1
|
Freitag K, Marlow M, Joseph J, Ta R, Krekhno J, Schuett E, Yang A, Ray D, Hughes T, Rafferty S, Yee J. A TATA-box binding protein binds single stranded DNA in two modes: to poly(G) tracts and to flexible DNA regions. J Biol Chem 2025:108552. [PMID: 40300727 DOI: 10.1016/j.jbc.2025.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025] Open
Abstract
The TATA-box binding protein (TBP) homolog from Giardia intestinalis (gTBP) is highly divergent, lacking key phenylalanines crucial for binding and unwinding double-stranded DNA. Surprisingly, we determined that gTBP exhibits unconventional DNA binding properties and preferentially binds to single stranded DNA (ssDNA) using a DNA-binding pocket that is narrower relative to other eukaryotic TBPs. Additionally, we showed that gTBP binds in two distinct modes, which we call the A and B modes, that are dependent on ssDNA sequence and protein concentration. For the A mode, gTBP binds as an oligomer to ssDNA that contains four or more consecutive guanine bases. For the B mode, using base stacking energy potentials between adjacent dinucleotides as a simple proxy for per-nucleotide flexibility, gTBP binds as a monomer to ssDNA in a manner that is dependent on DNA structural properties. To validate the latter concept, we designed de novo DNA sequences with base stacking energy profiles comparable to two DNA sequences that bind gTBP and showed that these designed sequences can compete for gTBP binding against the two original sequences. Overall, we present a potential new perspective on eukaryotic transcription regulation based on our findings around unconventional gTBP-ssDNA binding. Comprehensive understanding of the binding modes of gTBP could yield insights into Giardia's biology and eukaryotic transcription in general.
Collapse
Affiliation(s)
- Kieran Freitag
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Melanie Marlow
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Joella Joseph
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Robert Ta
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Jessica Krekhno
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Evan Schuett
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Ally Yang
- Department of Molecular Genetics, University of Toronto, Toronto, ON
| | - Debashish Ray
- Department of Molecular Genetics, University of Toronto, Toronto, ON
| | - Timothy Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, ON
| | - Steven Rafferty
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| | - Janet Yee
- Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON
| |
Collapse
|
2
|
Lagunas-Rangel FA. Giardia telomeres and telomerase. Parasitol Res 2024; 123:179. [PMID: 38584235 PMCID: PMC10999387 DOI: 10.1007/s00436-024-08200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Giardia duodenalis, the protozoan responsible for giardiasis, is a significant contributor to millions of diarrheal diseases worldwide. Despite the availability of treatments for this parasitic infection, therapeutic failures are alarmingly frequent. Thus, there is a clear need to identify new therapeutic targets. Giardia telomeres were previously identified, but our understanding of these structures and the critical role played by Giardia telomerase in maintaining genomic stability and its influence on cellular processes remains limited. In this regard, it is known that all Giardia chromosomes are capped by small telomeres, organized and protected by specific proteins that regulate their functions. To counteract natural telomere shortening and maintain high proliferation, Giardia exhibits constant telomerase activity and employs additional mechanisms, such as the formation of G-quadruplex structures and the involvement of transposable elements linked to telomeric repeats. Thus, this study aims to address the existing knowledge gap by compiling the available information (until 2023) about Giardia telomeres and telomerase, focusing on highlighting the distinctive features within this parasite. Furthermore, the potential feasibility of targeting Giardia telomeres and/or telomerase as an innovative therapeutic strategy is discussed.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Uppsala University, Husargatan 3, BMC Box 593, 751 24, Uppsala, Sweden.
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.
| |
Collapse
|
3
|
De Rache A, Marquevielle J, Bouaziz S, Vialet B, Andreola ML, Mergny JL, Amrane S. Structure of a DNA G-quadruplex that Modulates SP1 Binding Sites Architecture in HIV-1 Promoter. J Mol Biol 2024; 436:168359. [PMID: 37952768 DOI: 10.1016/j.jmb.2023.168359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Nucleic acid sequences containing guanine tracts are able to form non-canonical DNA or RNA structures known as G-quadruplexes (or G4s). These structures, based on the stacking of G-tetrads, are involved in various biological processes such as gene expression regulation. Here, we investigated a G4 forming sequence, HIVpro2, derived from the HIV-1 promoter. This motif is located 60 nucleotides upstream of the proviral Transcription Starting Site (TSS) and overlaps with two SP1 transcription factor binding sites. Using NMR spectroscopy, we determined that HIVpro2 forms a hybrid type G4 structure with a core that is interrupted by a single nucleotide bulge. An additional reverse-Hoogsteen AT base pair is stacked on top of the tetrad. SP1 transcription factor is known to regulate transcription activity of many genes through the recognition of Guanine-rich duplex motifs. Here, the formation of HIVpro2 G4 may modulate SP1 binding sites architecture by competing with the formation of the canonical duplex structure. Such DNA structural switch potentially participates to the regulation of viral transcription and may also interfere with HIV-1 reactivation or viral latency.
Collapse
Affiliation(s)
- Aurore De Rache
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France; Department of Chemistry, U. Namur, 61 rue de Bruxelles, B5000 Namur, Belgium
| | - Julien Marquevielle
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | | | - Brune Vialet
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Marie-Line Andreola
- Université de Bordeaux, Bordeaux, France; MFP Laboratory, UMR5234, CNRS, Bordeaux, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique & Biosciences, École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Samir Amrane
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France.
| |
Collapse
|
4
|
Yang J, Qin G, Niu J, Wei Y, Li X, Zhao C, Wang C, Ren J, Qu X. Targeting G-quadruplexes in an ageing epigenetic regulator promoter for rescuing mitochondrial dysfunction in Alzheimer's disease. Chem Commun (Camb) 2023; 59:1078-1081. [PMID: 36621881 DOI: 10.1039/d2cc05957f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, we provide an out-of-the-box G-quadruplex (G4) targeting-based strategy for rescuing mitochondrial dysfunction in Alzheimer's disease. We predict and verify the presence of G4s within the promoter of an ageing epigenetic regulator BAZ2B. G4-specific ligands targeting BAZ2B G4s could significantly down-regulate the BAZ2B expression and relieve mitochondrial dysfunction. Therefore, this work may provide a new way of rescuing mitochondrial dysfunction in AD by targeting G4s in a specific ageing epigenetic regulator promoter.
Collapse
Affiliation(s)
- Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yue Wei
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuexia Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
5
|
Marquevielle J, De Rache A, Vialet B, Morvan E, Mergny JL, Amrane S. G-quadruplex structure of the C. elegans telomeric repeat: a two tetrads basket type conformation stabilized by a non-canonical C-T base-pair. Nucleic Acids Res 2022; 50:7134-7146. [PMID: 35736226 PMCID: PMC9262591 DOI: 10.1093/nar/gkac523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
The Caenorhabditis elegans model has greatly contributed to the understanding of the role of G-quadruplexes in genomic instability. The GGCTTA repeats of the C. elegans telomeres resemble the GGGTTA repeats of the human telomeres. However, the comparison of telomeric sequences (Homo sapiens, Tetrahymena, Oxytricha, Bombyx mori and Giardia) revealed that small changes in these repeats can drastically change the topology of the folded G-quadruplex. In the present work we determined the structure adopted by the C. elegans telomeric sequence d[GG(CTTAGG)3]. The investigated C. elegans telomeric sequence is shown to fold into an intramolecular two G-tetrads basket type G-quadruplex structure that includes a C-T base pair in the diagonal loop. This work sheds light on the telomeric structure of the widely used C. elegans animal model.
Collapse
Affiliation(s)
- Julien Marquevielle
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Aurore De Rache
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
- Department of Chemistry, UNamur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Brune Vialet
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Jean-Louis Mergny
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Samir Amrane
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| |
Collapse
|
6
|
Li Q, Peng S, Chang Y, Yang M, Wang D, Zhou X, Shao Y. A G-triplex-Based Label-Free Fluorescence Switching Platform for the Specific Recognition of Chromium Species. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Müller D, Saha P, Panda D, Dash J, Schwalbe H. Insights from Binding on Quadruplex Selective Carbazole Ligands. Chemistry 2021; 27:12726-12736. [PMID: 34138492 PMCID: PMC8518889 DOI: 10.1002/chem.202101866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Polymorphic G-quadruplex (G4) secondary DNA structures have received increasing attention in medicinal chemistry owing to their key involvement in the regulation of the maintenance of genomic stability, telomere length homeostasis and transcription of important proto-oncogenes. Different classes of G4 ligands have been developed for the potential treatment of several human diseases. Among them, the carbazole scaffold with appropriate side chain appendages has attracted much interest for designing G4 ligands. Because of its large and rigid π-conjugation system and ease of functionalization at three different positions, a variety of carbazole derivatives have been synthesized from various natural or synthetic sources for potential applications in G4-based therapeutics and biosensors. Herein, we provide an updated close-up of the literatures on carbazole-based G4 ligands with particular focus given on their detailed binding insights studied by NMR spectroscopy. The structure-activity relationships and the opportunities and challenges of their potential applications as biosensors and therapeutics are also discussed. This review will provide an overall picture of carbazole ligands with remarkable G4 topological preference, fluorescence properties and significant bioactivity; portraying carbazole as a very promising scaffold for assembling G4 ligands with a range of novel functional applications.
Collapse
Affiliation(s)
- Diana Müller
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| | - Puja Saha
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Deepanjan Panda
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| |
Collapse
|
8
|
Bryan TM. G-Quadruplexes at Telomeres: Friend or Foe? Molecules 2020; 25:molecules25163686. [PMID: 32823549 PMCID: PMC7464828 DOI: 10.3390/molecules25163686] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Telomeres are DNA-protein complexes that cap and protect the ends of linear chromosomes. In almost all species, telomeric DNA has a G/C strand bias, and the short tandem repeats of the G-rich strand have the capacity to form into secondary structures in vitro, such as four-stranded G-quadruplexes. This has long prompted speculation that G-quadruplexes play a positive role in telomere biology, resulting in selection for G-rich tandem telomere repeats during evolution. There is some evidence that G-quadruplexes at telomeres may play a protective capping role, at least in yeast, and that they may positively affect telomere maintenance by either the enzyme telomerase or by recombination-based mechanisms. On the other hand, G-quadruplex formation in telomeric DNA, as elsewhere in the genome, can form an impediment to DNA replication and a source of genome instability. This review summarizes recent evidence for the in vivo existence of G-quadruplexes at telomeres, with a focus on human telomeres, and highlights some of the many unanswered questions regarding the location, form, and functions of these structures.
Collapse
Affiliation(s)
- Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
9
|
Liu G, Du W, Xu H, Sun Q, Tang D, Zou S, Zhang Y, Ma M, Zhang G, Du X, Ju S, Cheng W, Tian Y, Fu X. RNA G-quadruplex regulates microRNA-26a biogenesis and function. J Hepatol 2020; 73:371-382. [PMID: 32165252 DOI: 10.1016/j.jhep.2020.02.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS RNA G-quadruplexes (RG4s) appear to be important in post-transcriptional gene regulation, but their pathophysiological functions remain unknown. MicroRNA-26a (miR-26a) is emerging as a therapeutic target for various human diseases, however the mechanisms underlying endogenous miR-26a regulation are poorly understood. Herein, we study the role of RG4 in miR-26a expression and function in vitro and in vivo. METHODS Putative RG4s within liver-enriched miRNAs were predicted by bioinformatic analysis, and the presence of an RG4 structure in the miR-26a-1 precursor (pre-miR-26a-1) was further analyzed by biophysical and biochemical methods. RG4 stabilizers, pre-miR-26a-1 overexpression plasmids, and luciferase reporter assays were used to assess the effect of RG4 on pre-miR-26a-1 maturation. Both miR-26a knock-in and knockout mouse models were employed to investigate the influence of this RG4 on miR-26a expression and function. Moreover, the interaction between RG4 in pre-miR-26a-1 and DEAH-box helicase 36 (DHX36) was determined by biophysical and molecular methods. Finally, miR-26a processing and DHX36 expression were quantified in the livers of obese mice. RESULTS We identify a guanine-rich sequence in pre-miR-26a-1 that can fold into an RG4 structure. This RG4 impairs pre-miR-26a-1 maturation, resulting in a decrease in miR-26a expression and subsequently an increase in miR-26a cognate targets. In line with known miR-26a functions, this RG4 can regulate hepatic insulin sensitivity and lipid metabolism in vitro and in vivo. Furthermore, we reveal that DHX36 can bind and unwind this RG4 structure, thereby enhancing miR-26a maturation. Intriguingly, there is a concordant decrease of miR-26a maturation and DHX36 expression in obese mouse livers. CONCLUSIONS Our findings define a dynamic DHX36/RG4/miR-26a regulatory axis during obesity, highlighting an important role of RG4 in physiology and pathology. LAY SUMMARY Specific RNA sequences called G-quadruplexes (or RG4) appear to be important in post-transcriptional gene regulation. Obesity leads to the formation of these RG4 structures in pre-miR-26a-1 molecules, impairing the maturation and function of miR-26a, which has emerged as a therapeutic target in several diseases. This contributes to hepatic insulin resistance and the dysregulation of liver metabolism.
Collapse
Affiliation(s)
- Geng Liu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Wenya Du
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Haixia Xu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Qiu Sun
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Sailan Zou
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Yu Zhang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Meilin Ma
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Guixiang Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiao Du
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of General Surgery, Yaan People's Hospital, Yaan 625000, Sichuan, China
| | - Shenggen Ju
- College of Computer Science, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China.
| |
Collapse
|
10
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
11
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019; 58:13834-13839. [DOI: 10.1002/anie.201907740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
12
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
13
|
Liu H, Wang R, Yu X, Shen F, Lan W, Haruehanroengra P, Yao Q, Zhang J, Chen Y, Li S, Wu B, Zheng L, Ma J, Lin J, Cao C, Li J, Sheng J, Gan J. High-resolution DNA quadruplex structure containing all the A-, G-, C-, T-tetrads. Nucleic Acids Res 2019; 46:11627-11638. [PMID: 30285239 PMCID: PMC6265469 DOI: 10.1093/nar/gky902] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
DNA can form diverse structures, which predefine their physiological functions. Besides duplexes that carry the genetic information, quadruplexes are the most well-studied DNA structures. In addition to their important roles in recombination, replication, transcription and translation, DNA quadruplexes have also been applied as diagnostic aptamers and antidisease therapeutics. Herein we further expand the sequence and structure complexity of DNA quadruplex by presenting a high-resolution crystal structure of DNA1 (5′-AGAGAGATGGGTGCGTT-3′). This is the first quadruplex structure that contains all the internal A-, G-, C-, T-tetrads, A:T:A:T tetrads and bulged nucleotides in one single structure; as revealed by site-specific mutagenesis and biophysical studies, the central ATGGG motif plays important role in the quadruplex formation. Interestingly, our structure also provides great new insights into cation recognition, including the first-time reported Pb2+, by tetrad structures.
Collapse
Affiliation(s)
- Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Wang
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Xiang Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fusheng Shen
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Suhua Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Baixing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lina Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Bansal A, Kukreti S. The four repeat Giardia lamblia telomere forms tetramolecular G-quadruplex with antiparallel topology. J Biomol Struct Dyn 2019; 38:1975-1983. [DOI: 10.1080/07391102.2019.1623074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aparna Bansal
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi (North Campus), Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
15
|
Bakalar B, Heddi B, Schmitt E, Mechulam Y, Phan AT. A Minimal Sequence for Left-Handed G-Quadruplex Formation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Blaž Bakalar
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
- School of Biological Sciences; Nanyang Technological University; Singapore 637551 Singapore
| | - Brahim Heddi
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS; Ecole Normale Supérieure Paris-Saclay; 94235 Cachan France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, UMR 7654, CNRS; Ecole Polytechnique; 91128 Palaiseau France
| | - Yves Mechulam
- Laboratoire de Biochimie, UMR 7654, CNRS; Ecole Polytechnique; 91128 Palaiseau France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| |
Collapse
|
16
|
Bakalar B, Heddi B, Schmitt E, Mechulam Y, Phan AT. A Minimal Sequence for Left-Handed G-Quadruplex Formation. Angew Chem Int Ed Engl 2019; 58:2331-2335. [PMID: 30481397 DOI: 10.1002/anie.201812628] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 12/20/2022]
Abstract
Recently, we observed the first example of a left-handed G-quadruplex structure formed by natural DNA, named Z-G4. We analysed the Z-G4 structure and inspected its primary 28-nt sequence in order to identify motifs that convey the unique left-handed twist. Using circular dichroism spectroscopy, NMR spectroscopy, and X-ray crystallography, we revealed a minimal sequence motif of 12 nt (GTGGTGGTGGTG) for formation of the left-handed DNA G-quadruplex, which is found to be highly abundant in the human genome. A systematic analysis of thymine loop mutations revealed a moderate sequence tolerance, which would further broaden the space of sequences prone to left-handed G-quadruplex formation.
Collapse
Affiliation(s)
- Blaž Bakalar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Brahim Heddi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure Paris-Saclay, 94235, Cachan, France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, 91128, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, 91128, Palaiseau, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
17
|
Lenarčič Živković M, Rozman J, Plavec J. Adenine-Driven Structural Switch from a Two- to Three-Quartet DNA G-Quadruplex. Angew Chem Int Ed Engl 2018; 57:15395-15399. [PMID: 30222243 PMCID: PMC6563693 DOI: 10.1002/anie.201809328] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 12/15/2022]
Abstract
A G-rich sequence found in the regulatory region of the RANKL gene, which is associated with homeostasis of bone metabolism, folds into a two-quartet basket-type G-quadruplex stabilized by A⋅G⋅A and G⋅G⋅G base-triads. Perusal of local structural features together with G/A-to-T modifications uncovered the critical role of A5 for the formation of a distinct antiparallel two-quartet topology and not the three-quartet topology that would be expected based on the sequence with four GGG-tracts alone. The structural changes induced by the A5-to-T5 modification include a switch in orientation and relative positions of G-strands that together with anti to syn reorientation of G12 provide insights into the complexity of the interactions that influence the folding of G-rich DNA. Understanding the impact of loop residues on the stability and formation of G-quadruplexes advances our knowledge and ability to predict structures adopted by G-rich sequences, which are involved in regulatory mechanisms in the cell, and may also facilitate drug design.
Collapse
Affiliation(s)
| | - Jan Rozman
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 9LjubljanaSlovenia
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 9LjubljanaSlovenia
- EN- FIST Centre of ExcellenceTrg OF 13LjubljanaSlovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 113LjubljanaSlovenia
| |
Collapse
|
18
|
Lenarčič Živković M, Rozman J, Plavec J. Adenine‐Driven Structural Switch from a Two‐ to Three‐Quartet DNA G‐Quadruplex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Jan Rozman
- Slovenian NMR CentreNational Institute of Chemistry Hajdrihova 9 Ljubljana Slovenia
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of Chemistry Hajdrihova 9 Ljubljana Slovenia
- EN- FIST Centre of Excellence Trg OF 13 Ljubljana Slovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of Ljubljana Večna pot 113 Ljubljana Slovenia
| |
Collapse
|
19
|
Dvorkin SA, Karsisiotis AI, Webba da Silva M. Encoding canonical DNA quadruplex structure. SCIENCE ADVANCES 2018; 4:eaat3007. [PMID: 30182059 PMCID: PMC6118410 DOI: 10.1126/sciadv.aat3007] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/24/2018] [Indexed: 05/24/2023]
Abstract
The main challenge in DNA quadruplex design is to encode a three-dimensional structure into the primary sequence, despite its multiple, repetitive guanine segments. We identify and detail structural elements describing all 14 feasible canonical quadruplex scaffolds and demonstrate their use in control of design. This work outlines a new roadmap for implementation of targeted design of quadruplexes for material, biotechnological, and therapeutic applications.
Collapse
Affiliation(s)
- Scarlett A. Dvorkin
- School of Pharmacy and Pharmaceutical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Andreas I. Karsisiotis
- School of Pharmacy and Pharmaceutical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | | |
Collapse
|
20
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
21
|
Li YY, Dubins DN, Le DMNT, Leung K, Macgregor RB. The role of loops and cation on the volume of unfolding of G-quadruplexes related to HTel. Biophys Chem 2017; 231:55-63. [PMID: 28162829 DOI: 10.1016/j.bpc.2016.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
Abstract
In aqueous solutions containing sodium or potassium cations, oligodeoxyribonucleotides (ODNs) rich in guanine form four-stranded DNA structures called G-quadruplexes (G4s). These structures are destabilized by elevated hydrostatic pressure. Here, we use pressure to investigate the volumetric changes arising from the formation of G4 structures. G4s display a great deal of structural heterogeneity that depends on the stabilizing cation as well as the oligonucleotide sequence. Using UV thermal unfolding at different pressures, we have investigated the volume change of the helix-coil equilibrium of a series of ODNs whose sequences are related to the G-rich ODN HTel (d[A(GGGTTA)3GGG]), which contains four repeats of the human telomeric sequence. The experiments are conducted in aqueous buffers containing either 100mM NaCl or KCl at pH7.4. The G4s stabilized by Na+ are less sensitive to pressure perturbation than those stabilized by K+. The overall molar volume changes (ΔVtot) of the unfolding transition for all of the G4s are large and negative. A large fraction of the measured ΔVtot value arises from the re-hydration of the cations released from the interior of the folded structure. However, the differences in the measured ΔVtot values demonstrate that variations in the structure of G4s formed by each ODN, arising from differences in the sequence of the loops, contribute significantly to ΔVtot and presumably the hydration of the folded structures. Depending on the sequence of the loops, the magnitude of the measured ΔVtot can be larger or smaller than that of HTel in solutions containing sodium. However, the magnitude of ΔVtot is smaller than HTel for the unfolding of all G4s that are stabilized by potassium ions.
Collapse
Affiliation(s)
- Yang Yun Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Dianna My Nhi Thi Le
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Karen Leung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|
22
|
Uzlíková M, Fulnečková J, Weisz F, Sýkorová E, Nohýnková E, Tůmová P. Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis. Mol Biochem Parasitol 2017; 211:31-38. [DOI: 10.1016/j.molbiopara.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
23
|
Marchand A, Gabelica V. Folding and misfolding pathways of G-quadruplex DNA. Nucleic Acids Res 2016; 44:10999-11012. [PMID: 27924036 PMCID: PMC5159560 DOI: 10.1093/nar/gkw970] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes adopt various folding topologies, but information on their folding pathways remains scarce. Here, we used electrospray mass spectrometry to detect and quantify the specifically bound potassium ions, and circular dichroism to characterize the stacking topology of each ensemble. For human telomeric (hTel) sequences containing the d((GGGTTA)3GGG) core, K+ binding affinity and cooperativity strongly depends on the chosen construct. The shortest sequences bind only one K+ at low KCl concentration, and this 2-quartet G-quadruplex is antiparallel. Flanking bases increase the K+ binding cooperativity. To decipher the folding pathways, we investigated the kinetics of K+ binding to telomeric (hybrid) and c-myc (parallel) G-quadruplexes. G-quadruplexes fold via branched pathways with multiple parallel reactions. Up to six states (one ensemble without K+, two ensembles with 1-K+ and three ensembles with 2-K+) are separated based on their formation rates and ion mobility spectrometry. All G-quadruplexes first form long-lived misfolded structures (off-pathway compared to the most stable structures) containing one K+ and two quartets in an antiparallel stacking arrangement. The results highlight the particular ruggedness of G-quadruplex nucleic acid folding landscapes. Misfolded structures can play important roles for designing artificial G-quadruplex based structures, and for conformational selection by ligands or proteins in a biological context.
Collapse
Affiliation(s)
- Adrien Marchand
- INSERM, CNRS, Univ. Bordeaux, U1212 / UMR5320 - Acides Nucléiques: Régulations Naturelle et Artificielle, IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Valérie Gabelica
- INSERM, CNRS, Univ. Bordeaux, U1212 / UMR5320 - Acides Nucléiques: Régulations Naturelle et Artificielle, IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
24
|
Effects of G-Quadruplex Topology on Electronic Transfer Integrals. NANOMATERIALS 2016; 6:nano6100184. [PMID: 28335314 PMCID: PMC5245196 DOI: 10.3390/nano6100184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/19/2016] [Accepted: 09/30/2016] [Indexed: 02/01/2023]
Abstract
G-quadruplex is a quadruple helical form of nucleic acids that can appear in guanine-rich parts of the genome. The basic unit is the G-tetrad, a planar assembly of four guanines connected by eight hydrogen bonds. Its rich topology and its possible relevance as a drug target for a number of diseases have stimulated several structural studies. The superior stiffness and electronic π-π overlap between consecutive G-tetrads suggest exploitation for nanotechnologies. Here we inspect the intimate link between the structure and the electronic properties, with focus on charge transfer parameters. We show that the electronic couplings between stacked G-tetrads strongly depend on the three-dimensional atomic structure. Furthermore, we reveal a remarkable correlation with the topology: a topology characterized by the absence of syn-anti G-G sequences can better support electronic charge transfer. On the other hand, there is no obvious correlation of the electronic coupling with usual descriptors of the helix shape. We establish a procedure to maximize the correlation with a global helix shape descriptor.
Collapse
|
25
|
Nelissen FHT, Tessari M, Wijmenga SS, Heus HA. Stable isotope labeling methods for DNA. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 96:89-108. [PMID: 27573183 DOI: 10.1016/j.pnmrs.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis.
Collapse
Affiliation(s)
- Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Sybren S Wijmenga
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
26
|
De Nicola B, Lech CJ, Heddi B, Regmi S, Frasson I, Perrone R, Richter SN, Phan AT. Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome. Nucleic Acids Res 2016; 44:6442-51. [PMID: 27298260 PMCID: PMC5291261 DOI: 10.1093/nar/gkw432] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
The long terminal repeat (LTR) of the proviral human immunodeficiency virus (HIV)-1 genome is integral to virus transcription and host cell infection. The guanine-rich U3 region within the LTR promoter, previously shown to form G-quadruplex structures, represents an attractive target to inhibit HIV transcription and replication. In this work, we report the structure of a biologically relevant G-quadruplex within the LTR promoter region of HIV-1. The guanine-rich sequence designated LTR-IV forms a well-defined structure in physiological cationic solution. The nuclear magnetic resonance (NMR) structure of this sequence reveals a parallel-stranded G-quadruplex containing a single-nucleotide thymine bulge, which participates in a conserved stacking interaction with a neighboring single-nucleotide adenine loop. Transcription analysis in a HIV-1 replication competent cell indicates that the LTR-IV region may act as a modulator of G-quadruplex formation in the LTR promoter. Consequently, the LTR-IV G-quadruplex structure presented within this work could represent a valuable target for the design of HIV therapeutics.
Collapse
Affiliation(s)
- Beatrice De Nicola
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore Department of Molecular Medicine, University of Padua, Italy
| | - Christopher J Lech
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Brahim Heddi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Sagar Regmi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Italy
| | - Rosalba Perrone
- Department of Molecular Medicine, University of Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Italy
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
27
|
Gao S, Cao Y, Yan Y, Guo X. Sequence Effect on the Topology of 3 + 1 Interlocked Bimolecular DNA G-Quadruplexes. Biochemistry 2016; 55:2694-703. [PMID: 27027538 DOI: 10.1021/acs.biochem.5b01190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) combined with fluorescence, circular dichroism, UV spectrophotometer, and native polyacrylamide gel electrophoresis techniques are used to study structural features of interlocked dimers formed by DNA sequence 93del (GGGGTGGGAGGAGGGT) and its derivatives. Herein, we demonstrate that the interlocked dimers can be distinguished from stacked dimers formed by sequences T30923 (GGGTGGGTGGGTGGGT) and T30177 (GTGGTGGGTGGGTGGGT). In addition, loop length, the base at 5'-end, and the isolation of T and TT to the first 4G tract do significantly influence the formation and topologies of interlocked dimers. Furthermore, our results suggest that the 4G tract and the 2G tract in various locations in the 93del derivative sequence can form interlocked structure. This work not only provides new insight into the assembly of 3 + 1 interlocked DNA conformations but also demonstrates that ESI-MS combined with other analytical methods is rapid and useful for DNA structural studies.
Collapse
Affiliation(s)
- Shang Gao
- College of Chemistry, Jilin University , Changchun, China 130012
| | - Yanwei Cao
- College of Chemistry, Jilin University , Changchun, China 130012
| | - Yuting Yan
- College of Chemistry, Jilin University , Changchun, China 130012
| | - Xinhua Guo
- College of Chemistry, Jilin University , Changchun, China 130012
| |
Collapse
|
28
|
Harkness RW, Mittermaier AK. G-register exchange dynamics in guanine quadruplexes. Nucleic Acids Res 2016; 44:3481-94. [PMID: 27060139 PMCID: PMC4856995 DOI: 10.1093/nar/gkw190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 11/23/2022] Open
Abstract
G-quadruplexes (GQs) are 4-stranded DNA structures formed by tracts of stacked, Hoogsteen-hydrogen bonded guanosines. GQs are found in gene promoters and telomeres where they regulate gene transcription and telomere elongation. Though GQ structures are well-characterized, many aspects of their conformational dynamics are poorly understood. For example, when there are surplus guanosines in some of the tracts, they can slide with respect to one another, a process we term G-register (GR) exchange. These motions could in principle entropically stabilize the folded state, crucially benefitting GQs as their stabilities are closely tied to biological function. We have developed a method for characterizing GR exchange where each isomer in the wild-type conformational ensemble is trapped by mutation and thermal denaturation data for the set of trapped mutants and wild-type are analyzed simultaneously. This yields GR isomer populations as a function of temperature, quantifies conformational entropy and sheds light on correlated sliding motions of the G-tracts. We measured entropic stabilizations from GR exchange up to 14.3 ± 1.6 J mol−1 K−1, with melting temperature increases up to 7.3 ± 1.6°C. Furthermore, bioinformatic analysis suggests a majority of putative human GQ sequences are capable of GR exchange, pointing to the generality of this phenomenon.
Collapse
Affiliation(s)
- Robert W Harkness
- McGill University, Department of Chemistry, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Anthony K Mittermaier
- McGill University, Department of Chemistry, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
29
|
Wang ZF, Li MH, Chen WW, Hsu STD, Chang TC. A novel transition pathway of ligand-induced topological conversion from hybrid forms to parallel forms of human telomeric G-quadruplexes. Nucleic Acids Res 2016; 44:3958-68. [PMID: 26975658 PMCID: PMC4856992 DOI: 10.1093/nar/gkw145] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022] Open
Abstract
The folding topology of DNA G-quadruplexes (G4s) depends not only on their nucleotide sequences but also on environmental factors and/or ligand binding. Here, a G4 ligand, 3,6-bis(1-methyl-4-vinylpyridium iodide)-9-(1-(1-methyl-piperidinium iodide)-3,6,9-trioxaundecane) carbazole (BMVC-8C3O), can induce topological conversion of non-parallel to parallel forms in human telomeric DNA G4s. Nuclear magnetic resonance (NMR) spectroscopy with hydrogen-deuterium exchange (HDX) reveals the presence of persistent imino proton signals corresponding to the central G-quartet during topological conversion of Tel23 and Tel25 G4s from hybrid to parallel forms, implying that the transition pathway mainly involves local rearrangements. In contrast, rapid HDX was observed during the transition of 22-CTA G4 from an anti-parallel form to a parallel form, resulting in complete disappearance of all the imino proton signals, suggesting the involvement of substantial unfolding events associated with the topological transition. Site-specific imino proton NMR assignments of Tel23 G4 enable determination of the interconversion rates of individual guanine bases and detection of the presence of intermediate states. Since the rate of ligand binding is much higher than the rate of ligand-induced topological conversion, a three-state kinetic model was evoked to establish the associated energy diagram for the topological conversion of Tel23 G4 induced by BMVC-8C3O.
Collapse
Affiliation(s)
- Zi-Fu Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan, Republic of China
| | - Ming-Hao Li
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan, Republic of China
| | - Wei-Wen Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan, Republic of China Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan, Republic of China Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, Republic of China Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan, Republic of China
| |
Collapse
|
30
|
Largy E, Mergny JL, Gabelica V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci 2016; 16:203-58. [PMID: 26860303 DOI: 10.1007/978-3-319-21756-7_7] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France.,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| | - Valérie Gabelica
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| |
Collapse
|
31
|
Cheong VV, Lech CJ, Heddi B, Phan AT. Inverting the G-Tetrad Polarity of a G-Quadruplex by Using Xanthine and 8-Oxoguanine. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Cheong VV, Lech CJ, Heddi B, Phan AT. Inverting the G-Tetrad Polarity of a G-Quadruplex by Using Xanthine and 8-Oxoguanine. Angew Chem Int Ed Engl 2015; 55:160-3. [PMID: 26563582 DOI: 10.1002/anie.201507034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/04/2015] [Indexed: 01/24/2023]
Abstract
G-quadruplexes are four-stranded nucleic acid structures that are built from consecutively stacked guanine tetrad (G-tetrad) assemblies. The simultaneous incorporation of two guanine base lesions, xanthine (X) and 8-oxoguanine (O), within a single G-tetrad of a G-quadruplex was recently shown to lead to the formation of a stable G⋅G⋅X⋅O tetrad. Herein, a judicious introduction of X and O into a human telomeric G-quadruplex-forming sequence is shown to reverse the hydrogen-bond polarity of the modified G-tetrad while preserving the original folding topology. The control exerted over G-tetrad polarity by joint X⋅O modification will be valuable for the design and programming of G-quadruplex structures and their properties.
Collapse
Affiliation(s)
- Vee Vee Cheong
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Christopher Jacques Lech
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Brahim Heddi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore).
| |
Collapse
|
33
|
Salgado GF, Cazenave C, Kerkour A, Mergny JL. G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem Sci 2015; 6:3314-3320. [PMID: 28706695 PMCID: PMC5490339 DOI: 10.1039/c4sc03853c] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 12/31/2022] Open
Abstract
Using in-cell NMR spectroscopy to probe ligand binding to a G-quadruplex nucleic acid.
Gathering structural information from biologically relevant molecules inside living cells has always been a challenging task. In this work, we have used multidimensional NMR spectroscopy to probe DNA G-quadruplexes inside living Xenopus laevis oocytes. Some of these structures can be found in key regions of chromosomes. G-quadruplexes are considered potential anticancer therapeutic targets and several lines of evidence indirectly point out roles in key biological processes, such as cell proliferation, genomic instability or replication initiation. However, direct demonstrations of the existence of G-quadruplexes in vivo are scarce. Using SOFAST-HMQC type spectra, we probed a tetramolecular G-quadruplex model made of d(TG4T)4 inside living Xenopus laevis oocytes. Our observations lead us to conclude that the quadruplex structure is formed within the cell and that the intracellular environment preferentially selects a conformation that most resembles the one found in vitro under KCl conditions. We also show for the first time that specific ligands targeting G-quadruplexes can be studied using high resolution NMR directly inside living cells, opening new avenues to study ligand binding discrimination under physiologically relevant conditions with atomic detail.
Collapse
Affiliation(s)
- Gilmar F Salgado
- Univ. Bordeaux , ARNA Laboratory , F-33000 Bordeaux , France . .,INSERM , U869 , IECB , F-33600 Pessac , France
| | - Christian Cazenave
- CNRS , Microbiologie Fondamentale et Pathogénicité , UMR 5234 , F-33000 Bordeaux , France.,Univ. Bordeaux , Microbiologie Fondamentale et Pathogénicité , UMR 5234 , F-33000 Bordeaux , France
| | - Abdelaziz Kerkour
- Univ. Bordeaux , ARNA Laboratory , F-33000 Bordeaux , France . .,INSERM , U869 , IECB , F-33600 Pessac , France
| | - Jean-Louis Mergny
- Univ. Bordeaux , ARNA Laboratory , F-33000 Bordeaux , France . .,INSERM , U869 , IECB , F-33600 Pessac , France
| |
Collapse
|
34
|
Ngo VA, Di Felice R, Haas S. Is the G-Quadruplex an Effective Nanoconductor for Ions? J Phys Chem B 2014; 118:864-72. [DOI: 10.1021/jp408071h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Van A. Ngo
- Department
of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Rosa Di Felice
- Department
of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Center
S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Stephan Haas
- Department
of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
35
|
Perrone R, Nadai M, Poe JA, Frasson I, Palumbo M, Palù G, Smithgall TE, Richter SN. Formation of a unique cluster of G-quadruplex structures in the HIV-1 Nef coding region: implications for antiviral activity. PLoS One 2013; 8:e73121. [PMID: 24015290 PMCID: PMC3754912 DOI: 10.1371/journal.pone.0073121] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/24/2013] [Indexed: 01/10/2023] Open
Abstract
G-quadruplexes are tetraplex structures of nucleic acids that can form in G-rich sequences. Their presence and functional role have been established in telomeres, oncogene promoters and coding regions of the human chromosome. In particular, they have been proposed to be directly involved in gene regulation at the level of transcription. Because the HIV-1 Nef protein is a fundamental factor for efficient viral replication, infectivity and pathogenesis in vitro and in vivo, we investigated G-quadruplex formation in the HIV-1 nef gene to assess the potential for viral inhibition through G-quadruplex stabilization. A comprehensive computational analysis of the nef coding region of available strains showed the presence of three conserved sequences that were uniquely clustered. Biophysical testing proved that G-quadruplex conformations were efficiently stabilized or induced by G-quadruplex ligands in all three sequences. Upon incubation with a G-quadruplex ligand, Nef expression was reduced in a reporter gene assay and Nef-dependent enhancement of HIV-1 infectivity was significantly repressed in an antiviral assay. These data constitute the first evidence of the possibility to regulate HIV-1 gene expression and infectivity through G-quadruplex targeting and therefore open a new avenue for viral treatment.
Collapse
Affiliation(s)
- Rosalba Perrone
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Jerrod A. Poe
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sara N. Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy
- * E-mail:
| |
Collapse
|
36
|
Karsisiotis AI, O'Kane C, Webba da Silva M. DNA quadruplex folding formalism--a tutorial on quadruplex topologies. Methods 2013; 64:28-35. [PMID: 23791747 DOI: 10.1016/j.ymeth.2013.06.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022] Open
Abstract
Quadruplexes of DNA adopt a large variety of topologies that are dependent on their environment. We have been developing a formalism for quadruplex folding based on the relationship between base and its sugar--as defined by the glycosidic bond angle. By reducing the quadruplex stem to a description based on two finite states of the range of angles the glycosidic bond angle may adopt, the description of the relationships of type of loop and groove widths of a quadruplex stem are possible. In its current form this formalism has allowed for the prediction of some unimolecular quadruplex topologies. Its rules, whilst developed for unimolecular quadruplexes of three loops, are of general utility in understanding the interdependency of structural characteristics of multimolecular folds, as well as unimolecular quadruplexes of more than three loops. Here we describe current understanding of the interdependent structural features that define the quadruplex fold, and provide a tutorial for the use and application of this formalism.
Collapse
Affiliation(s)
- Andreas Ioannis Karsisiotis
- School of Pharmacy & Pharmaceutical Sciences, Biomedical Sciences Research Institute, University of Ulster, Cromore Road, BT52 1SA, Coleraine, UK
| | | | | |
Collapse
|
37
|
Abstract
This review summarizes the results of structural studies carried out with analogs of G-quadruplexes built from natural nucleotides. Several dozens of base-, sugar-, and phosphate derivatives of the biological building blocks have been incorporated into more than 50 potentially quadruplex forming DNA and RNA oligonucleotides and the stability and folding topology of the resultant intramolecular, bimolecular and tetramolecular architectures characterized. The TG4T, TG5T, the 15 nucleotide-long thrombin binding aptamer, and the human telomere repeat AG3(TTAG3)3 sequences were modified in most cases, and four guanine analogs can be noted as being particularly useful in structural studies. These are the fluorescent 2-aminopurine, the 8-bromo-, and 8-methylguanines, and the hypoxanthine. The latter three analogs stabilize a given fold in a mixture of structures making possible accurate structural determinations by circular dichroism and nuclear magnetic resonance measurements.
Collapse
Affiliation(s)
- Janos Sagi
- a Rimstone Laboratory , RLI, 29 Lancaster Way, Cheshire , CT , 06410 , USA
| |
Collapse
|
38
|
Mukundan VT, Phan AT. Bulges in G-Quadruplexes: Broadening the Definition of G-Quadruplex-Forming Sequences. J Am Chem Soc 2013; 135:5017-28. [DOI: 10.1021/ja310251r] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Anh Tuân Phan
- School of
Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
39
|
Structural probes in quadruplex nucleic acid structure determination by NMR. Molecules 2012; 17:13073-86. [PMID: 23128087 PMCID: PMC6268857 DOI: 10.3390/molecules171113073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022] Open
Abstract
Traditionally, isotope-labelled DNA and RNA have been fundamental to nucleic acid structural studies by NMR. Four-stranded nucleic acid architectures studies increasingly benefit from a plethora of nucleotide conjugates for resonance assignments, the identification of hydrogen bond alignments, and improving the population of preferred species within equilibria. In this paper, we review their use for these purposes. Most importantly we identify reasons for the failure of some modifications to result in quadruplex formation.
Collapse
|
40
|
Do NQ, Phan AT. Monomer-dimer equilibrium for the 5'-5' stacking of propeller-type parallel-stranded G-quadruplexes: NMR structural study. Chemistry 2012; 18:14752-9. [PMID: 23019076 DOI: 10.1002/chem.201103295] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Indexed: 01/24/2023]
Abstract
Guanine-rich sequence motifs, which contain tracts of three consecutive guanines connected by single non-guanine nucleotides, are abundant in the human genome and can form a robust G-quadruplex structure with high stability. Herein, by using NMR spectroscopy, we investigate the equilibrium between monomeric and 5'-5' stacked dimeric propeller-type G-quadruplexes that are formed by DNA sequences containing GGGT motifs. We show that the monomer-dimer equilibrium depends on a number of parameters, including the DNA concentration, DNA flanking sequences, the concentration and type of cations, and the temperature. We report on the high-definition structure of a simple monomeric G-quadruplex containing three single-residue loops, which could serve as a reference for propeller-type G-quadruplex structures in solution.
Collapse
Affiliation(s)
- Ngoc Quang Do
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
41
|
Virgilio A, Petraccone L, Esposito V, Citarella G, Giancola C, Galeone A. The abasic site lesions in the human telomeric sequence d[TA(G(3)T(2)A)(3)G(3)]: a thermodynamic point of view. Biochim Biophys Acta Gen Subj 2012; 1820:2037-43. [PMID: 23000492 DOI: 10.1016/j.bbagen.2012.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/06/2012] [Accepted: 09/14/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND The abasic sites represent one of the most frequent lesions of DNA and most of the events able to generate such modifications involve guanine bases. G-rich sequences are able to form quadruplex structures that have been proved to be involved in several important biological processes. METHODS In this paper, we report investigations, based on calorimetric, UV, CD and electrophoretic techniques, on 12 oligodeoxynucleotides analogues of the quadruplex forming human telomere sequence d[TA(G(3)T(2)A)(3)G(3)], in which each guanine has been replaced, one at a time, by an abasic site mimic. RESULTS Although all data show that the modified sequences preserve their ability to form quadruplex structures, the thermodynamic parameters clearly indicate that the presence of an abasic site decreases their thermal stability compared to the parent unmodified sequence, particularly if the replacement concerns one of the guanosines involved in the formation of the central G-tetrad. CONCLUSIONS The collected data indicate that the effects of the presence of abasic site lesions in telomeric quadruplex structures are site-specific. The most dramatic consequences come out when this lesion involves a guanosine in the centre of a G-run. GENERAL SIGNIFICANCE Abasic sites, by facilitating the G-quadruplex disruption, could favour the formation of the telomerase primer. Furthermore they could have implications in the pharmacological approach targeting telomere.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Adrian M, Heddi B, Phan AT. NMR spectroscopy of G-quadruplexes. Methods 2012; 57:11-24. [DOI: 10.1016/j.ymeth.2012.05.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 12/24/2022] Open
|
43
|
Lech CJ, Cheow Lim JK, Wen Lim JM, Amrane S, Heddi B, Phan AT. Effects of site-specific guanine C8-modifications on an intramolecular DNA G-quadruplex. Biophys J 2012; 101:1987-98. [PMID: 22004753 DOI: 10.1016/j.bpj.2011.08.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 10/16/2022] Open
Abstract
Understanding the fundamentals of G-quadruplex formation is important both for targeting G-quadruplexes formed by natural sequences and for engineering new G-quadruplexes with desired properties. Using a combination of experimental and computational techniques, we have investigated the effects of site-specific substitution of a guanine with C8-modified guanine derivatives, including 8-bromo-guanine, 8-O-methyl-guanine, 8-amino-guanine, and 8-oxo-guanine, within a well-defined (3 + 1) human telomeric G-quadruplex platform. The effects of substitutions on the stability of the G-quadruplex were found to depend on the type and position of the modification among different guanines in the structure. An interesting modification-dependent NMR chemical-shift effect was observed across basepairing within a guanine tetrad. This effect was reproduced by ab initio quantum mechanical computations, which showed that the observed variation in imino proton chemical shift is largely influenced by changes in hydrogen-bond geometry within the guanine tetrad.
Collapse
|
44
|
Abstract
Circular dichroism (CD) is a widespread technique for studying the polymorphism of G-quadruplexes. In this chapter the CD spectral features characteristic of different folding topologies of G4-DNA are analyzed in terms of the sequence of the syn or anti glycosidic bond angle (GBA) within a quadruplex stem. Depending on the GBA sequence, the chiral disposition of two stacked guanines, adjacent along a strand, is different and this leads to a predictable contribution to the overall CD spectrum. The CD spectra of a series of G-quadruplexes, chosen as prototypal of the most common strand folding, are illustrated. The validity and the prediction power of the approach is corroborated by the analysis of CD spectra of structurally modified G4-DNA either with chemically modified guanines or polarity inversion site (5'-5' or 3'-3') along the strands or additional nucleobases contributing to the stacking.
Collapse
|
45
|
Dao NT, Haselsberger R, Michel-Beyerle ME, Phan AT. Following G-quadruplex formation by its intrinsic fluorescence. FEBS Lett 2011; 585:3969-77. [PMID: 22079665 DOI: 10.1016/j.febslet.2011.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/23/2011] [Accepted: 11/01/2011] [Indexed: 12/11/2022]
Abstract
We characterized and compared the fluorescence properties of various well-defined G-quadruplex structures. The increase of intrinsic fluorescence of G-rich DNA sequences when they form G-quadruplexes can be used to monitor the folding and unfolding of G-quadruplexes as a function of cations and temperature. The temperature-dependent fluorescence spectra of different G-quadruplexes also exhibit characteristic patterns. Thus, the stability and possibly also the structure of G-quadruplexes can be characterized and distinguished by their intrinsic fluorescence spectra.
Collapse
Affiliation(s)
- Nguyen Thuan Dao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
46
|
Virgilio A, Esposito V, Citarella G, Pepe A, Mayol L, Galeone A. The insertion of two 8-methyl-2'-deoxyguanosine residues in tetramolecular quadruplex structures: trying to orientate the strands. Nucleic Acids Res 2011; 40:461-75. [PMID: 21908403 PMCID: PMC3245916 DOI: 10.1093/nar/gkr670] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this article, we report a structural study, based on NMR and CD spectroscopies, and molecular modelling of all possible d(TG3T) and d(TG4T) analogues containing two 8-methyl-2′-deoxyguanosine residues (M). Particularly, the potential ability of these modified residues to orientate the strands and then to affect the folding topology of tetramolecular quadruplex structures has been investigated. Oligodeoxynucleotides (ODNs) TMMGT (T12) and TMMGGT (F12) form parallel tetramolecular quadruplexes, characterized by an all-syn M-tetrad at the 5′-side stacked to all-anti M- and G-tetrads. ODNs TMGMT (T13) and TMGGMT (F14) form parallel tetramolecular quadruplexes, in which an all-anti G core is sandwiched between two all-syn M-tetrads at the 5′- and the 3′-side. Notably, the quadruplex formed by T13 corresponds to an unprecedented structure in which the syn residues exceed in number the anti ones. Conversely, ODN TGMGMT (F24) adopts a parallel arrangement in which all-anti G-tetrads alternate with all-syn M-tetrads. Most importantly, all data strongly suggest that ODN TMGMGT (F13) forms an unprecedented anti-parallel tetramolecular quadruplex in which G and M residues adopt anti and syn glycosidic conformations, respectively. This article opens up new understandings and perspectives about the intricate relationship between the quadruplex strands orientation and the glycosidic conformation of the residues.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Cang X, Šponer J, Cheatham TE. Insight into G-DNA structural polymorphism and folding from sequence and loop connectivity through free energy analysis. J Am Chem Soc 2011; 133:14270-9. [PMID: 21761922 PMCID: PMC3168932 DOI: 10.1021/ja107805r] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The lengths of G-tracts and their connecting loop sequences determine G-quadruplex folding and stability. Complete understanding of the sequence–structure relationships remains elusive. Here, single-loop G-quadruplexes were investigated using explicit solvent molecular dynamics (MD) simulations to characterize the effect of loop length, loop sequence, and G-tract length on the folding topologies and stability of G-quadruplexes. Eight loop types, including different variants of lateral, diagonal, and propeller loops, and six different loop sequences [d0 (i.e., no intervening residues in the loop), dT, dT2, dT3, dTTA, and dT4] were considered through MD simulation and free energy analysis. In most cases the free energetic estimates agree well with the experimental observations. The work also provides new insight into G-quadruplex folding and stability. This includes reporting the observed instability of the left propeller loop, which extends the rules for G-quadruplex folding. We also suggest a plausible explanation why human telomere sequences predominantly form hybrid-I and hybrid-II type structures in K+ solution. Overall, our calculation results indicate that short loops generally are less stable than longer loops, and we hypothesize that the extreme stability of sequences with very short loops could possibly derive from the formation of parallel multimers. The results suggest that free energy differences, estimated from MD and free energy analysis with current force fields and simulation protocols, are able to complement experiment and to help dissect and explain loop sequence, loop length, and G-tract length and orientation influences on G-quadruplex structure.
Collapse
Affiliation(s)
- Xiaohui Cang
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Hall 201, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
48
|
Do NQ, Lim KW, Teo MH, Heddi B, Phan AT. Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity. Nucleic Acids Res 2011; 39:9448-57. [PMID: 21840903 PMCID: PMC3241632 DOI: 10.1093/nar/gkr539] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
G-rich oligonucleotides T30695 (or T30923), with the sequence of (GGGT)4, and T40214, with the sequence of (GGGC)4, have been reported to exhibit anti-HIV and anticancer activity. Here we report on the structure of a dimeric G-quadruplex adopted by a derivative of these sequences in K+ solution. It comprises two identical propeller-type parallel-stranded G-quadruplex subunits each containing three G-tetrad layers that are stacked via the 5′-5′ interface. We demonstrated control over the stacking of the two monomeric subunits by sequence modifications. Our analysis of possible structures at the stacking interface provides a general principle for stacking of G-quadruplexes, which could have implications for the assembly and recognition of higher-order G-quadruplex structures.
Collapse
Affiliation(s)
- Ngoc Quang Do
- School of Physical and Mathematical Sciences and School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
49
|
Loop residues of thrombin-binding DNA aptamer impact G-quadruplex stability and thrombin binding. Biochimie 2011; 93:1231-8. [DOI: 10.1016/j.biochi.2011.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/31/2011] [Indexed: 01/02/2023]
|
50
|
Yue DJE, Lim KW, Phan AT. Formation of (3+1) G-quadruplexes with a long loop by human telomeric DNA spanning five or more repeats. J Am Chem Soc 2011; 133:11462-5. [PMID: 21702440 DOI: 10.1021/ja204197d] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Structural studies of human telomeric repeats represent an active field of research with potential applications toward the development of specific telomeric quadruplex-targeting drugs for anticancer treatment. To date, high-definition structures were limited to DNA sequences containing up to four GGGTTA repeats. Here we investigate the formation of G-quadruplexes in sequences spanning five to seven human telomeric repeats using NMR, UV, and CD spectroscopy. A (3+1) G-quadruplex with a long propeller loop was isolated from a five-repeat sequence utilizing a guanine-to-inosine substitution. A simple approach of selective site-specific labeling of guanine residues was devised to rigorously determine the folding topology of the oligonucleotide. The same scaffold could be extrapolated to six- and seven-repeat sequences. Our results suggest that long human telomeric sequences consisting of five or more GGGTTA repeats could adopt (3+1) G-quadruplex structures harboring one or more repeat(s) within a single loop. We report on the formation of a Watson-Crick duplex within the long propeller loop upon addition of the complementary strand, demonstrating that the long loop could serve as a new recognition motif.
Collapse
Affiliation(s)
- Doris Jia En Yue
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | | | |
Collapse
|