Ultrafast Dynamics of the Isolated Adenosine-5'-triphosphate Dianion Probed by Time-Resolved Photoelectron Imaging. J Phys Chem A 2021; 125:3646-3652. [PMID: 33882670 DOI: 10.1021/acs.jpca.1c01646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The excited state dynamics of the doubly deprotonated dianion of adenosine-5'-triphosphate, [ATP-H2]2-, has been spectroscopically explored by time-resolved photoelectron spectroscopy following excitation at 4.66 eV. Time-resolved photoelectron spectra show that two competing processes occur for the initially populated 1ππ* state. The first is rapid electron emission by tunneling through a repulsive Coulomb barrier as the 1ππ* state is a resonance. The second is nuclear motion on the 1ππ* state surface leading to an intermediate that no longer tunnels and subsequently decays by internal conversion to the ground electronic state. The spectral signatures of the features are similar to those observed for other adenine-derivatives, suggesting that this nucleobase is quite insensitive to the nearby negative charges localized on the phosphates, except of course for the appearance of the additional electron tunneling channel, which is open in the dianion.
Collapse
Affiliation(s)
| | - Davide Avagliano
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17 1090 Vienna, Austria
| | - Jan R R Verlet
- Department of Chemistry, Durham University, DH1 3LE Durham, U.K
| |
Collapse
|
18
|
Green JA, Jouybari MY, Aranda D, Improta R, Santoro F. Nonadiabatic Absorption Spectra and Ultrafast Dynamics of DNA and RNA Photoexcited Nucleobases. Molecules 2021; 26:1743. [PMID: 33804640 PMCID: PMC8003674 DOI: 10.3390/molecules26061743] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 11/16/2022] Open
Abstract
We have recently proposed a protocol for Quantum Dynamics (QD) calculations, which is based on a parameterisation of Linear Vibronic Coupling (LVC) Hamiltonians with Time Dependent (TD) Density Functional Theory (TD-DFT), and exploits the latest developments in multiconfigurational TD-Hartree methods for an effective wave packet propagation. In this contribution we explore the potentialities of this approach to compute nonadiabatic vibronic spectra and ultrafast dynamics, by applying it to the five nucleobases present in DNA and RNA. For all of them we computed the absorption spectra and the dynamics of ultrafast internal conversion (100 fs timescale), fully coupling the first 2-3 bright states and all the close by dark states, for a total of 6-9 states, and including all the normal coordinates. We adopted two different functionals, CAM-B3LYP and PBE0, and tested the effect of the basis set. Computed spectra are in good agreement with the available experimental data, remarkably improving over pure electronic computations, but also with respect to vibronic spectra obtained neglecting inter-state couplings. Our QD simulations indicate an effective population transfer from the lowest energy bright excited states to the close-lying dark excited states for uracil, thymine and adenine. Dynamics from higher-energy states show an ultrafast depopulation toward the more stable ones. The proposed protocol is sufficiently general and automatic to promise to become useful for widespread applications.
Collapse
Affiliation(s)
- James A. Green
- CNR—Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via Mezzocannone 16, I-80136 Napoli, Italy;
| | - Martha Yaghoubi Jouybari
- CNR—Consiglio Nazionale Delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area Della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy; (M.Y.J.); (D.A.)
| | - Daniel Aranda
- CNR—Consiglio Nazionale Delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area Della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy; (M.Y.J.); (D.A.)
| | - Roberto Improta
- CNR—Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via Mezzocannone 16, I-80136 Napoli, Italy;
| | - Fabrizio Santoro
- CNR—Consiglio Nazionale Delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area Della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy; (M.Y.J.); (D.A.)
| |
Collapse
|
19
|
Jankowska J, Góra RW. Ultrafast nonradiative deactivation of photoexcited 8-oxo-hypoxanthine: a nonadiabatic molecular dynamics study. Phys Chem Chem Phys 2021; 23:1234-1241. [PMID: 33355573 DOI: 10.1039/d0cp05271j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the scientific endeavor to understand the chemical origins of life, the photochemistry of the smallest life building blocks, nucleobases, has been a constant object of focus and intense research. Here, we report the results of the first theoretical study on the photo-properties of an 8-oxo-hypoxanthine molecule, the chromophore of 8-oxo-inosine, which is relevant to the recently proposed, prebiotically plausible synthetic routes to the formation of purine- and pyrimidine-nucleotides. With ab initio and semi-empirical OM2/MRCI quantum-chemistry calculations, we predict a strong photostability of the 8-oxo-hypoxanthine system and see the origin of this effect in ultrafast nonradiative relaxation through puckering of the 6-membered heterocyclic ring.
Collapse
Affiliation(s)
- Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland.
| | - Robert W Góra
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
20
|
A comparative multi-state multi-dimensional quantum-classical dynamics on compact polycyclic aromatic hydrocarbons (CPAHs) by parallel TDDVR method. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Lamas I, Montero R, Martínez-Martínez V, Longarte A, Blancafort L. An nπ* gated decay mediates excited-state lifetimes of isolated azaindoles. Phys Chem Chem Phys 2020; 22:18639-18645. [PMID: 32789383 DOI: 10.1039/d0cp02635b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aiming to serve as a guide to understand the relaxation mechanisms of more complex aza-aromatic compounds, such as purine bases, we have studied the non-radiative channels of a set of azaindole structural isomers: 4-, 5-, 6- and 7-azaindole (AI). The relaxation of the isolated molecules, after excitation at the low energy portion of their spectra, has been tracked by femtosecond time-resolved ionization, and the decay paths have been obtained with MS-CASPT2//TD-DFT calculations. Although the ultrashort measured lifetimes for 5- and 6-AI are in contrast to the long-living excited state found in 7-AI, the calculations describe a common relaxation pathway. Along it, the initially excited ππ* states decay to the ground state through a conical intersection accessed through an nπ* state that functions as a gate state. The work reveals that the position of the nitrogen atoms in the purine ring determines the barrier to access the gate state and therefore, the rate of the non-radiative relaxation.
Collapse
Affiliation(s)
- Iker Lamas
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain.
| | | | | | | | | |
Collapse
|
22
|
Sanches de Araújo AV, Valverde D, Canuto S, Borin AC. Solvation Structures and Deactivation Pathways of Luminescent Isothiazole-Derived Nucleobases: tzA, tzG, and tzI. J Phys Chem A 2020; 124:6834-6844. [PMID: 32786984 DOI: 10.1021/acs.jpca.0c03398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The photophysical relaxation pathways of tzA, tzG, and tzI luminescent nucleobases were investigated with the MS-CASPT2 quantum-chemical method and double-ζ basis sets (cc-pVDZ) in gas and condensed phases (1,4-dioxane and water) with the sequential Monte Carlo/CASPT2 and free energy gradient (FEG) methods. Solvation shell structures, in the ground and excited states, were examined with the pairwise radial distribution function (G(r)) and solute-solvent hydrogen-bond networks. Site-specific hydrogen bonding analysis evidenced relevant changes between both electronic states. The three luminescent nucleobases share a common photophysical pattern, summarized as the lowest-lying 1(ππ*) bright state that is populated directly after the absorption of radiation and evolves barrierless to the minimum energy structure, from where the excess of energy is released by fluorescence. From the 1(ππ*)min region, the conical intersection with the ground state ((ππ*/GS)CI) is not accessible due to the presence of high energetic barriers. By combining the present results with those reported earlier by us for the pyrimidine fluorescent nucleobases, we present a comprehensive description of the photophysical properties of this important class of new fluorescent nucleosides.
Collapse
Affiliation(s)
| | - Danillo Valverde
- Institute of Physics, University of São Paulo, Rua do Matão 1371, 05508-090 São Paulo, SP, Brazil
| | - Sylvio Canuto
- Institute of Physics, University of São Paulo, Rua do Matão 1371, 05508-090 São Paulo, SP, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
23
|
Winslow M, Cross WB, Robinson D. Comparison of Spin-Flip TDDFT-Based Conical Intersection Approaches with XMS-CASPT2. J Chem Theory Comput 2020; 16:3253-3263. [PMID: 32302484 PMCID: PMC8279405 DOI: 10.1021/acs.jctc.9b00917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Determining conical intersection
geometries is of key importance
to understanding the photochemical reactivity of molecules. While
many small- to medium-sized molecules can be treated accurately using
multireference approaches, larger molecules require a less computationally
demanding approach. In this work, minimum energy crossing point conical
intersection geometries for a series of molecules have been studied
using spin-flip TDDFT (SF-TDDFT), within the Tamm-Dancoff Approximation,
both with and without explicit calculation of nonadiabatic coupling
terms, and compared with both XMS-CASPT2 and CASSCF calculated geometries.
The less computationally demanding algorithms, which do not require
explicit calculation of the nonadiabatic coupling terms, generally
fare well with the XMS-CASPT2 reference structures, while the relative
energetics are only reasonably replicated with the MECP structure
as
calculated with the BHHLYP functional and full nonadiabatic coupling
terms. We also demonstrate that, occasionally, CASSCF structures deviate
quantitatively from the XMS-CASPT2 structures, showing the importance
of including dynamical correlation.
Collapse
Affiliation(s)
- Max Winslow
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Warren B Cross
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - David Robinson
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
24
|
Lischka H, Shepard R, Müller T, Szalay PG, Pitzer RM, Aquino AJA, Araújo do Nascimento MM, Barbatti M, Belcher LT, Blaudeau JP, Borges I, Brozell SR, Carter EA, Das A, Gidofalvi G, González L, Hase WL, Kedziora G, Kertesz M, Kossoski F, Machado FBC, Matsika S, do Monte SA, Nachtigallová D, Nieman R, Oppel M, Parish CA, Plasser F, Spada RFK, Stahlberg EA, Ventura E, Yarkony DR, Zhang Z. The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry. J Chem Phys 2020; 152:134110. [PMID: 32268762 DOI: 10.1063/1.5144267] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.
Collapse
Affiliation(s)
- Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Ron Shepard
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Thomas Müller
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich 52428, Germany
| | - Péter G Szalay
- ELTE Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary
| | - Russell M Pitzer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adelia J A Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | - Lachlan T Belcher
- Laser and Optics Research Center, Department of Physics, US Air Force Academy, Colorado 80840, USA
| | | | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, RJ 22290-270, Brazil
| | - Scott R Brozell
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Emily A Carter
- Office of the Chancellor and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Box 951405, Los Angeles, California 90095-1405, USA
| | - Anita Das
- Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, USA
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Gary Kedziora
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC 20057-1227, USA
| | | | - Francisco B C Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, Pennsylvania 19122, USA
| | | | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 160610 Prague 6, Czech Republic
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Markus Oppel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Carol A Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, USA
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Rene F K Spada
- Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | - Eric A Stahlberg
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Elizete Ventura
- Universidade Federal da Paraíba, 58059-900 João Pessoa, PB, Brazil
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | - Zhiyong Zhang
- Stanford Research Computing Center, Stanford University, 255 Panama Street, Stanford, California 94305, USA
| |
Collapse
|
25
|
Park JW, Al-Saadon R, MacLeod MK, Shiozaki T, Vlaisavljevich B. Multireference Electron Correlation Methods: Journeys along Potential Energy Surfaces. Chem Rev 2020; 120:5878-5909. [PMID: 32239929 DOI: 10.1021/acs.chemrev.9b00496] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multireference electron correlation methods describe static and dynamical electron correlation in a balanced way and, therefore, can yield accurate and predictive results even when single-reference methods or multiconfigurational self-consistent field theory fails. One of their most prominent applications in quantum chemistry is the exploration of potential energy surfaces. This includes the optimization of molecular geometries, such as equilibrium geometries and conical intersections and on-the-fly photodynamics simulations, both of which depend heavily on the ability of the method to properly explore the potential energy surface. Because such applications require nuclear gradients and derivative couplings, the availability of analytical nuclear gradients greatly enhances the scope of quantum chemical methods. This review focuses on the developments and advances made in the past two decades. A detailed account of the analytical nuclear gradient and derivative coupling theories is presented. Emphasis is given to the software infrastructure that allows one to make use of these methods. Notable applications of multireference electron correlation methods to chemistry, including geometry optimizations and on-the-fly dynamics, are summarized at the end followed by a discussion of future prospects.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju 28644, Korea
| | - Rachael Al-Saadon
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew K MacLeod
- Workday, 4900 Pearl Circle East, Suite 100, Boulder, Colorado 80301, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Quantum Simulation Technologies, Inc., 625 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, 414 East Clark Street, Vermillion, South Dakota 57069, United States
| |
Collapse
|
26
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
27
|
Shi HM, Guo GH, Sun ZG. Numerical convergence of the Sinc discrete variable representation for solving molecular vibrational states with a conical intersection in adiabatic representation. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1812275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hai-mei Shi
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guang-hai Guo
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Zhi-gang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
28
|
Lindner JO, Sultangaleeva K, Röhr MIS, Mitrić R. metaFALCON: A Program Package for Automatic Sampling of Conical Intersection Seams Using Multistate Metadynamics. J Chem Theory Comput 2019; 15:3450-3460. [PMID: 30995044 DOI: 10.1021/acs.jctc.9b00029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multistate metadynamics for automatic exploration of conical intersection seams and systematic location of minimum energy crossing points in molecular systems and its implementation into the software package metaFALCON is presented. Based on a locally modified energy gap between two Born-Oppenheimer electronic states as a collective variable, multistate metadynamics trajectories are driven toward an intersection point starting from an arbitrary ground state geometry and are subsequently forced to explore the conical intersection seam landscape. For this purpose, an additional collective variable capable of distinguishing structures within the seam needs to be defined and an additional bias is introduced into the off-diagonal elements of an extended (multistate) electronic Hamiltonian. We demonstrate the performance of the algorithm on the examples of the 1,3-butadiene, benzene, and 9H-adenine molecules, where multiple minimum energy crossing points could be systematically located using the Wiener number or Cremer-Pople parameters as collective variables. Finally, with the example of 9H-adenine, we show that the multistate metadynamics potential can be used to obtain a global picture of a conical intersection seam. Our method can be straightforwardly connected with any ab initio or semiempirical electronic structure theory that provides energies and gradients of the respective electronic states and can serve for systematic elucidation of the role of conical intersections in the photophysics and photochemistry of complex molecular systems, thus complementing nonadiabatic dynamics simulations.
Collapse
Affiliation(s)
- Joachim O Lindner
- Institut für Physikalische und Theoretische Chemie , Julius-Maximilians-Universität Würzburg , Emil-Fischer-Str. 42 , 97074 Würzburg , Germany
| | - Karina Sultangaleeva
- Institut für Physikalische und Theoretische Chemie , Julius-Maximilians-Universität Würzburg , Emil-Fischer-Str. 42 , 97074 Würzburg , Germany
| | - Merle I S Röhr
- Institut für Physikalische und Theoretische Chemie , Julius-Maximilians-Universität Würzburg , Emil-Fischer-Str. 42 , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry (CNC) , Julius-Maximilians-Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie , Julius-Maximilians-Universität Würzburg , Emil-Fischer-Str. 42 , 97074 Würzburg , Germany
| |
Collapse
|
29
|
Zhou Z, Wang X, Chen J, Xu J. Direct observation of an intramolecular charge transfer state in epigenetic nucleobase N6-methyladenine. Phys Chem Chem Phys 2019; 21:6878-6885. [PMID: 30887998 DOI: 10.1039/c9cp00325h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
N6-Methyladenine (6MeAde), the most abundant internal modification in mRNA, has proved to be an important epigenetic biomarker for gene regulation just like 5-methylcytosine in DNA. Recently, a unique UV-induced response of 6MeAde was reported, which makes it instructive and intriguing to reveal the excited state relaxation mechanism in this methylated adenine and its derivatives. In this work, we investigated 6MeAde and its ribose species N6-methyladenosine (6MeAdo) by using femtosecond time-resolved fluorescence up-conversion (FUC) and broadband transient absorption (TA) spectroscopy. Both 6MeAde and 6MeAdo exhibit a hundreds of femtoseconds lifetime, which originates from the efficient depletion of the ππ* (La) state. A several picoseconds lifetime is also observed and it should be attributed to the ππ* (Lb) state. Surprisingly, dual peak fluorescence emission is observed in 6MeAde and the long wavelength emission is ascribed to an intramolecular charge transfer (ICT) state. The lifetime of this ICT state is determined to be 107 ps. The kinetic isotope effect shows that the ICT state is closely associated with the solute-solvent H-bonding in aqueous solution. In 6MeAdo, the ICT state is apparently quenched and adenine-like excited state dynamics suggests that DNA/RNA containing such modification could still possess excellent photostability under UV irradiation. Our results contain an important insight for understanding excited state properties in epigenetic modified DNA/RNA.
Collapse
Affiliation(s)
- Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | | | | | | |
Collapse
|
30
|
Zhou Z, Hu Z, Zhang X, Jia M, Wang X, Su H, Sun H, Chen J, Xu J. pH Controlled Intersystem Crossing and Singlet Oxygen Generation of 8-Azaadenine in Aqueous Solution. Chemphyschem 2019; 20:757-765. [PMID: 30702794 DOI: 10.1002/cphc.201800969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Indexed: 01/01/2023]
Abstract
Azabases are intriguing DNA and RNA analogues and have been used as effective antiviral and anticancer medicines. However, photosensitivity of these drugs has also been reported. Here, pH-controlled intersystem crossing (ISC) process of 9H 8-azaadenine (8-AA) in aqueous solution is reported. Broadband transient absorption measurements reveal that the hydrogen atom at N9 position can greatly affect ISC of 8-AA and ISC is more favorable when 8-AA is in its neutral form in aqueous solution. The initial excited ππ* (S2 ) state evolves through ultrafast internal conversion (IC) (4.2 ps) to the lower-lying nπ* state (S1 ), which further stands as a door way state for ISC with a time constant of 160 ps. The triplet state has a lifetime of 6.1 μs. On the other hand, deprotonation at N9 position promotes the IC from the ππ* (S2 ) state to the ground state (S0 ) and the lifetime of the S2 state is determined to be 10 ps. The experimental results are further supported by time-dependent density functional theory (TDDFT) calculations. Singlet oxygen generation yield is measured to be 13.8 % for the neutral 8-AA while the deprotonated one exhibit much lower yield (<2 %), implying that this compound could be a potential pH-sensitized photodynamic therapy agent.
Collapse
Affiliation(s)
- Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Xianwang Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Menghui Jia
- Shanghai Institute of Optics and Fine Mechanics, Shanghai, 201800, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
31
|
Wu X, Ehrmaier J, Sobolewski AL, Karsili TNV, Domcke W. Mechanisms of photoreactivity in hydrogen-bonded adenine-H 2O complexes. Phys Chem Chem Phys 2019; 21:14238-14249. [PMID: 30543228 DOI: 10.1039/c8cp05305g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms of photoinduced reactions of adenine with water molecules in hydrogen-bonded adenine-water complexes were investigated with ab initio wave-function-based electronic-structure calculations. Two excited-state electron/proton transfer reaction mechanisms have been characterized: H-atom abstraction from water by photoexcited adenine as well as H-atom transfer from photoexcited adenine or the (adenine+H) radical to water. In the water-to-adenine H-atom transfer reaction, an electron from one of the p orbitals of the water molecule fills the hole in the n (π) orbital of the nπ* (ππ*) excited state of adenine, resulting in a charge-separated electronic state. The electronic charge separation is neutralized by the transfer of a proton from the water molecule to adenine, resulting in the (adenine+H)OH biradical in the electronic ground state. In the adenine-to-water H-atom transfer reaction, πσ* states localized at the acidic sites of adenine provide the mechanism for the photoejection of an electron from adenine, which is followed by proton transfer to the hydrogen-bonded water molecule, resulting in the (adenine-H)H3O biradical. The energy profiles of the photoreactions have been computed as relaxed scans with the ADC(2) electronic-structure method. These reactions, which involve the reactivity of adenine with hydrogen-bonded water molecules, compete with the well-established intrinsic excited-state deactivation mechanisms of adenine via ring-puckering or ring-opening conical intersections. By providing additional decay channels, the electron/proton exchange reactions with water can account for the observed significantly shortened excited-state lifetime of adenine in aqueous environments. These findings indicate that adenine possibly was not only a photostabilizer at the beginning of life, but also a primordial photocatalyst for water splitting.
Collapse
Affiliation(s)
- Xiuxiu Wu
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany.
| | | | | | | | | |
Collapse
|
32
|
Martínez-Fernández L, Arslancan S, Ivashchenko D, Crespo-Hernández CE, Corral I. Tracking the origin of photostability in purine nucleobases: the photophysics of 2-oxopurine. Phys Chem Chem Phys 2019; 21:13467-13473. [DOI: 10.1039/c9cp00879a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molding purine PES through functionalization: whilst purine C2-substitution maintains the features of the spectroscopic PES of the heterocycle, C6-functionalization reshapes its topography leading to photostable systems.
Collapse
Affiliation(s)
| | - Serra Arslancan
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Dmytro Ivashchenko
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Departamento de Química e Bioquímica
| | | | - Inés Corral
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- IADCHEM
| |
Collapse
|
33
|
Plasser F, Gómez S, Menger MFSJ, Mai S, González L. Highly efficient surface hopping dynamics using a linear vibronic coupling model. Phys Chem Chem Phys 2018; 21:57-69. [PMID: 30306987 DOI: 10.1039/c8cp05662e] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report an implementation of the linear vibronic coupling (LVC) model within the surface hopping dynamics approach and present utilities for parameterizing this model in a blackbox fashion. This results in an extremely efficient method to obtain qualitative and even semi-quantitative information about the photodynamical behavior of a molecule, and provides a new route toward benchmarking the results of surface hopping computations. The merits and applicability of the method are demonstrated in a number of applications. First, the method is applied to the SO2 molecule showing that it is possible to compute its absorption spectrum beyond the Condon approximation, and that all the main features and timescales of previous on-the-fly dynamics simulations of intersystem crossing are reproduced while reducing the computational effort by three orders of magnitude. The dynamics results are benchmarked against exact wavepacket propagations on the same LVC potentials and against a variation of the electronic structure level. Four additional test cases are presented to exemplify the broader applicability of the model. The photodynamics of the isomeric adenine and 2-aminopurine molecules are studied and it is shown that the LVC model correctly predicts ultrafast decay in the former and an extended excited-state lifetime in the latter. Futhermore, the method correctly predicts ultrafast intersystem crossing in the modified nucleobase 2-thiocytosine and its absence in 5-azacytosine while it fails to describe the ultrafast internal conversion to the ground state in the latter.
Collapse
Affiliation(s)
- Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK.
| | | | | | | | | |
Collapse
|
34
|
Stange UC, Temps F. Ultrafast electronic deactivation of UV-excited adenine and its ribo- and deoxyribonucleosides and -nucleotides: A comparative study. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
36
|
Crespo-Otero R, Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chem Rev 2018; 118:7026-7068. [DOI: 10.1021/acs.chemrev.7b00577] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | |
Collapse
|
37
|
Affiliation(s)
- Basile F. E. Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Todd J. Martínez
- Department of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
38
|
Marchetti B, Karsili TNV, Ashfold MNR, Domcke W. A 'bottom up', ab initio computational approach to understanding fundamental photophysical processes in nitrogen containing heterocycles, DNA bases and base pairs. Phys Chem Chem Phys 2018; 18:20007-27. [PMID: 26980149 DOI: 10.1039/c6cp00165c] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The availability of non-radiative decay mechanisms by which photoexcited molecules can revert to their ground electronic state, without experiencing potentially deleterious chemical transformation, is fundamental to molecular photostability. This Perspective Article combines results of new ab initio electronic structure calculations and prior experimental data in an effort to systematise trends in the non-radiative decay following UV excitation of selected families of heterocyclic molecules. We start with the prototypical uni- and bicyclic molecules phenol and indole, and explore the structural and photophysical consequences of incorporating progressively more nitrogen atoms within the respective ring structures en route to the DNA bases thymine, cytosine, adenine and guanine. For each of the latter, we identify low energy non-radiative decay pathways via conical intersections with the ground state potential energy surface accessed by out-of-plane ring deformations. This is followed by summary descriptions and illustrations of selected rival (electron driven H atom transfer) non-radiative excited state decay processes that demand consideration once the nucleobases are merely components in larger biomolecular systems like nucleosides, and both individual and stacked base-pairs.
Collapse
Affiliation(s)
- Barbara Marchetti
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Tolga N V Karsili
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK. and Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
39
|
Dijkstra AG, Prokhorenko VI. Simulation of photo-excited adenine in water with a hierarchy of equations of motion approach. J Chem Phys 2017; 147:064102. [DOI: 10.1063/1.4997433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Arend G. Dijkstra
- University of Leeds, School of Chemistry and School of Physics and Astronomy, Leeds LS2 9JT, United Kingdom
| | - Valentyn I. Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
40
|
Mondal S, Puranik M. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation. Phys Chem Chem Phys 2017; 18:13874-87. [PMID: 27146198 DOI: 10.1039/c6cp01746k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first solvation shell within an ultrafast timescale of less than 30 fs following photoexcitation.
Collapse
Affiliation(s)
- Sayan Mondal
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
41
|
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
42
|
Mondal S, Puranik M. Ultrafast Nuclear Dynamics of Photoexcited Guanosine-5'-Monophosphate in Three Singlet States. J Phys Chem B 2017; 121:7095-7107. [PMID: 28653848 DOI: 10.1021/acs.jpcb.7b05735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report measurement of resonance Raman (RR) spectra of guanosine-5'-monophosphate (GMP), a DNA nucleotide at excitation wavelengths throughout its ππ* absorption band (Bb) in the 210-230 nm range. From these data, we constructed wavelength-dependent Raman intensity excitation profiles (REPs) for all observed modes. These profiles and the absorption spectrum were then modeled using self-consistent simulations based on the time-dependent wave packet propagation formalism. We inferred the initial structural dynamics of GMP immediately after photoexcitation in terms of dimensionless displacements. The simulations also provide linewidth-broadening parameters that in turn report on the time scale of dynamics. We compared deduced structural changes in the purine ring upon photoabsorption into the Bb state with those deduced for the two lowest lying ππ* (La and Lb at 280 and 248 nm, respectively) excited states of GMP. We find that excitation to the Lb state lengthens C6-N1 and C2═N3 bonds, which lie along the formation coordinate of various oxidative adducts but Bb excitation does not. We also find that photoabsorption by the Bb state weakens the C8-N9 bond and thus might assist imidazole ring opening via cleavage of the same bond. Electronic excitation to different ππ* states of the guanine chromophore results in contrasting structural changes; although absorption by the La and Lb states induces expansion of pyrimidine and contraction of imidazole rings, excitation results in overall shrinkage of both the rings. Computed absolute changes in internal coordinates imply that photoexcitation to any of the three singlet states of GMP does not lead directly to the formation of a cation radical of guanine.
Collapse
Affiliation(s)
- Sayan Mondal
- Indian Institute of Science Education and Research , Pune 411008, India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research , Pune 411008, India
| |
Collapse
|
43
|
Park JW, Shiozaki T. Analytical Derivative Coupling for Multistate CASPT2 Theory. J Chem Theory Comput 2017; 13:2561-2570. [DOI: 10.1021/acs.jctc.7b00018] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
44
|
Saha S, Quiney HM. Solvent effects on the excited state characteristics of adenine–thymine base pairs. RSC Adv 2017. [DOI: 10.1039/c7ra03244g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A systematic analysis of the excited state characteristics of the DNA base pair adenine–thymine in stacked and Watson–Crick hydrogen bonded configurations has been carried out in this study.
Collapse
Affiliation(s)
- S. Saha
- ARC Centre of Excellence for Advanced Molecular Imaging
- Theoretical Condensed Matter Physics Group
- School of Physics
- The University of Melbourne
- Australia
| | - H. M. Quiney
- ARC Centre of Excellence for Advanced Molecular Imaging
- Theoretical Condensed Matter Physics Group
- School of Physics
- The University of Melbourne
- Australia
| |
Collapse
|
45
|
Mondal S, Puranik M. Ultrafast structural dynamics of photoexcited adenine. Phys Chem Chem Phys 2017; 19:20224-20240. [DOI: 10.1039/c7cp03092d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ultraviolet Resonance Raman (UVRR) spectroscopy derives distinct electronic properties of adenine in the La (260 nm) and Bb (210 nm) excited states.
Collapse
Affiliation(s)
- Sayan Mondal
- Indian Institute of Science Education and Research
- Pune – 411008
- India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research
- Pune – 411008
- India
| |
Collapse
|
46
|
Marquetand P, Nogueira JJ, Mai S, Plasser F, González L. Challenges in Simulating Light-Induced Processes in DNA. Molecules 2016. [PMCID: PMC6155660 DOI: 10.3390/molecules22010049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this contribution, we give a perspective on the main challenges in performing theoretical simulations of photoinduced phenomena within DNA and its molecular building blocks. We distinguish the different tasks that should be involved in the simulation of a complete DNA strand subject to UV irradiation: (i) stationary quantum chemical computations; (ii) the explicit description of the initial excitation of DNA with light; (iii) modeling the nonadiabatic excited state dynamics; (iv) simulation of the detected experimental observable; and (v) the subsequent analysis of the respective results. We succinctly describe the methods that are currently employed in each of these steps. While for each of them, there are different approaches with different degrees of accuracy, no feasible method exists to tackle all problems at once. Depending on the technique or combination of several ones, it can be problematic to describe the stacking of nucleobases, bond breaking and formation, quantum interferences and tunneling or even simply to characterize the involved wavefunctions. It is therefore argued that more method development and/or the combination of different techniques are urgently required. It is essential also to exercise these new developments in further studies on DNA and subsystems thereof, ideally comprising simulations of all of the different components that occur in the corresponding experiments.
Collapse
|
47
|
Nelson T, Naumov A, Fernandez-Alberti S, Tretiak S. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Röhr MIS, Mitrić R, Petersen J. Vibrationally resolved optical spectra and ultrafast electronic relaxation dynamics of diamantane. Phys Chem Chem Phys 2016; 18:8701-9. [PMID: 26954327 DOI: 10.1039/c6cp00137h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present theoretical simulations of the vibrationally resolved photoabsorption and photoemission spectra of diamantane combined with nonadiabatic dynamics simulations in order to identify the state responsible for the measured photoluminescence of diamantane and to determine the mechanism and the time-scales of the electronic state relaxation. Diamantane is a prototype representative of the diamondoid class of hydrocarbons which have recently gained significant interest due to their unique electronic properties. This molecule is characterised by an almost dark first excited state, which therefore cannot be directly excited. Moreover, the calculated vertical transition from the geometrically relaxed first excited state to the ground state also bears no intensity. However, recent experiments suggest that the observed photoluminescence originates from the lowest excited state. We have performed spectral simulations in the frame of the Herzberg-Teller approximation for vibronic transitions, which goes beyond the Franck-Condon approximation of constant transition dipole moments and takes into account their linear dependence on the geometrical deformations. In this way, the available experimental spectrum could be fully reproduced, resolving the issue about the origin of the photoluminescence. Moreover, the photoemission from the first excited state also implies that ultrafast nonradiative processes have to take place after the initial excitation of the bright electronic states. We have determined the mechanism and time-scales of these relaxation processes by performing nonadiabatic dynamics simulations in the manifold of s- and p-type Rydberg excited states. The simulations demonstrate that the lowest excited electronic state of diamantane gains significant population from higher-lying states already after several hundreds of femtoseconds. Thus, our dynamics simulations combined with spectra calculated using the Herzberg-Teller approximation allow us to fully explain the observed photoabsorption and photoemission properties of diamantane.
Collapse
Affiliation(s)
- Merle I S Röhr
- Institut für physikalische und theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany.
| | - Roland Mitrić
- Institut für physikalische und theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany.
| | - Jens Petersen
- Institut für physikalische und theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany.
| |
Collapse
|
49
|
Affiliation(s)
- Xiaolei Zhu
- Department of Chemistry, Johns Hopkins University Baltimore, MD, USA
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
50
|
Li Q, Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Voityuk AA, Mukamel S, Roca-Sanjuán D, Garavelli M, Blancafort L. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate. Chemistry 2016; 22:7497-507. [PMID: 27113273 PMCID: PMC5021121 DOI: 10.1002/chem.201505086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 02/04/2023]
Abstract
The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems.
Collapse
Affiliation(s)
- Quansong Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Ivan Rivalta
- Univ Lyon, >Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 69342, Lyon, France
| | - Alexander A Voityuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilvi, 17071, Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, 46071, Valencia, Spain
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
- Univ Lyon, >Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 69342, Lyon, France.
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilvi, 17071, Girona, Spain.
| |
Collapse
|