1
|
Haddock TN, Delgado T, Alías‐Rodríguez M, de de Graaf C, Enachescu C, van der Veen RM. Size and Surface Effects in the Ultrafast Dynamics of Strongly Cooperative Spin-Crossover Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405571. [PMID: 39523726 PMCID: PMC11735884 DOI: 10.1002/smll.202405571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Cooperative photoinduced switching of molecular materials at the nanoscale is still in its infancy. Strongly cooperative spin-crossover nanomaterials are arguably the best prototypes of photomagnetic and volume-changing materials that can be manipulated by short pulses of light. Open questions remain regarding their non-equilibrium dynamics upon light excitation and the role of cooperative elastic interactions in nanoscale systems that are characterized by large surface/volume ratios. Femtosecond-resolved broadband spectroscopy is performed on nanorods of the strongly cooperative Fe-triazole, which undergoes a reversible low-spin to high-spin (HS) phase transition ≈360 K. Supported by density functional theory and mechano-elastic Monte Carlo simulations, a marked difference is observed in the photoswitching dynamics at the surface of the nanoparticles compared with the core. Surprisingly, under low excitation (<2%) conditions, there occurs a transient increase in the HS population at the surface on the picosecond time scale, while the HS population in the core decays concomitantly. These results shed light onto the importance of surface properties and dynamical size limits of nanoscale photoresponsive nanomaterials that can be used in a broad range of applications.
Collapse
Affiliation(s)
- Tyler N. Haddock
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Teresa Delgado
- Chimie ParisTech‐CNRSIRCP (PSL)11 Rue P. et M. CurieParis75005France
| | - Marc Alías‐Rodríguez
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel·lí Domingo 1Tarragona43 007Spain
| | - Coen de de Graaf
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliMarcel·lí Domingo 1Tarragona43 007Spain
| | - Cristian Enachescu
- Department of PhysicsAlexandru Ioan Cuza UniversityBlvd. Carol I, nr. 11Iasi700506Romania
| | - Renske M. van der Veen
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Department for Atomic‐Scale Dynamics in Light‐Energy ConversionHelmholtz Zentrum Berlin für Materialien und Energie GmbHHahn‐Meitner‐Platz 114109BerlinGermany
- Institute of Optics and Atomic PhysicsTechnical University of BerlinStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|
2
|
Getzner L, Vendier L, Molnár G, Rotaru A, Cobo S, Bousseksou A. Hofmann Clathrates: A "Blue Box" Approach to Modulate Spin-Crossover Properties. Angew Chem Int Ed Engl 2024; 63:e202412525. [PMID: 39155266 DOI: 10.1002/anie.202412525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Hofmann coordination polymers (CPs) with cationic ligands provide an innovative strategy for recognizing π-electron-rich aromatic molecules - similar to the "little blue box". In this study, we demonstrate that hydroquinone molecules can be incorporated into these coordination polymers when redox-active bipyridinium derivatives are used as axial ligands. The insertion leads to a significant structural modification, resulting in a shift of the spin transition by 150 K and an approximate 23 % increase in volume, caused by the strong donor-acceptor π-π stacking interaction formed between the ligands and the guest molecule. These findings have been confirmed through temperature-dependent single crystal X-ray diffraction, magnetic measurements and optical reflectivity measurements.
Collapse
Affiliation(s)
- Livia Getzner
- LCC, Toulouse, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
| | - Laure Vendier
- LCC, Toulouse, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
| | - Gábor Molnár
- LCC, Toulouse, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
| | - Aurelian Rotaru
- Department of Electrical Engineering and Computer Science & Research Center MANSiD, Stefan cel Mare University of Suceava, University St., No. 13, 720229, Suceava, Romania
| | - Saioa Cobo
- LCC, Toulouse, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
| | | |
Collapse
|
3
|
Luo Y, Zhou RH, Shao Z, Liu D, Lu HH, Shang MJ, Zhao L, Liu T, Meng YS. Effects of mono- or di-fluoro-substitution on spin crossover behavior in a pair of Schiff base-like Fe II-coordination polymers. Dalton Trans 2024; 53:14692-14700. [PMID: 39157994 DOI: 10.1039/d4dt01103a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Spin crossover (SCO) has long been a hot topic in the field of molecular magnetism owing to its unique bistability character. Rational control of thermal hysteresis and transition temperature (T1/2) is crucial for their practical applications, which rely on precise manipulation of the substituents of SCO coordinating ligands and molecular packing interactions. In this study, we designed two different bridging ligands (2-FDPB: 4,4'-(2-fluoro-1,4-phenylene)dipyridine; 2,3-FDPB: 4,4'-(2,3-difluoro-1,4-phenylene)dipyridine) featuring one and two fluoro substitution on the central benzene ring and applied a Schiff base-like equatorial tetradentate ligand {diethyl(E,E)-2,2'-[4,5-difluoro-1,2-phenyl-bis(iminomethylidyne)]bis(3-oxobutanoate)-(2-)-N,N',O3,O3'} (H2L) to coordinate with the FeII ion. Two FeII-coordination chain polymers [FeII(L)(2,3-FDPB)]·0.25CH2Cl2 (1) and [FeII(L)(2-FDPB)]·0.5CH3OH (2) were obtained. 1 crystallizes in the monoclinic P21/n space group with only one FeII center, while 2 crystallizes in the triclinic P1̄ space group with two independent FeII centers. Unlike the identical 2D layer stacking in 1, 2 exhibited alternating stacking of the extending 2D layers and meshed chains. Magnetic measurements revealed the typical thermally induced spin crossover behavior (SCO): 1 exhibited a 41 K-wide thermal hysteresis with transition temperatures of T1/2↑ = 245 K and T1/2↓ = 204 K, while 2 showed a higher transition temperature (T1/2 = 330 K) with no thermal hysteresis. Magneto-structural correlation studies suggest that the electron-withdrawing effect present in the fluoro substituents does not have a significant impact on the SCO behaviors. Despite the fluoro substituents having a similar atomic radius of hydrogen atoms, variations in the number of these substituents can alter the crystallization behavior of these complexes, which in turn affects the solvents, molecular stacking patterns, and intermolecular interactions, ultimately influencing the SCO behaviors.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Ren-He Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Zhen Shao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Dan Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Han-Han Lu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Meng-Jia Shang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
4
|
Ma R, Chen L, Liu Z, Lin K, Li Q, Ji W, Xu H, Chen X, Deng J, Xing X. Regulating the thermal expansion of a [FePt(CN) 4] layer by axial coordination and dimensional reduction. Dalton Trans 2024; 53:11556-11562. [PMID: 38919143 DOI: 10.1039/d4dt01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Thermal expansion regulation by chemical decoration at a molecular level is of great technological value for materials science. Herein, we show that the spin crossover active compound Fe(pyz)Pt(CN)4 (pyz = pyrazine) shows a rare 2D negative thermal expansion (NTE) in the ab-plane. By introducing axial coordination iodine ions or reducing the framework dimension from 3D to 2D, the NTE behavior can be effectively switched to positive thermal expansion (PTE) or even zero thermal expansion (ZTE). Moreover, it is found that different spin states of Fe2+ also influence the magnitude of NTE. Compared with the low-spin (LS) sate, the high-spin (HS) state tends to enhance the magnitude of NTE. Combined in situ structural and Raman spectral analyses revealed that the NTE mainly originates from the transverse vibration of a bridging cyano group and the tailorable thermal expansion is closely related to the state of the Fe-CN-Pt linkage. The present study shows how the rational regulation of the building unit and framework dimensions can effectively control thermal expansion behaviors. This insight can serve as guidance for designing and synthesizing novel NTE materials.
Collapse
Affiliation(s)
- Rui Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Liang Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhanning Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Weihua Ji
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hankun Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
5
|
Lai F, Molnár G, Cobo S, Bousseksou A. Spin crossover in {Fe(pyrazine)[M(CN) 4]} (M = Ni, Pt) thin films assembled on fused silica substrates. Dalton Trans 2024; 53:7197-7205. [PMID: 38577870 DOI: 10.1039/d4dt00454j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Thin films with thicknesses in the range between ca. 10-50 nm of the spin crossover (SCO) compound {Fe(pyrazine)[μ4-M(CN)4]} (M = Ni, Pt) have been deposited on fused silica substrates using a sequential assembly method and 4-pyridinecarboxylic acid as anchoring layer. Film morphology and crystallinity were assessed by means of atomic force microscopy and grazing incidence X-ray diffraction, respectively. The intensity of the π-π* transition of the pyrazine ligand at 270 nm, being rather insensitive to the spin state of the complex, was used to follow the film growth as a function of different deposition parameters. On the other hand, the spin state changes were inferred from the temperature dependence of absorption bands appearing at 540, 490 and 310 nm in the low spin state. In line with their amorphous nature, each film displays a very gradual thermal spin crossover between ca. 100-300 K, independently of its thickness and deposition conditions. These results are not only interesting to better understand the effects of size reduction and organization on the SCO phenomenon, but the deposition of these SCO compounds on electrically insulating and/or optically transparent oxide surfaces opens also the door for various photonic or electronic applications.
Collapse
Affiliation(s)
- Fayan Lai
- LCC, CNRS and Université de Toulouse (UPS, INP), Toulouse, France.
| | - Gábor Molnár
- LCC, CNRS and Université de Toulouse (UPS, INP), Toulouse, France.
| | - Saioa Cobo
- LCC, CNRS and Université de Toulouse (UPS, INP), Toulouse, France.
| | | |
Collapse
|
6
|
Dutta M, Bisht S, Ghosh P, Chilug AI, Mann D, Enachescu C, Shatruk M, Chakraborty P. Combined Experimental and Mechanoelastic Modeling Studies on the Low-Spin Stabilized Mixed Crystals of 3D Oxalate-Based Coordination Materials. Inorg Chem 2023; 62:15050-15062. [PMID: 37677120 DOI: 10.1021/acs.inorgchem.3c01919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Structural studies involving single-crystal and powder X-ray diffraction analysis have been performed on dehydrated coordination networks of the [NixCo1-x(bpy)3][LiCr(ox)3] series, 0 ≤ x ≤ 1, (bpy = 2,2'-bipyridine). The high-symmetry cubic 3D structure of these materials is formed by oxalate anions bridging alternating Cr3+ and Li+ ions into an anionic framework, which contains large cavities that incorporate the [NixCo1-x(bpy)3]2+ cations. Irrespective of the Co/Ni ratio, all of the mixed samples are phase-pure and retain the high-symmetry cubic structure, with the lattice parameters gradually decreasing upon increasing Ni(II) concentration. The influence of the Ni(II) dilution on the magnetic behavior of these materials is substantial. For pure [Co(bpy)3][LiCr(ox)3], a gradual but incomplete thermal spin-crossover is evident due to the effect of the chemical pressure applied by the [LiCr(ox)3]2- framework, which stabilizes the low-spin (LS) 2E state relative to the high-spin (HS) 4T1 state of the Co(II) ion. Upon increasing the Ni(II) content, the spin-crossover becomes even more gradual and incomplete and eventually is not observed for pure [Ni(bpy)3][LiCr(ox)3]. The average spin-crossover temperature increases with the increasing Ni(II) content, suggesting a higher degree of chemical pressure applied by the oxalate framework manifested by changing the ΔE0HL toward positive values. The magnetic behavior of all these framework materials has been explained by the mechanoelastic model, considering different radii for Co and Ni molecules and different interactions between Co-Co sites and Co-Ni sites. The model reproduced the incomplete transition, with the HS residual fraction at 300 K decreasing with increasing Ni concentration, and provided microscopic snapshots of the systems, showing how the existence of impurities prevented the spreading of Co atoms in the HS state.
Collapse
Affiliation(s)
- Mousumi Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shubham Bisht
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Prabir Ghosh
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Dallas Mann
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | | | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Pradip Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
7
|
Albavera-Mata A, Hennig RG, Trickey SB. Transition Temperature for Spin-Crossover Materials with the Mean Value Ensemble Hubbard- U Correction. J Phys Chem A 2023; 127:7646-7654. [PMID: 37669434 DOI: 10.1021/acs.jpca.3c03520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Calculation of transition temperatures T1/2 for thermally driven spin-crossover in condensed phases is challenging, even with sophisticated state-of-the-art density functional approximations. The first issue is the accuracy of the adiabatic crossover energy difference ΔEHL between the low- and high-spin states of the bistable metal-organic complexes. The other is the proper inclusion of entropic contributions to the Gibbs free energy from the electronic and vibrational degrees of freedom. We discuss the effects of treatments of both contributions upon the calculation of thermochemical properties for a set of 20 spin-crossover materials using a Hubbard-U correction obtained from a reference ensemble spin-state. The U values obtained from a simplest bimolecular representation may overcorrect, somewhat, the ΔEHL values, hence giving somewhat excessive reduction of the T1/2 results with respect to their U = 0 values in the crystalline phase. We discuss the origins of the discrepancies by analyzing different sources of uncertainties. By use of a first-coordination-sphere approximation and the assumption that vibrational contributions from the outermost atoms in a metal-organic complex are similar in both low- and high-spin states, we achieve T1/2 results with the low-cost, widely used PBE generalized gradient density functional approximation comparable to those from the more costly, more sophisticated r2SCAN meta-generalized gradient approximation. The procedure is promising for use in high-throughput materials screening, because it combines rather low computational effort requirements with freedom from user manipulation of parameters.
Collapse
Affiliation(s)
- Angel Albavera-Mata
- Center for Molecular Magnetic Quantum Materials, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, 1885 Stadium Road, Gainesville, Florida 32611, United States
| | - Richard G Hennig
- Center for Molecular Magnetic Quantum Materials, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, 1885 Stadium Road, Gainesville, Florida 32611, United States
| | - S B Trickey
- Center for Molecular Magnetic Quantum Materials, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
- Department of Physics and Department of Chemistry, University of Florida, P.O. Box 118435, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Olejnik A, Kopec W, Maskowicz D, Sawczak M. Spin-Resolved Band Structure of Hoffman Clathrate [Fe(pz) 2Pt(CN) 4] as an Essential Tool to Predict Optical Spectra of Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15848-15862. [PMID: 36929712 DOI: 10.1021/acsami.2c22626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Paramount spin-crossover properties of the 3D-Hoffman metalorganic framework (MOF) [Fe(pz)2Pt(CN)4] are generally described on the basis of the ligand field theory, which provides adequate insight into theoretical and simulation analysis of spintronic complexes. However, the ligand field approximation does not take into account the 3D periodicity of the actual complex lattice and surface effects and therefore cannot predict a full-scale periodic structure without utilizing more advanced methods. Therefore, in this paper, the electronic properties of the exemplar MOF were analyzed from the band structure perspective in low-spin (LS) and high-spin (HS) states. The density-of-states spectra determined for both spin-up and spin-down electrons of Fe d6 orbitals indicate spin-orbital splitting and delocalization for HS due to spin polarization in the iron atom ligand field. Presence of the surface states in the real crystal causes a red shift of the metal-metal charge transfer (MMCT) and metal-ligand charge transfer (MLCT) peaks for both HS and LS states. The addition of residual water molecules and disorder among the pyrazine rings reveal additional influences on the positions of the pyrazine band and, therefore, on the absorption spectra of the crystal. The results show a magnification of the peak correlated with the MLCT in the HS state and a significant red shift of the LS characteristic absorption band. The presented approach involving band structure analysis delivers a more complete image of the electronic properties of the [Fe(pz)2Pt(CN)4] crystalline network and can be a landmark for insightful studies of other MOFs.
Collapse
Affiliation(s)
- Adrian Olejnik
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| | - Wioletta Kopec
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| | - Dominik Maskowicz
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| | - Mirosław Sawczak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland
| |
Collapse
|
9
|
Resines-Urien E, Fernandez-Bartolome E, Martinez-Martinez A, Gamonal A, Piñeiro-López L, Costa JS. Vapochromic effect in switchable molecular-based spin crossover compounds. Chem Soc Rev 2023; 52:705-727. [PMID: 36484276 DOI: 10.1039/d2cs00790h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coordination complexes based on transition metal ions displaying [Ar]3d4-3d7 electronic configurations can undergo the likely most spectacular switchable phenomena found in molecular coordination chemistry, the well-known Spin Crossover (SCO). SCO phenomena is a detectable, reproducible and reversible switch that occurs between the high spin (HS) and low spin (LS) electronic states of the transition metal actuated by different stimuli (i.e. light, temperature, pressure, the presence of an analyte). Moreover, the occurrence of SCO phenomena causes different outputs, one of them being a colour change. Altogether, an analyte in gas form could be detected by naked eye once it has triggered the corresponding HS ↔ LS transition. This vapochromic effect could be used to detect volatile molecules using a low-cost technology, including harmful chemical substances, gases and/or volatile organic compounds (VOCs) that are present in our environment, in our home or at our workplace. The present review condenses all reported iron coordination compounds where the colour change induced by a given molecule in its gas form is coupled to a HS ↔ LS spin transition. Special emphasis has been made on describing the nature of the post-synthetic modification (PSM) taking place in the material upon the analyte uptake. In this case, three types of PSM can be distinguished: based on supramolecular contacts and/or leading to a coordinative or covalent bond. In the latter, a colour change not only indicates the switch of the spin state in the material but also the formation of a new compound with different properties. It is important to indicate that some of the SCO coordination compounds discussed in the current report have been part of other spin crossover reviews, that have gathered thermally induced SCO compounds and the influence of guest molecules on the SCO behaviour. However, in the majority of examples in these reviews, the change of colour upon the uptake of analytes is not associated with a spin transition at room temperature. In addition, the observed colour variations have been mainly discussed in terms of host-guest interactions, when they can also be induced by a PSM taking place in different sites of the molecule, like the Fe(II) coordination sphere or by chemically altering its inorganic and/or organic linkers. Therefore, we present here for the first time an exhaustive compilation of all systems in which the interaction between the coordination compounds and the vapour analytes leads to a colour change due to a spin transition in the metal centre at room temperature.
Collapse
|
10
|
Zhu HL, Lei YR, Meng YS, Liu T, Oshio H. A Cyanide-bridged FeII–MoV-based Coordination Polymer Showing Spin Crossover. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Kumar B, Paul A, Mondal DJ, Paliwal P, Konar S. Spin-State Modulation in Fe II -Based Hofmann-Type Coordination Polymers: From Molecules to Materials. CHEM REC 2022; 22:e202200135. [PMID: 35815939 DOI: 10.1002/tcr.202200135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Spin crossover complexes that reversibly interconvert between two stable states imitate a binary state of 0 and 1, delivering a promising possibility to address the data processing concept in smart materials. Thus, a comprehensive understanding of the modulation of magnetic transition between high spin and low spin and the factors responsible for stabilizing the spin states is an essential theme in modern materials design. In this context, the present review attempts to provide a concise outline of the design strategy employed at the molecular level for fine-tuning the spin-state switching in FeII -based Hofmann-type coordination polymers and their effects on the optical and magnetic response. In addition, development towards the nanoscale architectures of HCPs, i. e., in terms of nanoparticles and thin films, are emphasized to bridge the gap between the laboratory and reality.
Collapse
Affiliation(s)
- Bhart Kumar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Abhik Paul
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Dibya Jyoti Mondal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Piyush Paliwal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
12
|
Nadeem M, Cruddas J, Ruzzi G, Powell BJ. Toward High-Temperature Light-Induced Spin-State Trapping in Spin-Crossover Materials: The Interplay of Collective and Molecular Effects. J Am Chem Soc 2022; 144:9138-9148. [PMID: 35546521 DOI: 10.1021/jacs.2c03202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spin-crossover (SCO) materials display many fascinating behaviors including collective phase transitions and spin-state switching controlled by external stimuli, e.g., light and electrical currents. As single-molecule switches, they have been fêted for numerous practical applications, but these remain largely unrealized-partly because of the difficulty of switching these materials at high temperatures. We introduce a semiempirical microscopic model of SCO materials combining crystal field theory with elastic intermolecular interactions. For realistic parameters, this model reproduces the key experimental results including thermally induced phase transitions, light-induced spin-state trapping (LIESST), and reverse-LIESST. Notably, we reproduce and explain the experimentally observed relationship between the critical temperature of the thermal transition, T1/2, and the highest temperature for which the trapped state is stable, TLIESST, and explain why increasing the stiffness of the coordination sphere increases TLIESST. We propose strategies to design SCO materials with higher TLIESST: optimizing the spin-orbit coupling via heavier atoms (particularly in the inner coordination sphere) and minimizing the enthalpy difference between the high-spin (HS) and low-spin (LS) states. However, the most dramatic increases arise from increasing the cooperativity of the spin-state transition by increasing the rigidity of the crystal. Increased crystal rigidity can also stabilize the HS state to low temperatures on thermal cycling yet leave the LS state stable at high temperatures following, for example, reverse-LIESST. We show that such highly cooperative systems offer a realistic route to robust room-temperature switching, demonstrate this in silico, and discuss material design rationale to realize this.
Collapse
Affiliation(s)
- M Nadeem
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jace Cruddas
- School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Gian Ruzzi
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Group 10 metal-cyanide scaffolds in complexes and extended frameworks: Properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Han SD, Hu JX, Wang GM. Recent advances in crystalline hybrid photochromic materials driven by electron transfer. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214304] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Ridier K, Nicolazzi W, Salmon L, Molnár G, Bousseksou A. Sequential Activation of Molecular and Macroscopic Spin-State Switching within the Hysteretic Region Following Pulsed Light Excitation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105468. [PMID: 34817094 DOI: 10.1002/adma.202105468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Molecular spin-crossover (SCO) compounds constitute a promising class of photoactive materials exhibiting efficient photoinduced phase transitions (PIPTs). Taking advantage of the unique, picture-perfect reproducibility of the spin-transition properties in the compound [Fe(HB(1,2,4-triazol-1-yl)3 )2 ], the spatiotemporal dynamics of the PIPT within the thermodynamic metastability (hysteretic) region of a single crystal is dissected, using pump-probe optical microscopy. Beyond a threshold laser-excitation density, complete PIPTs are evidenced, with conversion rates up to 200 switched molecules per absorbed photon. It is shown that the PIPT takes place through the sequential activation of two (molecular and macroscopic) switching mechanisms, occurring on sub-microsecond and millisecond timescales, governed by the intramolecular and free energy barriers of the system, respectively. The main finding here is that the thermodynamic metastability has strictly no influence on the sub-millisecond switching dynamics. Indeed, before this millisecond timescale, the response of the crystal to the laser excitation involves a gradual, molecular conversion process, as if there were no hysteresis loop. Consequently, in this regime, even a 100% photoinduced conversion may not give rise to a PIPT. These results provide new insight on the intrinsic dynamical limits of the PIPT, which is an important issue from a technological perspective.
Collapse
Affiliation(s)
- Karl Ridier
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - William Nicolazzi
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Lionel Salmon
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| |
Collapse
|
16
|
Fernández-Blanco Á, Mariano LA, Piñeiro-López L, Real JA, Costa JS, Poloni R, Rodríguez-Velamazán JA. Hidden ordered structure in the archetypical Fe(pyrazine)[Pt(CN) 4] spin-crossover porous coordination compound. CrystEngComm 2022. [DOI: 10.1039/d2ce00895e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The actual low-spin state of Fe(pyrazine)Pt(CN)4 implies an ordered arrangement of the pyrazine rings, which significantly affects the spin transition.
Collapse
Affiliation(s)
- Ángel Fernández-Blanco
- Institut Laue Langevin, 71 Avenue des Martyrs, CS 20156-38042, Grenoble, France
- Univ. Grenoble Alpes, SIMaP, Grenoble-INP, CNRS, F-38042, Grenoble, France
| | - Lorenzo A. Mariano
- Univ. Grenoble Alpes, SIMaP, Grenoble-INP, CNRS, F-38042, Grenoble, France
| | - Lucía Piñeiro-López
- IMDEA Nanociencia, Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - José Antonio Real
- Departamento de Química Inorgánica, Insituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Spain
| | - Jose Sanchez Costa
- IMDEA Nanociencia, Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Roberta Poloni
- Univ. Grenoble Alpes, SIMaP, Grenoble-INP, CNRS, F-38042, Grenoble, France
| | | |
Collapse
|
17
|
Hu Y, Picher M, Tran NM, Palluel M, Stoleriu L, Daro N, Mornet S, Enachescu C, Freysz E, Banhart F, Chastanet G. Photo-Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105586. [PMID: 34601766 DOI: 10.1002/adma.202105586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light-induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio-temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time-resolved optical measurements performed on an assembly of these particles.
Collapse
Affiliation(s)
- Yaowei Hu
- Institut de Physique et Chimie des Matériaux, UMR 7504 CNRS, Université de Strasbourg, Strasbourg, F-67034, France
| | - Matthieu Picher
- Institut de Physique et Chimie des Matériaux, UMR 7504 CNRS, Université de Strasbourg, Strasbourg, F-67034, France
| | - Ngoc Minh Tran
- Universite de Bordeaux, CNRS, UMR 5798, LOMA, 358 Cours de la libération, Talence cedex, F-33405, France
| | - Marlène Palluel
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| | - Laurentiu Stoleriu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Nathalie Daro
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| | - Stephane Mornet
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| | - Cristian Enachescu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Eric Freysz
- Universite de Bordeaux, CNRS, UMR 5798, LOMA, 358 Cours de la libération, Talence cedex, F-33405, France
| | - Florian Banhart
- Institut de Physique et Chimie des Matériaux, UMR 7504 CNRS, Université de Strasbourg, Strasbourg, F-67034, France
| | - Guillaume Chastanet
- Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, Pessac, F-33600, France
| |
Collapse
|
18
|
Thin Films of Nanocrystalline Fe(pz)[Pt(CN) 4] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation. MATERIALS 2021; 14:ma14237135. [PMID: 34885290 PMCID: PMC8658641 DOI: 10.3390/ma14237135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN]4 (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser–target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN]4 nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures.
Collapse
|
19
|
Zhao Y, Gobbi M, Hueso LE, Samorì P. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chem Rev 2021; 122:50-131. [PMID: 34816723 DOI: 10.1021/acs.chemrev.1c00497] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.
Collapse
Affiliation(s)
- Yuda Zhao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France.,School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People's Republic of China
| | - Marco Gobbi
- Centro de Fisica de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain.,CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
20
|
Kawabata S, Nakabayashi K, Imoto K, Klimke S, Renz F, Ohkoshi SI. Second harmonic generation on chiral cyanido-bridged Fe II-Nb IV spin-crossover complexes. Dalton Trans 2021; 50:8524-8532. [PMID: 34075991 DOI: 10.1039/d1dt01324f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporating chiral organic ligands into cyanido-bridged FeII-NbIV assemblies synthesized chiral spin-crossover complexes, FeII2[NbIV(CN)8](L)8·6H2O (L = R-, S-, or rac-1-(3-pyridyl)ethanol: R-FeNb, S-FeNb, or rac-FeNb). Rietveld analyses based on a racemic complex of rac-FeNb indicate that the chiral complexes have a cubic crystal structure in the I213 space group with a three-dimensional cyanido-bridged FeII-NbIV coordination network. All the complexes exhibit spin crossover between the high-spin (HS) and the low-spin (LS) FeII states without thermal hysteresis. Chiral complexes of R-FeNb and S-FeNb show second harmonic generation (SHG) due to their non-centrosymmetric structure. The I213 space group provides second-order susceptibility tensor elements of χxyz, χyzx, and χzxy, which contribute to SHG. The temperature-dependent second harmonic light intensity change is due to spin crossover between FeIIHS and FeIILS.
Collapse
Affiliation(s)
- Shintaro Kawabata
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Stephen Klimke
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
21
|
Tangoulis V, Polyzou CD, Gkolfi P, Lalioti N, Malina O, Polaskova M. 2-D spin crossover materials at the nanometric scale: the effects of the size-reduction on the magnetic properties. Dalton Trans 2021; 50:3109-3115. [PMID: 33570077 DOI: 10.1039/d1dt00250c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin Crossover (SCO) particles at the nanometric scale provide an alternative point of view and a new perspective concerning the development of a new generation of spintronic, electronic, photonic and mechanical devices. The coexistence of the SCO phenomenon with the accompanying hysteresis loop enhances the functionality of future devices for storing and processing information. Despite all promising facts, the SCO phenomena are greatly affected by cooperativity issues resulting in a direct relation between the decrease of the size of nanopatricle and the overall decrease of cooperativity towards more gradual spin transitions. This minireview aims to summarise the synthetic techniques for the synthesis of 2-D FeII SCO particles at the nanometric scale, an underexplored area of research, highlighting the effects of the size-reduction on the magnetic properties of the corresponding nanoparticles and hopefuly showcasing the importance of studying in the context of 2D limit the SCO phenomena.
Collapse
Affiliation(s)
| | | | - Patroula Gkolfi
- Department of Chemistry, University of Patras, 26504 Patras, Greece.
| | - Nikolia Lalioti
- Department of Chemistry, University of Patras, 26504 Patras, Greece.
| | - Ondrej Malina
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, KříŽkovského 511/8, Olomouc, 779 00, Czech Republic
| | - Michaela Polaskova
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, KříŽkovského 511/8, Olomouc, 779 00, Czech Republic and Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
22
|
Gebretsadik T, Yang Q, Wu J, Tang J. Hydrazone based spin crossover complexes: Behind the extra flexibility of the hydrazone moiety to switch the spin state. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213666] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Hu JX, Jiang XF, Ma YJ, Liu XR, Ge BD, Wang AN, Wei Q, Wang GM. Optically actuating ultra-stable radicals in a large π-conjugated ligand constructed photochromic complex. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9891-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Nakaya M, Ohtani R, Lindoy LF, Hayami S. Light-induced excited spin state trapping in iron(iii) complexes. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01188f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review discusses the correlation of the local and whole molecular structure of iron(iii) complexes with the magnetic properties including the light-induced excited spin-state trapping (LIESST) effect.
Collapse
Affiliation(s)
- Manabu Nakaya
- Department of Chemistry
- Faculty of Science
- Josai University
- Sakado
- Japan
| | - Ryo Ohtani
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | | | - Shinya Hayami
- Department of Chemistry
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| |
Collapse
|
25
|
Gong Y, Li ZH, Yan X, Wang YQ, Zhao CY, Han WK, Hu QT, Lu HS, Gu ZG. Bivariate Metal-Organic Frameworks with Tunable Spin-Crossover Properties. Chemistry 2020; 26:12472-12480. [PMID: 32578255 DOI: 10.1002/chem.202002544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Indexed: 11/05/2022]
Abstract
In this work, pyrazine (A), aminopyrazine (B), quinoxaline (C), and 5,6,7,8-tetrahydroquinoxaline (D) have been screened out among a large number of pyrazine derivatives to construct Hofmann-type metal-organic frameworks (MOFs) Fe(L)[M(CN)4 ] (M=Pt, Pd) with similar 3D pillared-layer structures. X-ray single-crystal diffraction reveals that the alternate linkage between M and FeII ions through cyano bridges forms the 2D extended metal cyanide sheets, and ligands A-D acted as vertical columns to connect the 2D sheets to give 3D pillared-layer structures. Subsequently, a series of bivariate MOFs were constructed by pairwise combination of the four ligands A-D, which were confirmed by 1 H NMR, PXRD, FTIR, and Raman spectroscopy. The results demonstrated that ligand size and crystallization rate play a dominant role in constructing bivariate Hofmann-type MOFs. More importantly, the spin-crossover (SCO) properties of the bivariate MOFs can be finely tuned by adjusting the proportion of the two pillared ligands in the 3D Hofmann-type structures. Remarkably, the spin transition temperatures, Tc ↑ and Tc ↓ of Fe(A)x (B)1-x [Pt(CN)4 ] (x=0 to 1) can be adjusted from 239 to 254 K and from 248 to 284 K, respectively. Meanwhile, the width of the hysteresis loops can be widened from 9 to 30 K. Changing Pt to Pd, the hysteresis loops of Fe(A)x (B)1-x [Pd(CN)4 ] can be tuned from 9 (Tc ↑=215 K, Tc ↓=206 K) to 24 K (Tc ↑=300 K, Tc ↓=276 K). This research provides wider implications in the development of advanced bistable materials, especially in precisely regulating SCO properties.
Collapse
Affiliation(s)
- Yu Gong
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Hua Li
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ya-Qin Wang
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chen-Yang Zhao
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Qing-Tao Hu
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hui-Shu Lu
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China.,International Joint Research Center for Photoresponsive, Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
26
|
|
27
|
Chen YC, Meng Y, Dong YJ, Song XW, Huang GZ, Zhang CL, Ni ZP, Navařík J, Malina O, Zbořil R, Tong ML. Light- and temperature-assisted spin state annealing: accessing the hidden multistability. Chem Sci 2020; 11:3281-3289. [PMID: 34122835 PMCID: PMC8156335 DOI: 10.1039/c9sc05971g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Among responsive multistable materials, spin crossover (SCO) systems are of particular interest for stabilizing multiple spin states with various stimulus inputs and physical outputs. Here, in a 2D Hofmann-type coordination polymer, [Fe(isoq)2{Au(CN)2}2] (isoq = isoquinoline), a medium-temperature annealing process is introduced after light/temperature stimulation, which accesses the hidden multistability of the spin state. With the combined effort of magnetic, crystallographic and Mössbauer spectral investigation, these distinct spin states are identified and the light- and temperature-assisted transition pathways are clarified. Such excitation-relaxation and trapping-relaxation joint mechanisms, as ingenious interplays between the kinetic and thermodynamic effects, uncover hidden possibilities for the discovery of multistable materials and the development of multistate intelligent devices. Two new two-stage manipulation protocols, namely light- and temperature-assisted spin state annealing (LASSA/TASSA), are applied to a spin crossover coordination polymer, [Fe(isoq)2{Au(CN)2}2], revealing the hidden multistability of spin states.![]()
Collapse
Affiliation(s)
- Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan Meng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China .,Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University Anqing 246011 P. R. China
| | - Yan-Jie Dong
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University Anqing 246011 P. R. China
| | - Xiao-Wei Song
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University Anqing 246011 P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Chuan-Lei Zhang
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University Anqing 246011 P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jakub Navařík
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Ondřej Malina
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
28
|
Hiiuk VM, Shova S, Rotaru A, Golub AA, Fritsky IO, Gural'skiy IA. Spin crossover in 2D iron(ii) phthalazine cyanometallic complexes. Dalton Trans 2020; 49:5302-5311. [DOI: 10.1039/d0dt00783h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two new spin-crossover analogues of Hofmann clathrates based on a bicyclic ligand phthalazine have been synthesized.
Collapse
Affiliation(s)
- Volodymyr M. Hiiuk
- Department of Chemistry
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
- UkrOrgSyntez Ltd
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Aurelian Rotaru
- Faculty of Electrical Engineering and Computer Science & Research Center MANSiD
- Stefan cel Mare University
- 720229 Suceava
- Romania
| | - Alexander A. Golub
- Faculty of Natural Sciences
- National University of Kyiv-Mohyla Academy
- 04070 Kyiv
- Ukraine
| | - Igor O. Fritsky
- Department of Chemistry
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
- UkrOrgSyntez Ltd
| | - Il'ya A. Gural'skiy
- Department of Chemistry
- Taras Shevchenko National University of Kyiv
- 01601 Kyiv
- Ukraine
- UkrOrgSyntez Ltd
| |
Collapse
|
29
|
Hochdörffer T, Chumakov AI, Wille HC, Schünemann V, Wolny JA. Vibrational properties and cooperativity of the 3D spin crossover network [Fe(pyrazine)][Pt(CN) 4]. Dalton Trans 2019; 48:15625-15634. [PMID: 31418431 DOI: 10.1039/c9dt02139f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nuclear inelastic scattering of synchrotron radiation has been used to determine the phonon density of vibrational states (pDOS) for the high-spin and low-spin phases of the hydrated and dehydrated isomer of the spin crossover polymer [Fe(pyrazine)][Pt(CN)4]. Density functional theory calculations have been performed for molecular models of the 3D polymeric system. The models contain 15 Fe(ii)/Zn(ii) centres and allowed the assignment of the observed bands to the corresponding vibrational modes. Thermodynamic parameters like the mean force constant and the vibrational entropy but also sound velocities of the molecular lattices in both spin states have been derived from the pDOS. Modelling of the low-spin and high-spin centres in the environment or matrix of different spins has revealed the enthalpic and entropic components of the intramolecular cooperativity. In contrast to the 1D spin crossover systems (Rackwitz, et al., Phys. Chem. Chem. Phys., 2013, 15, 15450) based on the rigid 1,2,4-triazole derivatives the distortion of the low-spin iron Fe(ii) centre by the matrix of high-spin Fe(ii) (modelled as Zn(ii)) occurs only in two dimensions, defined by the [M(CN)4]2- sheets, rather than concerning all six Fe-N bonds, as in 1D systems. The enthalpic intramolecular cooperativity has been determined to be 15 kJ mol-1 which is lower than that in 1D systems (20-30 kJ mol-1). Yet, the entropic contribution stabilizes the low-spin state in a low-spin matrix, a behaviour which is opposite to what was found for the 1D systems.
Collapse
Affiliation(s)
- Tim Hochdörffer
- Department of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663 Kaiserslautern, Germany.
| | | | | | - Volker Schünemann
- Department of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663 Kaiserslautern, Germany.
| | - Juliusz A Wolny
- Department of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663 Kaiserslautern, Germany.
| |
Collapse
|
30
|
Ohtani R, Yanagisawa J, Matsunari H, Ohba M, Lindoy LF, Hayami S. Homo- and Heterosolvent Modifications of Hofmann-Type Flexible Two-Dimensional Layers for Colossal Interlayer Thermal Expansions. Inorg Chem 2019; 58:12739-12747. [PMID: 31539234 DOI: 10.1021/acs.inorgchem.9b01660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional Hofmann-type coordination polymers of type Mn(H2O)2[Pd(CN)4]·xH2O (1·xH2O; x = 0, 1, and 4), Mn(H2O)(MeOH)[Pd(CN)4]·2MeOH (2·2MeOH), and Mn(MeOH)2[Pd(CN)4]·MeOH (3·MeOH) have been synthesized. The homosolvent-bound 1·4H2O, 1·H2O, and 3·MeOH polymers consist of undulating layer structures, whereas the structure of heterosolvent-bound 2·2MeOH consists of "Janus-like" flat layers in which water-bound and MeOH-bound-sides are present. 1·4H2O and 1·H2O exhibited anisotropic two-dimensional thermal expansions involving structural transformations of the undulating layers; one layer axis expands while the other contracts. 2·2MeOH exhibits anisotropic thermal expansion in which the flat layers shift sideways as the temperature is increased, with colossal interlayer expansion occurring (αc = +200 MK-1 over 140-180 K, αc = +165 MK-1 over 200-280 K). 3·MeOH also showed colossal interlayer expansion (αc = +216 MK-1) together with expansion of the undulating layers.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry, Faculty of Science , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | | | | | - Masaaki Ohba
- Department of Chemistry, Faculty of Science , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Leonard F Lindoy
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | | |
Collapse
|
31
|
Kuzevanova IS, Naumova DD, Terebilenko KV, Shova S, Gural’skiy IA. Crystal structure of poly[[di-aqua-tetra-μ 2-cyanido-iron(II)platinum(II)] acetone disolvate]. Acta Crystallogr E Crystallogr Commun 2019; 75:1536-1539. [PMID: 31636989 PMCID: PMC6775733 DOI: 10.1107/s2056989019012945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 11/10/2022]
Abstract
In the title polymeric complex, {[FePt(CN)4(H2O)2]·2C3H6O} n , the FeII cation has an octa-hedral [FeN4O2] geometry being coordinated by two water mol-ecules and four cyanide anions. The Pt cation is located on an inversion centre and has a square-planar coordination environment formed by four cyanide groups. The tetra-cyano-platinate anions bridge the FeII cations to form infinite two-dimensional layers that propagate in the bc plane. Two guest mol-ecules of acetone per FeII are located between the layers. These guest acetone mol-ecules inter-act with the coordinated water mol-ecules by O-H⋯O hydrogen bonds.
Collapse
Affiliation(s)
- Iryna S. Kuzevanova
- Department of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Prosp. Peremogy 37, Kyiv 03056, Ukraine
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine
| | - Dina D. Naumova
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine
| | - Kateryna V. Terebilenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine
| | - Sergiu Shova
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
| | - Il’ya A. Gural’skiy
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine
- UkrOrgSyntez Ltd, Chervonotkatska St., 67, Kyiv 02094, Ukraine
| |
Collapse
|
32
|
Jiang X, Hao G, Wang X, Mosey A, Zhang X, Yu L, Yost AJ, Zhang X, DiChiara AD, N'Diaye AT, Cheng X, Zhang J, Cheng R, Xu X, Dowben PA. Tunable spin-state bistability in a spin crossover molecular complex. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:315401. [PMID: 30995634 DOI: 10.1088/1361-648x/ab1a7d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The spin crossover (SCO) transitions at both the surface and over the entire volume of the [Fe{H2B(pz)2}2(bipy)] polycrystalline films on Al2O3 substrates have been studied, where pz = pyrazol-1-yl and bipy = 2,2'-bipyridine. For [Fe{H2B(pz)2}2(bipy)] films of hundreds of nm thick, magnetometry and x-ray absorption spectroscopy measurements show thermal hysteresis in the SCO transition with temperature, although the transition in bulk [Fe{H2B(pz)2}2(bipy)] occurs in a non-hysteretic fashion at 157 K. While the size of the crystallites in those films are similar, the hysteresis becomes more prominent in thinner films, indicating a significant effect of the [Fe{H2B(pz)2}2(bipy)]/Al2O3 interface. Bistability of spin states, which can be inferred from the thermal hysteresis, was directly observed using temperature-dependent x-ray diffraction; the crystallites behave as spin-state domains that coexist during the transition. The difference between the spin state of molecules at the surface of the [Fe{H2B(pz)2}2(bipy)] films and that of the molecules within the films, during the thermal cycle, indicates that both cooperative (intermolecular) effects and coordination are implicated in perturbations to the SCO transition.
Collapse
Affiliation(s)
- Xuanyuan Jiang
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Substantiation to structure-property of pyrazine-based compounds by undeniable impress of its different connectivities. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Nanocrystalline Polymer Impregnated [Fe(pz)Pt(CN)
4
] Thin Films Prepared by Matrix‐Assisted Pulsed Laser Evaporation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Polyzou CD, Tangoulis V. Review: Downsizing effect on 2-D and 3-D spin crossover metal-organic frameworks. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1576865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Christina D. Polyzou
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, Patras, Greece
| | - Vassilis Tangoulis
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
36
|
|
37
|
|
38
|
|
39
|
Chastanet G, Lorenc M, Bertoni R, Desplanches C. Light-induced spin crossover—Solution and solid-state processes. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
|
41
|
Felts AC, Slimani A, Cain JM, Andrus MJ, Ahir AR, Abboud KA, Meisel MW, Boukheddaden K, Talham DR. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture. J Am Chem Soc 2018; 140:5814-5824. [PMID: 29633838 DOI: 10.1021/jacs.8b02148] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb aCo b[Fe(CN)6] c· mH2O (RbCoFe-PBA) as core with the isostructural K jNi k[Cr(CN)6] l· nH2O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.
Collapse
Affiliation(s)
- Ashley C Felts
- Department of Chemistry , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Ahmed Slimani
- Laboratoire des Matériaux Multifonctionnels et Applications, Faculté des Sciences de Sfax , Université de Sfax , Route de la Soukra km 3.5 - B.P. no. 1171-3000 Sfax , Tunisia
| | - John M Cain
- Department of Chemistry , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Matthew J Andrus
- Department of Chemistry , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Akhil R Ahir
- Department of Chemistry , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Khalil A Abboud
- Department of Chemistry , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Mark W Meisel
- Department of Physics and the National High Magnetic Field Laboratory , University of Florida , Gainesville , Florida 32611-8440 , United States
| | - Kamel Boukheddaden
- Groupe d'Etudes de la Matière Condensée, UMR CNRS 8635-Université de Versailles Saint Quentin En Yvelines, 45 Avenue des Etats-Unis , 78035 Versailles , France
| | - Daniel R Talham
- Department of Chemistry , University of Florida , Gainesville , Florida 32611-7200 , United States
| |
Collapse
|
42
|
Tokoro H, Namai A, Yoshikiyo M, Fujiwara R, Chiba K, Ohkoshi SI. Theoretical prediction of a charge-transfer phase transition. Sci Rep 2018; 8:63. [PMID: 29323134 PMCID: PMC5765035 DOI: 10.1038/s41598-017-18213-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/06/2017] [Indexed: 11/09/2022] Open
Abstract
Phase transition materials are attractive from the viewpoints of basic science as well as practical applications. For example, optical phase transition materials are used for optical recording media. If a phase transition in condensed matter could be predicted or designed prior to synthesizing, the development of phase transition materials will be accelerated. Herein we show a logical strategy for designing a phase transition accompanying a thermal hysteresis loop. Combining first-principles phonon mode calculations and statistical thermodynamic calculations considering cooperative interaction predicts a charge-transfer phase transition between the A–B and A+–B− phases. As an example, we demonstrate the charge-transfer phase transition on rubidium manganese hexacyanoferrate. The predicted phase transition temperature and the thermal hysteresis loop agree well with the experimental results. This approach will contribute to the rapid development of yet undiscovered phase transition materials.
Collapse
Affiliation(s)
- Hiroko Tokoro
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Asuka Namai
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Marie Yoshikiyo
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Rei Fujiwara
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kouji Chiba
- Material Science Div., MOLSIS Inc., Tokyo Daia Bldg., 1-28-38 Shinkawa, Chuo-ku, Tokyo, 104-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Cryogenic Research Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
43
|
Dong X, Lorenc M, Tretyakov EV, Ovcharenko VI, Fedin MV. Light-Induced Spin State Switching in Copper(II)-Nitroxide-Based Molecular Magnet at Room Temperature. J Phys Chem Lett 2017; 8:5587-5592. [PMID: 29087205 DOI: 10.1021/acs.jpclett.7b02497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular magnets Cu(hfac)2LR exhibit an unusual type of photoinduced magnetostructural switching in exchange-coupled copper(II)-nitroxide clusters. Such photoswitching from strongly coupled to weakly coupled spin state (SS → WS) was recently found to be ultrafast, thus enhancing the interest in these systems and the scope of their potential applications. However, to date such SS → WS photoswitching was demonstrated only at cryogenic temperatures, being limited by the absence of suitable SS states and short relaxation times at T > 100 K. In this work we selected model compound Cu(hfac)2Liso-Pr residing in the mixed SS/WS state at room temperature and investigated it using femtosecond optical spectroscopy. Photoinduced spin dynamics was detected, and an ultrafast SS → WS photoswitching was for the first time demonstrated at room temperature, constituting an important milestone in the development of copper(II)-nitroxide molecular magnets for practical purposes.
Collapse
Affiliation(s)
- Xu Dong
- Institut de Physique de Rennes , UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes, France
| | - Maciej Lorenc
- Institut de Physique de Rennes , UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes, France
| | - Evgeny V Tretyakov
- International Tomography Center SB RAS , 630090, Novosibirsk, Russia
- Novosibirsk State University , 630090, Novosibirsk, Russia
| | | | - Matvey V Fedin
- International Tomography Center SB RAS , 630090, Novosibirsk, Russia
- Novosibirsk State University , 630090, Novosibirsk, Russia
| |
Collapse
|
44
|
Rodríguez-Velamazán JA, Roubeau O, Poloni R, Lhotel E, Palacios E, González MA, Real JA. Long-range magnetic order in the porous metal-organic framework Ni(pyrazine)[Pt(CN) 4]. Phys Chem Chem Phys 2017; 19:29084-29091. [PMID: 29057417 DOI: 10.1039/c7cp06310e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined study involving DFT calculations, neutron scattering, heat capacity and magnetic measurements at very low temperatures demonstrates the long-range magnetic ordering of Ni(pyrazine)[Pt(CN)4] below 1.9 K, describing its antiferromagnetic spin arrangement. This compound belongs to the family of porous coordination polymers M(pyrazine)[Pt(CN)4] (M = divalent metal), renowned for showing interesting combinations of porosity and magnetic properties. The possibility of including long-range magnetic ordering, one of the most pursued functional properties, opens new perspectives for the multifunctionality of this class of compounds.
Collapse
|
45
|
Tumanov SV, Veber SL, Tolstikov SE, Artiukhova NA, Romanenko GV, Ovcharenko VI, Fedin MV. Light-Induced Spin State Switching and Relaxation in Spin Pairs of Copper(II)–Nitroxide Based Molecular Magnets. Inorg Chem 2017; 56:11729-11737. [DOI: 10.1021/acs.inorgchem.7b01689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergey V. Tumanov
- International Tomography Center SB RAS, Institutskaya
Str. 3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova
Str. 2, 630090 Novosibirsk, Russia
| | - Sergey L. Veber
- International Tomography Center SB RAS, Institutskaya
Str. 3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova
Str. 2, 630090 Novosibirsk, Russia
| | | | - Natalia A. Artiukhova
- International Tomography Center SB RAS, Institutskaya
Str. 3a, 630090 Novosibirsk, Russia
| | - Galina V. Romanenko
- International Tomography Center SB RAS, Institutskaya
Str. 3a, 630090 Novosibirsk, Russia
| | - Victor I. Ovcharenko
- International Tomography Center SB RAS, Institutskaya
Str. 3a, 630090 Novosibirsk, Russia
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Institutskaya
Str. 3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova
Str. 2, 630090 Novosibirsk, Russia
| |
Collapse
|
46
|
Senthil Kumar K, Ruben M. Emerging trends in spin crossover (SCO) based functional materials and devices. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.024] [Citation(s) in RCA: 503] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Park ST, van der Veen RM. Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044028. [PMID: 28653019 PMCID: PMC5461170 DOI: 10.1063/1.4985058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/24/2017] [Indexed: 06/01/2023]
Abstract
In this article, we present a continuum mechanics based approach for modeling thermally induced single-nanoparticle phase transitions studied in ultrafast electron microscopy. By using coupled differential equations describing heat transfer and the kinetics of the phase transition, we determine the major factors governing the time scales and efficiencies of thermal switching in individual spin-crossover nanoparticles, such as the thermal properties of the (graphite) substrate, the particle thickness, and the interfacial thermal contact conductance between the substrate and the nanoparticle. By comparing the simulated dynamics with the experimental single-particle diffraction time profiles, we demonstrate that the proposed non-equilibrium phase transition model can fully account for the observed switching dynamics.
Collapse
Affiliation(s)
- Sang Tae Park
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Renske M van der Veen
- Department of Chemistry and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
48
|
Mikolasek M, Nicolazzi W, Terki F, Molnár G, Bousseksou A. Surface transition in spin crossover nanoparticles. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Hu JX, Luo L, Lv XJ, Liu L, Liu Q, Yang YK, Duan CY, Luo Y, Liu T. Light-Induced Bidirectional Metal-to-Metal Charge Transfer in a Linear Fe2
Co Complex. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ji-Xiang Hu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Lun Luo
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research; Chemistry Teaching and Research Section; School of Pharmacy; Hubei University of Medicine; 30 South Renmin Road 442000 Shiyan, Hubei China
| | - Xiao-Jin Lv
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Lei Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Yi-Kai Yang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Chun-Ying Duan
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| |
Collapse
|
50
|
Hu JX, Luo L, Lv XJ, Liu L, Liu Q, Yang YK, Duan CY, Luo Y, Liu T. Light-Induced Bidirectional Metal-to-Metal Charge Transfer in a Linear Fe2
Co Complex. Angew Chem Int Ed Engl 2017; 56:7663-7668. [DOI: 10.1002/anie.201703768] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/05/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Ji-Xiang Hu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Lun Luo
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research; Chemistry Teaching and Research Section; School of Pharmacy; Hubei University of Medicine; 30 South Renmin Road 442000 Shiyan, Hubei China
| | - Xiao-Jin Lv
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Lei Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Yi-Kai Yang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Chun-Ying Duan
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 2 Linggong Rd. 116024 Dalian China
| |
Collapse
|