1
|
Zimmermann L, Land MA, Riesinger C, Macdonald CLB, Scheer M. Synthesis of heteropnictogen ligands via P I transfer. Chem Commun (Camb) 2025; 61:6973-6976. [PMID: 40231857 DOI: 10.1039/d5cc01162k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The heterodipnictogen complexes [{CpMo(CO)2}2(μ,η2:2-PE)] (E = P, As, Sb) react with the phosphorus(I) transfer reagent [(BZIMPY)P][CF3SO3] (BZIMPY = 2,6-bis(benzimidazole-2-yl)pyridine) in a transmetallation reaction forming the unprecedented [CpMo(CO)2(η3-P2E)] complexes.
Collapse
Affiliation(s)
- Lisa Zimmermann
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Michael A Land
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Charles L B Macdonald
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
2
|
Bhunia M, Mohar JS, Sandoval-Pauker C, Fehn D, Yang ES, Gau M, Goicoechea J, Ozarowski A, Krzystek J, Telser J, Meyer K, Mindiola DJ. Softer Is Better for Titanium: Molecular Titanium Arsenido Anions Featuring Ti≡As Bonding and a Terminal Parent Arsinidene. J Am Chem Soc 2024; 146:3609-3614. [PMID: 38290427 DOI: 10.1021/jacs.3c12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We introduce the arsenido ligand onto the TiIV ion, yielding a remarkably covalent Ti≡As bond and the parent arsinidene Ti═AsH moiety. An anionic arsenido ligand is assembled via reductive decarbonylation involving the discrete TiII salt [K(cryptand)][(PN)2TiCl] (1) (cryptand = 222-Kryptofix) and Na(OCAs)(dioxane)1.5 in thf/toluene to produce the mixed alkali ate-complex [(PN)2Ti(As)]2(μ2-KNa(thf)2) (2) and the discrete salt [K(cryptand)][(PN)2Ti≡As] (3) featuring a terminal Ti≡As ligand. Protonation of 2 or 3 with various weak acids cleanly forms the parent arsinidene [(PN)2Ti═AsH] (4), which upon deprotonation with KCH2Ph in thf generates the more symmetric anionic arsenido [(PN)2Ti(As){μ2-K(thf)2}]2 (5). Experimental and computational studies suggest the pKa of 4 to be ∼23, and the bond orders in 2, 3, and 5 are all in the range of a Ti≡As triple bond, with decreasing bond order in 4.
Collapse
Affiliation(s)
- Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Jacob S Mohar
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Christian Sandoval-Pauker
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Dominik Fehn
- Departments of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058 Erlangen, Germany
| | - Eric S Yang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Michael Gau
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Jose Goicoechea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Karsten Meyer
- Departments of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Schäfer S, Kaufmann S, Rösch ES, Roesky PW. Divalent metallocenes of the lanthanides - a guideline to properties and reactivity. Chem Soc Rev 2023. [PMID: 37183859 DOI: 10.1039/d2cs00744d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Since the discovery in the early 1980s, the soluble divalent metallocenes of lanthanides have become a steadily growing field in organometallic chemistry. The predominant part of the investigation has been performed with samarium, europium, and ytterbium, whereas only a few reports dealing with other rare earth elements were disclosed. Reactions of these metallocenes can be divided into two major categories: (1) formation of Lewis acid-base complexes, in which the oxidation state remains +II; and (2) single electron transfer (SET) reductions with the ultimate formation of Ln(III) complexes. Due to the increasing reducing character from Eu(II) over Yb(II) to Sm(II), the plethora of literature concerning redox reactions revolves around the metallocenes of Sm and Yb. In addition, a few reactivity studies on Nd(II), Dy(II) and mainly Tm(II) metallocenes were published. These compounds are even stronger reducing agents but significantly more difficult to handle. In most cases, the metals are ligated by the versatile pentamethylcyclopentadienyl ligand: (C5Me5). Other cyclopentadienyl ligands are fully covered but only discussed in detail, if the ligand causes differences in synthesis or reactivity. Thus, the focus lays on three compounds: [(C5Me5)2Sm], [(C5Me5)2Eu] and [(C5Me5)2Yb] and their solvates. We discuss the synthesis and physical properties of divalent lanthanide metallocenes first, followed by an overview of the reactivity rendering the full potential of these versatile reactants.
Collapse
Affiliation(s)
- Sebastian Schäfer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| | - Sebastian Kaufmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| | - Esther S Rösch
- Baden-Württemberg Cooperative State University Karlsruhe, Erzbergerstr. 121, 76133 Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
4
|
Haimerl M, Piesch M, Yadav R, Roesky PW, Scheer M. Reactivity of E 4 (E 4 =P 4 , As 4 , AsP 3 ) towards Low-Valent Al(I) and Ga(I) Compounds. Chemistry 2023; 29:e202202529. [PMID: 36173973 PMCID: PMC10100333 DOI: 10.1002/chem.202202529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/14/2023]
Abstract
The reactivity of yellow arsenic and the interpnictogen compound AsP3 towards low-valent group 13 compounds was investigated. The reactions of [LAl] (1, L=[{N(C6 H3 i Pr2 -2,6)C(Me)}2 CH]- ) with As4 and AsP3 lead to [(LAl)2 (μ,η1:1:1:1 -E4 )] (E4 =As4 (3 b), AsP3 (3 c)) by insertion of two fragments [LAl] into two of the six E-E edges of the E4 tetrahedra. Furthermore, the reaction of [LGa] (2) with E4 afforded [LGa(η1:1 -E4 )] (E4 =As4 (4 b), AsP3 (4 c)). In these compounds, only one E-E bond of the E4 tetrahedra was cleaved. These compounds represent the first examples of the conversion of yellow arsenic and AsP3 , respectively, with group 13 compounds. Furthermore, the reactivity of the gallium complexes towards unsaturated transition metal units or polypnictogen (En ) ligand complexes was investigated. This leads to the heterobimetallic compounds [(LGa)(μ,η2:1:1 -P4 )(LNi)] (5 a), [(Cp'''Co)(μ,η4:1:1 -E4 )(LGa)] (E=P (6 a), As (6 b), Cp'''=η5 -C5 H2 t Bu3 ) and [(Cp'''Ni)(η3:1:1 -E3 )(LGa)] (E=P (7 a), As (7 b)), which combine two different ligand systems in one complex (nacnac and Cp) as well as two different types of metals (main group and transition metals). The products were characterized by crystallographic and spectroscopic methods.
Collapse
Affiliation(s)
- Maria Haimerl
- Institute for Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Martin Piesch
- Institute for Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Ravi Yadav
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Manfred Scheer
- Institute for Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
5
|
Reinfandt N, Hauser A, Münzfeld L, Roesky PW. From a nanoparticular solid-state material to molecular organo-f-element-polyarsenides. Chem Sci 2022; 13:3363-3368. [PMID: 35432861 PMCID: PMC8943856 DOI: 10.1039/d1sc05797a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
A convenient pathway to new molecular organo-lanthanide-polyarsenides in general and to a f-element complex with the largest polyarsenide ligand in detail is reported. For this purpose, the activation of the solid state material As0 nano (nanoscale gray arsenic) by the multi electron reducing agents [K(18-crown-6)][(Ln+II)2(μ-η6:η6-C6H6)] (Ln = La, Ce, Cp'' = 1,3-bis(trimethylsilyl)cyclopentadienyl anion) and [K(18-crown-6)]2[(Ln+II)2(μ-η6:η6-C6H6)] (Ln = Ce, Nd) is shown. These non-classical divalent lanthanide compounds were used as three and four electron reducing agents where the product formation can be directed by variation of the applied reactant. The obtained Zintl anions As3 3-, As7 3-, and As14 4- were previously not accessible in molecular 4f-element chemistry. Additionally, the corresponding compounds with As14 4--moieties represent the largest organo-lanthanide-polyarsenides known to date.
Collapse
Affiliation(s)
- Niklas Reinfandt
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstr. 15 D-76131 Karlsruhe Germany
| | - Adrian Hauser
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstr. 15 D-76131 Karlsruhe Germany
| | - Luca Münzfeld
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstr. 15 D-76131 Karlsruhe Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstr. 15 D-76131 Karlsruhe Germany
| |
Collapse
|
6
|
Viana RB, Machado ACP, Marques LDS, Modolo MZ, Santos DDO. Unravelling the diarsenic hydrides: Reactivity and spectroscopic properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Gusarova NK, Trofimov BA. Organophosphorus chemistry based on elemental phosphorus: advances and horizons. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The results of studies on the application of elemental phosphorus for the synthesis of important organophosphorus compounds are surveyed and summarized. Currently, this trend represents a synthetically, environmentally and technologically attractive alternative to classical organophosphorus chemistry based on toxic and corrosive phosphorus chlorides. Direct phosphination and phosphinylation of organic compounds with elemental phosphorus (discussed in the first part of the review) basically extend the range of available phosphines, phosphine chalcogenides and phosphinic acids and provides further development of their synthetic potential (discussed in the second part of the review). It is shown that the breakthrough in this area is largely due to the discovery of reactions of elemental phosphorus (white and red) with various electrophiles in superbasic suspensions and emulsions derived from alkali metal hydroxides and to the development of electrochemical, electrocatalytic and catalytic activation of white phosphorus.
The bibliography includes 299 references.
Collapse
|
8
|
Spitzer F, Balázs G, Graßl C, Scheer M. Iron β-diiminate complexes with As2-, As4- and As8-ligands. Chem Commun (Camb) 2020; 56:13209-13212. [DOI: 10.1039/d0cc05173j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depending on the sterics of the flanking group at the β-diiminate ligand at Fe(i) a tetramerisation or dimerisation of As4 units is observed; for the latter case the ligand conformation was influenced by the crystallization temperature.
Collapse
Affiliation(s)
- Fabian Spitzer
- Institut für Anorganische Chemie
- Universität Regensburg
- 93040 Regensburg
- Germany
| | - Gábor Balázs
- Institut für Anorganische Chemie
- Universität Regensburg
- 93040 Regensburg
- Germany
| | - Christian Graßl
- Institut für Anorganische Chemie
- Universität Regensburg
- 93040 Regensburg
- Germany
| | - Manfred Scheer
- Institut für Anorganische Chemie
- Universität Regensburg
- 93040 Regensburg
- Germany
| |
Collapse
|
9
|
Magnall R, Balázs G, Lu E, Kern M, Slageren J, Tuna F, Wooles AJ, Scheer M, Liddle ST. Photolytic and Reductive Activations of 2‐Arsaethynolate in a Uranium–Triamidoamine Complex: Decarbonylative Arsenic‐Group Transfer Reactions and Trapping of a Highly Bent and Reduced Form. Chemistry 2019; 25:14246-14252. [DOI: 10.1002/chem.201903973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Rosie Magnall
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 Regensburg 93053 Germany
| | - Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Michal Kern
- Institute of Physical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Joris Slageren
- Institute of Physical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Floriana Tuna
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 Regensburg 93053 Germany
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
10
|
Schoo C, Bestgen S, Egeberg A, Seibert J, Konchenko SN, Feldmann C, Roesky PW. Synthese von Samarium‐Polyarseniden aus nanoskaligem Arsen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christoph Schoo
- Institut für Anorganische ChemieKarlsruher Institut für Technologie (KIT) Engesserstraße 15 76131 Karlsruhe Deutschland
| | - Sebastian Bestgen
- Institut für Anorganische ChemieKarlsruher Institut für Technologie (KIT) Engesserstraße 15 76131 Karlsruhe Deutschland
| | - Alexander Egeberg
- Institut für Anorganische ChemieKarlsruher Institut für Technologie (KIT) Engesserstraße 15 76131 Karlsruhe Deutschland
| | - Jasmin Seibert
- Institut für Anorganische ChemieKarlsruher Institut für Technologie (KIT) Engesserstraße 15 76131 Karlsruhe Deutschland
| | - Sergey N. Konchenko
- Institut für Anorganische ChemieKarlsruher Institut für Technologie (KIT) Engesserstraße 15 76131 Karlsruhe Deutschland
- Nikolaev Institute of Inorganic Chemistry SB RAS Prosp. Lavrentieva 3 630090 Novosibirsk Russland
- Novosibirsk State University Pirogovastr. 2 630090 Novosibirsk Russland
| | - Claus Feldmann
- Institut für Anorganische ChemieKarlsruher Institut für Technologie (KIT) Engesserstraße 15 76131 Karlsruhe Deutschland
| | - Peter W. Roesky
- Institut für Anorganische ChemieKarlsruher Institut für Technologie (KIT) Engesserstraße 15 76131 Karlsruhe Deutschland
| |
Collapse
|
11
|
Abstract
The generation and handling of the light-sensitive and metastable yellow arsenic (As4) is extremely challenging. In view of recent breakthroughs in synthesizing As4 storage materials and transfer reagents, the more intensive use of yellow arsenic as a source for further reactions can be expected. Given these aspects, the current stage of knowledge of the direct use of As4 is comprehensively summarized in the present review, which lists the activation of As4 by main group elements as well as transition metal compounds (including the f-block elements). Moreover, it also partly compares the reaction outcomes in relation to the corresponding reactions of P4. The possibility of using alternative sources for generating arsenic moieties and compounds is also discussed. The release of As4 molecules from precursor compounds and the use of transfer reagents for polyarsenic entities open up new synthetic pathways to avoid the direct generation of yellow arsenic solutions and to ensure its smooth usage for subsequent reactions.
Collapse
Affiliation(s)
- Michael Seidl
- Institut für Anorganische Chemie , Universität Regensburg , 93043 Regensburg , Germany
| | - Gábor Balázs
- Institut für Anorganische Chemie , Universität Regensburg , 93043 Regensburg , Germany
| | - Manfred Scheer
- Institut für Anorganische Chemie , Universität Regensburg , 93043 Regensburg , Germany
| |
Collapse
|
12
|
Schoo C, Bestgen S, Egeberg A, Seibert J, Konchenko SN, Feldmann C, Roesky PW. Samarium Polyarsenides Derived from Nanoscale Arsenic. Angew Chem Int Ed Engl 2019; 58:4386-4389. [PMID: 30614173 DOI: 10.1002/anie.201813370] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 11/10/2022]
Abstract
Zintl phases of arsenic and molecular compounds containing Zintl-type polyarsenide ions are of fundamental interest in basic and applied sciences. Unfortunately, the most obvious and reactive arsenic source for the preparation of defined molecular polyarsenide compounds, yellow arsenic As4 , is very inconvenient to prepare and neither storable in pure form nor easy to handle. Herein, we present the synthesis and reactivity of elemental As0 nanoparticles (As0 Nano , d=7.2±1.8 nm), which were successfully utilized as a reactive arsenic source in reductive f-element chemistry. Starting from [Cp*2 Sm] (Cp*=η5 -C5 Me5 ), the samarium polyarsenide complexes [(Cp*2 Sm)2 (μ-η2 :η2 -As2 )] and [(Cp*2 Sm)4 As8 ] were obtained from As0 nano , thereby generating the largest molecular polyarsenide of the f-elements and circumventing the use of As4 in preparative chemistry.
Collapse
Affiliation(s)
- Christoph Schoo
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Sebastian Bestgen
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Alexander Egeberg
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Jasmin Seibert
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Sergey N Konchenko
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.,Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogovastr. 2, 630090, Novosibirsk, Russia
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|
13
|
|
14
|
Spitzer F, Balázs G, Graßl C, Keilwerth M, Meyer K, Scheer M. Der Einfluss von β‐Diiminato‐Liganden auf die As
4
‐Aktivierung durch Cobalt‐Komplexe. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian Spitzer
- Institut für Anorganische Chemie Universität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| | - Gábor Balázs
- Institut für Anorganische Chemie Universität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| | - Christian Graßl
- Institut für Anorganische Chemie Universität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| | - Martin Keilwerth
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Department Chemie und Pharmazie Anorganische Chemie Egerlandstraße 1 91058 Erlangen Deutschland
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Department Chemie und Pharmazie Anorganische Chemie Egerlandstraße 1 91058 Erlangen Deutschland
| | - Manfred Scheer
- Institut für Anorganische Chemie Universität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| |
Collapse
|
15
|
Spitzer F, Balázs G, Graßl C, Keilwerth M, Meyer K, Scheer M. The Influence of β-diiminato Ligands on As 4 Activation by Cobalt Complexes. Angew Chem Int Ed Engl 2018; 57:8760-8764. [PMID: 29676841 PMCID: PMC6099418 DOI: 10.1002/anie.201802888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 11/26/2022]
Abstract
In a systematic study of the activation of As4, three [LCo(tol)] (L=β‐diiminato) complexes have revealed different steric and electronic influences. 2,6‐Diisopropylphenyl (Dipp) and 2,6‐dimethylphenyl (dmp) flanking groups were used, one of the ligands with H backbone substituents (β‐dialdiminate L0) and two with Me substituents (β‐diketiminates L3 and L1). In the reaction with As4, different dinuclear products [(LCo)2As4] (LM=L0 (1), L1 (2), L3 (3)) were isolated, with all showing differently shaped [Co2As4] cores in the solid state: octahedral in 1, prismatic in 2, and asterane‐like in 3. Thermal treatment of 3 leads to the abstraction of one arsenic atom to yield [(L3Co)2As3] (4). All products were comprehensively characterized by single‐crystal X‐ray diffraction, FD‐MS, and 1H NMR spectroscopy. A rational explanation for the different reactivity is also proposed and DFT calculations shed light on the nature of the highly flexible [Co2As4] cores.
Collapse
Affiliation(s)
- Fabian Spitzer
- Institut für Anorganische ChemieUniversität RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Gábor Balázs
- Institut für Anorganische ChemieUniversität RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Christian Graßl
- Institut für Anorganische ChemieUniversität RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Martin Keilwerth
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyInorganic ChemistryEgerlandstrasse 191058ErlangenGermany
| | - Karsten Meyer
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyInorganic ChemistryEgerlandstrasse 191058ErlangenGermany
| | - Manfred Scheer
- Institut für Anorganische ChemieUniversität RegensburgUniversitätsstrasse 3193040RegensburgGermany
| |
Collapse
|
16
|
Sulfur monoxide thermal release from an anthracene-based precursor, spectroscopic identification, and transfer reactivity. Proc Natl Acad Sci U S A 2018; 115:5866-5871. [PMID: 29773708 DOI: 10.1073/pnas.1804035115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sulfur monoxide (SO) is a highly reactive molecule and thus, eludes bulk isolation. We report here on synthesis and reactivity of a molecular precursor for SO generation, namely 7-sulfinylamino-7-azadibenzonorbornadiene (1). This compound has been shown to fragment readily driven by dinitrogen expulsion and anthracene formation on heating in the solid state and in solution, releasing SO at mild temperatures (<100 °C). The generated SO was detected in the gas phase by MS and rotational spectroscopy. In solution, 1 allows for SO transfer to organic molecules as well as transition metal complexes.
Collapse
|
17
|
Hu HS, Kaltsoyannis N. The shortest Th-Th distance from a new type of quadruple bond. Phys Chem Chem Phys 2018; 19:5070-5076. [PMID: 28098321 DOI: 10.1039/c7cp00113d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compounds featuring unsupported metal-metal bonds between actinide elements remain highly sought after yet confined experimentally to inert gas matrix studies. Notwithstanding this paucity, actinide-actinide bonding has been the subject of extensive computational research. In this contribution, high level quantum chemical calculations at both the scalar and spin-orbit levels are used to probe the Th-Th bonding in a range of zero valent systems of general formula LThThL. Several of these compounds have very short Th-Th bonds arising from a new type of Th-Th quadruple bond with a previously unreported electronic configuration featuring two unpaired electrons in 6d-based δ bonding orbitals. H3AsThThAsH3 is found to have the shortest Th-Th bond yet reported (2.590 Å). The Th2 unit is a highly sensitive probe of ligand electron donor/acceptor ability; we can tune the Th-Th bond from quadruple to triple, double and single by judicious choice of the L group, up to 2.888 Å for singly-bonded ONThThNO.
Collapse
Affiliation(s)
- Han-Shi Hu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
18
|
Facile storage and release of white phosphorus and yellow arsenic. Nat Commun 2018; 9:361. [PMID: 29367623 PMCID: PMC5783940 DOI: 10.1038/s41467-017-02735-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/20/2017] [Indexed: 11/08/2022] Open
Abstract
The storage of metastable compounds and modifications of elements are of great interest for synthesis and other, e.g., semiconductor, applications. Whereas white phosphorus is a metastable modification that can be stored under certain conditions, storage of the extremely (light- and air-)sensitive form of arsenic, yellow arsenic, is a challenge rarely tackled so far. Herein, we report on the facile storage and release of these tetrahedral E4 molecules (E = P, As) using activated carbon as a porous storage material. These loaded materials are air- and light-stable and have been comprehensively characterized by solid-state 31P{1H} MAS NMR spectroscopy, powder X-ray diffraction analysis, nitrogen adsorption measurements, and thermogravimetric analysis. Additionally, we show that these materials can be used as a suitable E4 source for releasing intact white phosphorus or yellow arsenic, enabling subsequent reactions in solution. Because the uptake and release of E4 are reversible, these materials are excellent carriers of these highly reactive modifications.
Collapse
|
19
|
Schmidt M, Seitz AE, Eckhardt M, Balázs G, Peresypkina EV, Virovets AV, Riedlberger F, Bodensteiner M, Zolnhofer EM, Meyer K, Scheer M. Transfer Reagent for Bonding Isomers of Iron Complexes. J Am Chem Soc 2017; 139:13981-13984. [PMID: 28933848 DOI: 10.1021/jacs.7b07354] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cothermolysis of As4 and [Cp″2Zr(CO)2] (Cp″ = η5-C5H3tBu2) results in the formation of [Cp″2Zr(η1:1-As4)] (1) in high yields and the arsenic-rich complex [(Cp″2Zr)(Cp″Zr)(μ,η2:2:1-As5)] (2) as a minor product. In contrast to yellow arsenic, 1 is a light-stable, weighable and storable arsenic source for subsequent reactions. The transfer reaction of 1 with [Cp‴Fe(μ-Br)]2 (Cp‴ = η5-C5H2tBu3) yields the unprecedented bond isomeric complexes [(Cp‴Fe)2(μ,η4:4-As4)] (3a) and [(Cp‴Fe)2(μ,η4:4-cyclo-As4)] (3b). In contrast, the analogous reaction with the CpBn derivative [CpBnFe(μ-Br)]2 (CpBn = η5-C5(CH2(C6H5)5) leads exclusively to the triple decker complex [(CpBnFe)2(μ,η4:4-As4)] (4) possessing the tetraarsabutadiene-type ligand analogous to 3a. To elucidate the stability of the bonding isomers 3a and 3b, DFT calculations were performed. The oxidation of 4 with AgBF4 affords [(CpBnFe)2(μ,η5:5-As5)][BF4] (5), which is a product expanded by one arsenic atom, instead of the expected complex [(CpBnFe)2(μ,η4:4-cyclo-As4)]+.
Collapse
Affiliation(s)
- Monika Schmidt
- Institute of Inorganic Chemistry, University of Regensburg , Regensburg 93053, Germany
| | - Andreas E Seitz
- Institute of Inorganic Chemistry, University of Regensburg , Regensburg 93053, Germany
| | - Maria Eckhardt
- Institute of Inorganic Chemistry, University of Regensburg , Regensburg 93053, Germany
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg , Regensburg 93053, Germany
| | - Eugenia V Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg , Regensburg 93053, Germany.,Nikolaev Institute of Inorganic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg , Regensburg 93053, Germany.,Nikolaev Institute of Inorganic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Felix Riedlberger
- Institute of Inorganic Chemistry, University of Regensburg , Regensburg 93053, Germany
| | - Michael Bodensteiner
- Institute of Inorganic Chemistry, University of Regensburg , Regensburg 93053, Germany
| | - Eva M Zolnhofer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg , Erlangen 91054, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg , Erlangen 91054, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg , Regensburg 93053, Germany
| |
Collapse
|
20
|
Schmidt M, Konieczny D, Peresypkina EV, Virovets AV, Balázs G, Bodensteiner M, Riedlberger F, Krauss H, Scheer M. Arsenic-Rich Polyarsenides Stabilized by Cp*Fe Fragments. Angew Chem Int Ed Engl 2017; 56:7307-7311. [PMID: 28508464 DOI: 10.1002/anie.201702903] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 11/09/2022]
Abstract
The redox chemistry of [Cp*Fe(η5 -As5 )] (1, Cp*=η5 -C5 Me5 ) has been investigated by cyclic voltammetry, revealing a redox behavior similar to that of its lighter congener [Cp*Fe(η5 -P5 )]. However, the subsequent chemical reduction of 1 by KH led to the formation of a mixture of novel Asn scaffolds with n up to 18 that are stabilized only by [Cp*Fe] fragments. These include the arsenic-poor triple-decker complex [K(dme)2 ][{Cp*Fe(μ,η2:2 -As2 )}2 ] (2) and the arsenic-rich complexes [K(dme)3 ]2 [(Cp*Fe)2 (μ,η4:4 -As10 )] (3), [K(dme)2 ]2 [(Cp*Fe)2 (μ,η2:2:2:2 -As14 )] (4), and [K(dme)3 ]2 [(Cp*Fe)4 (μ4 ,η4:3:3:2:2:1:1 -As18 )] (5). Compound 4 and the polyarsenide complex 5 are the largest anionic Asn ligand complexes reported thus far. Complexes 2-5 were characterized by single-crystal X-ray diffraction, 1 H NMR spectroscopy, EPR spectroscopy (2), and mass spectrometry. Furthermore, DFT calculations showed that the intermediate [Cp*Fe(η5 -As5 )]- , which is presumably formed first, undergoes fast dimerization to the dianion [(Cp*Fe)2 (μ,η4:4 -As10 )]2- .
Collapse
Affiliation(s)
- Monika Schmidt
- Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - David Konieczny
- Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Eugenia V Peresypkina
- Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.,Nikolaev Institute of Inorganic Chemistry SB RAS, Ak. Lavrentiev prosp. 3, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia
| | - Alexander V Virovets
- Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.,Nikolaev Institute of Inorganic Chemistry SB RAS, Ak. Lavrentiev prosp. 3, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia
| | - Gabor Balázs
- Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Michael Bodensteiner
- Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Felix Riedlberger
- Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Hannes Krauss
- Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Manfred Scheer
- Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
21
|
Schmidt M, Konieczny D, Peresypkina EV, Virovets AV, Balázs G, Bodensteiner M, Riedlberger F, Krauss H, Scheer M. Durch Cp*Fe-Fragmente stabilisierte, Arsen-reiche Polyarsenide. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Monika Schmidt
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| | - David Konieczny
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| | - Eugenia V. Peresypkina
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
- Nikolaev Institute of Inorganic Chemistry SB RAS; Ak. Lavrentiev prosp. 3 630090 Novosibirsk Russland
- Novosibirsk State University, Pirogova str. 2; 630090 Novosibirsk Russland
| | - Alexander V. Virovets
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
- Nikolaev Institute of Inorganic Chemistry SB RAS; Ak. Lavrentiev prosp. 3 630090 Novosibirsk Russland
- Novosibirsk State University, Pirogova str. 2; 630090 Novosibirsk Russland
| | - Gabor Balázs
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| | - Michael Bodensteiner
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| | - Felix Riedlberger
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| | - Hannes Krauss
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| | - Manfred Scheer
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
22
|
Yang D, Zhao J, Yu L, Lin X, Zhang W, Ma H, Gogoll A, Zhang Z, Wang Y, Yang XJ, Wu B. Air- and Light-Stable P 4 and As 4 within an Anion-Coordination-Based Tetrahedral Cage. J Am Chem Soc 2017; 139:5946-5951. [PMID: 28335592 DOI: 10.1021/jacs.7b01890] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In contrast to the stable dinitrogen molecule, white phosphorus (P4) and yellow arsenic (As4) are very reactive allotropic modifications of these two heavier pnictogen elements, which has greatly hampered the study of their properties and applications. Thus, the safe storage and transport of them is imperative. Supramolecular caged structures are one of the most efficient approaches for the encapsulation and stabilization of reactive species; however, their use in the P4 and As4 chemistry is very rare. In the current work, we demonstrate a new design strategy for constructing finite cages and including guests based on anion coordination chemistry. The phosphate-coordination-based tetrahedral cages can readily accommodate the tetrahedral guests P4 and As4, which is facilitated by the shape and size complementarity as well as favorable σ-π and lone-pair-π interactions. Moreover, the latter case represents the first example of As4 inclusion in a well-defined tetrahedral cage.
Collapse
Affiliation(s)
- Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, China
| | - Jie Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, China
| | - Xiangsong Lin
- School of Materials and Textile Engineering, Jiaxing University , Jiaxing 314001, China
| | - Wenyao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, China
| | - Hongwei Ma
- Analysis and Testing Center, Beijing Institute of Technology , Beijing 102488, China
| | - Adolf Gogoll
- Department of Chemistry-BMC, Uppsala University , Box 576, Uppsala SE-751 23, Sweden
| | - Zhibin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, China
| | - Yaoyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, China
| |
Collapse
|
23
|
Heinl S, Balázs G, Stauber A, Scheer M. CpPEt2As4- eine organosubstituierte As4-Butterfly-Verbindung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastian Heinl
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93040 Regensburg Deutschland
| | - Gábor Balázs
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93040 Regensburg Deutschland
| | - Andreas Stauber
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93040 Regensburg Deutschland
| | - Manfred Scheer
- Institut für Anorganische Chemie; Universität Regensburg; Universitätsstraße 31 93040 Regensburg Deutschland
| |
Collapse
|
24
|
Heinl S, Balázs G, Stauber A, Scheer M. Cp PEt2 As 4 -An Organic-Substituted As 4 Butterfly Compound. Angew Chem Int Ed Engl 2016; 55:15524-15527. [PMID: 27862725 DOI: 10.1002/anie.201608478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 11/11/2022]
Abstract
CpPEt2 As4 (CpPEt =C5 (4-EtC6 H4 )5 ) (1) is synthesized by the reaction of CpPEt. radicals with yellow arsenic (As4 ). In solution an equilibrium of the starting materials and the product is found. However, 1 can be isolated and stored in the solid state without decomposition. As4 can be easily released from 1 under thermal or photochemical conditions. From powder samples of CpPEt2 As4 , yellow arsenic can be sublimed under rather mild conditions (T=125 °C). A similar behavior for the P4 -releasing agent was determined for the related phosphorus compound CpBIG2 P4 (2; CpBIG =C5 (4-nBuC6 H4 )5 ). DFT calculations show the importance of dispersion forces for the stability of the products.
Collapse
Affiliation(s)
- Sebastian Heinl
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93040, Regensburg, Germany
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93040, Regensburg, Germany
| | - Andreas Stauber
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93040, Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93040, Regensburg, Germany
| |
Collapse
|
25
|
Hinz A, Schulz A, Villinger A. Synthesis of a Molecule with Four Different Adjacent Pnictogens. Chemistry 2016; 22:12266-9. [PMID: 27377437 DOI: 10.1002/chem.201601916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/11/2022]
Abstract
The synthesis of a molecule containing four adjacent different pnictogens was attempted by conversion of a Group 15 allyl analogue anion [Mes*NAsPMes*](-) (Mes*=2,4,6-tri-tert-butylphenyl) with antimony(III) chloride. A suitable precursor is Mes*N(H)AsPMes* (1) for which several syntheses were investigated. The anions afforded by deprotonation of Mes*N(H)AsPMes* were found to be labile and, therefore, salts could not be isolated. However, the in situ generated anions could be quenched with SbCl3 , yielding Mes*N(SbCl2 )AsPMes* (4).
Collapse
Affiliation(s)
- Alexander Hinz
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany. .,Leibniz-Institut für Katalyse e. V. Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany.
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany
| |
Collapse
|
26
|
Schipper DE, Ikhlef D, Khalal S, Saillard JY, Whitmire KH. New Main-Group-Element-Rich nido-Octahedral Cluster System: Synthesis and Characterization of [Et4N][Fe2(CO)6(μ3-As){μ3-EFe(CO)4}2]. Inorg Chem 2016; 55:6679-84. [DOI: 10.1021/acs.inorgchem.6b00921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Desmond E. Schipper
- Department of Chemistry, Rice University, 6100
Main Street, MS60, Houston, Texas 77005, United States
| | - Djamila Ikhlef
- UMR-CNRS 6226 “Institut des Sciences Chimiques de Rennes”, Université de Rennes 1, 35042 Rennes Cedex, France
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité Université de Bouira, 10000 Bouira, Algeria
| | - Samila Khalal
- UMR-CNRS 6226 “Institut des Sciences Chimiques de Rennes”, Université de Rennes 1, 35042 Rennes Cedex, France
| | - Jean-Yves Saillard
- UMR-CNRS 6226 “Institut des Sciences Chimiques de Rennes”, Université de Rennes 1, 35042 Rennes Cedex, France
| | - Kenton H. Whitmire
- Department of Chemistry, Rice University, 6100
Main Street, MS60, Houston, Texas 77005, United States
| |
Collapse
|
27
|
Transue WJ, Velian A, Nava M, Martin-Drumel MA, Womack CC, Jiang J, Hou GL, Wang XB, McCarthy MC, Field RW, Cummins CC. A Molecular Precursor to Phosphaethyne and Its Application in Synthesis of the Aromatic 1,2,3,4-Phosphatriazolate Anion. J Am Chem Soc 2016; 138:6731-4. [DOI: 10.1021/jacs.6b03910] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wesley J. Transue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexandra Velian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew Nava
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Caroline C. Womack
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jun Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gao-Lei Hou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Michael C. McCarthy
- Harvard−Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Robert W. Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C. Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Seidl M, Balázs G, Timoshkin AY, Scheer M. Stepwise Formation of a 1,3-Butadiene Analogue of Mixed Heavier Group 15 Elements. Angew Chem Int Ed Engl 2016; 55:431-5. [PMID: 26549426 DOI: 10.1002/anie.201507355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Indexed: 11/06/2022]
Abstract
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] (1 a) with di-tert-butylcarboimidophosphene leads to the P-C cage compound 6 and the Lewis acid-base adduct [Cp*P{W(CO)5}2(CNtBu)] (2 a). In contrast, the arsinidene complex shows a different reactivity. At low temperatures, the arsaphosphene complex [{W(CO)5}{η(2)-(Cp*)As=P(tBu)}{W(CO)5}] (3) is formed. At these temperatures, 3 reacts further with a second equivalent of carboimidophosphene to form [{W(CO)5}{η(2)-{(Cp*)(tBu)P}As=P(tBu)}{W(CO)5}] (5), probably by the insertion of a phosphinidene unit (tBuP) into an As-C bond. In contrast, at room temperature 3 reacts further by a radical-type reaction to form [{(tBu)P=As-As=P(tBu)}{W(CO)5}4] (4). Compound 4 is the first example of a neutral, 1,3-butadiene analogue containing only mixed heavier Group 15 elements. It consists of two P=As double bonds connected by arsenic atoms.
Collapse
Affiliation(s)
- Michael Seidl
- Institut für Anorganische Chemie der Universität Regensburg, 93040 Regensburg (Germany)
| | - Gábor Balázs
- Institut für Anorganische Chemie der Universität Regensburg, 93040 Regensburg (Germany)
| | - Alexey Y Timoshkin
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab.199034, St. Petersburg (Russia)
| | - Manfred Scheer
- Institut für Anorganische Chemie der Universität Regensburg, 93040 Regensburg (Germany).
| |
Collapse
|
29
|
|
30
|
Gardner BM, Balázs G, Scheer M, Wooles AJ, Tuna F, McInnes EJL, McMaster J, Lewis W, Blake AJ, Liddle ST. Isolation of Elusive HAsAsH in a Crystalline Diuranium(IV) Complex. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 127:15465-15469. [PMID: 27478272 PMCID: PMC4955221 DOI: 10.1002/ange.201508600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/03/2022]
Abstract
The HAsAsH molecule has hitherto only been proposed tentatively as a short-lived species generated in electrochemical or microwave-plasma experiments. After two centuries of inconclusive or disproven claims of HAsAsH formation in the condensed phase, we report the isolation and structural authentication of HAsAsH in the diuranium(IV) complex [{U(TrenTIPS)}2(μ-η2:η2-As2H2)] (3, TrenTIPS=N(CH2CH2NSiPri3)3; Pri=CH(CH3)2). Complex 3 was prepared by deprotonation and oxidative homocoupling of an arsenide precursor. Characterization and computational data are consistent with back-bonding-type interactions from uranium to the HAsAsH π*-orbital. This experimentally confirms the theoretically predicted excellent π-acceptor character of HAsAsH, and is tantamount to full reduction to the diarsane-1,2-diide form.
Collapse
Affiliation(s)
- Benedict M. Gardner
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| | - Gábor Balázs
- Institut of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany)
| | - Manfred Scheer
- Institut of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany)
| | - Ashley J. Wooles
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| | - Floriana Tuna
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| | - Eric J. L. McInnes
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| | - Jonathan McMaster
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK)
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK)
| | - Alexander J. Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK)
| | - Stephen T. Liddle
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| |
Collapse
|
31
|
Seidl M, Balázs G, Timoshkin AY, Scheer M. Stufenweise Bildung eines 1,3-Butadien-Analogons aus gemischten schwereren Elementen der Gruppe 15. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Gardner BM, Balázs G, Scheer M, Wooles AJ, Tuna F, McInnes EJL, McMaster J, Lewis W, Blake AJ, Liddle ST. Isolation of Elusive HAsAsH in a Crystalline Diuranium(IV) Complex. Angew Chem Int Ed Engl 2015; 54:15250-4. [PMID: 26510123 PMCID: PMC4691330 DOI: 10.1002/anie.201508600] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/25/2022]
Abstract
The HAsAsH molecule has hitherto only been proposed tentatively as a short-lived species generated in electrochemical or microwave-plasma experiments. After two centuries of inconclusive or disproven claims of HAsAsH formation in the condensed phase, we report the isolation and structural authentication of HAsAsH in the diuranium(IV) complex [{U(TrenTIPS)}2(μ-η2:η2-As2H2)] (3, TrenTIPS=N(CH2CH2NSiPri3)3; Pri=CH(CH3)2). Complex 3 was prepared by deprotonation and oxidative homocoupling of an arsenide precursor. Characterization and computational data are consistent with back-bonding-type interactions from uranium to the HAsAsH π*-orbital. This experimentally confirms the theoretically predicted excellent π-acceptor character of HAsAsH, and is tantamount to full reduction to the diarsane-1,2-diide form.
Collapse
Affiliation(s)
- Benedict M Gardner
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| | - Gábor Balázs
- Institut of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany)
| | - Manfred Scheer
- Institut of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany).
| | - Ashley J Wooles
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| | - Floriana Tuna
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| | - Eric J L McInnes
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| | - Jonathan McMaster
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK)
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK)
| | - Alexander J Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK)
| | - Stephen T Liddle
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK).
| |
Collapse
|
33
|
Gardner BM, Balázs G, Scheer M, Tuna F, McInnes EJL, McMaster J, Lewis W, Blake AJ, Liddle ST. Triamidoamine uranium(IV)-arsenic complexes containing one-, two- and threefold U-As bonding interactions. Nat Chem 2015; 7:582-90. [PMID: 26100807 DOI: 10.1038/nchem.2279] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/11/2015] [Indexed: 11/09/2022]
Abstract
To further our fundamental understanding of the nature and extent of covalency in uranium-ligand bonding, and the benefits that this may have for the design of new ligands for nuclear waste separation, there is burgeoning interest in the nature of uranium complexes with soft- and multiple-bond-donor ligands. Despite this, there have so far been no examples of structurally authenticated molecular uranium-arsenic bonds under ambient conditions. Here, we report molecular uranium(IV)-arsenic complexes featuring formal single, double and triple U-As bonding interactions. Compound formulations are supported by a range of characterization techniques, and theoretical calculations suggest the presence of polarized covalent one-, two- and threefold bonding interactions between uranium and arsenic in parent arsenide [U-AsH2], terminal arsinidene [U=AsH] and arsenido [U≡AsK2] complexes, respectively. These studies inform our understanding of the bonding of actinides with soft donor ligands and may be of use in future ligand design in this area.
Collapse
Affiliation(s)
- Benedict M Gardner
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Gábor Balázs
- Institut of Inorganic Chemistry, University of Regensburg, Universitaets Strasse 31, Regensburg 93053, Germany
| | - Manfred Scheer
- Institut of Inorganic Chemistry, University of Regensburg, Universitaets Strasse 31, Regensburg 93053, Germany
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Eric J L McInnes
- School of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jonathan McMaster
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Alexander J Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Stephen T Liddle
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
34
|
Schwarzmaier C, Timoshkin AY, Balázs G, Scheer M. Selective formation and unusual reactivity of tetraarsabicyclo[1.1.0]butane complexes. Angew Chem Int Ed Engl 2015; 53:9077-81. [PMID: 25123699 DOI: 10.1002/anie.201404653] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/06/2022]
Abstract
The selective formation of the dinuclear butterfly complexes [{Cp'''Fe(CO)2}2(μ,η(1:1)-E4)] (E = P (1 a), As (1 b)) and [{Cp*Cr(CO)3}2(μ,η(1:1)-E4)] (E = P (2 a), As (2 b)) as new representatives of this rare class of compounds was found by reaction of E4 with the corresponding dimeric carbonyl complexes. Complexes 1 b and 2 b are the first As4 butterfly compounds with a bridging coordination mode. Moreover, first studies regarding the reactivity of 1 b and 2 b are presented, revealing the formation of the unprecedented As8 cuneane complexes [{Cp'''Fe(CO)2}2{Cp'''Fe(CO)}2(μ4,η(1:1:2:2)-As8)] (3 b) and [{Cp*Cr(CO)3}4(μ4,η(1:1:1:1)-As8)] (4). The compounds are fully characterized by NMR and IR spectroscopy as well as by X-ray structure analysis. In addition, DFT calculations give insight into the transformation pathway from the E4 butterfly to the corresponding cuneane structural motif.
Collapse
|
35
|
Spitzer F, Sierka M, Latronico M, Mastrorilli P, Virovets AV, Scheer M. Fixation and Release of Intact E4Tetrahedra (E=P, As). Angew Chem Int Ed Engl 2015; 54:4392-6. [DOI: 10.1002/anie.201411451] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Indexed: 11/09/2022]
|
36
|
Spitzer F, Sierka M, Latronico M, Mastrorilli P, Virovets AV, Scheer M. Fixierung und Freisetzung von intakten E4-Tetraedern (E=P, As). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411451] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Abstract
Experimentally known adducts of SO2 with transition metal complexes have distinct geometries. In the present paper, we demonstrate by a bonding analysis that this is a direct consequence of sulfur dioxide acting as an acceptor in one set, square-planar complexes of d(8) and linear two-coordinated complexes of d(10) transition metals, and as a donor with other compounds, well-known paddle-wheel [Rh2(O2CCF3)4] and square-pyramidal [M(CO)5] (M = Cr, W) complexes. Bonding energy computations were augmented by the natural bond orbital (NBO) analysis and energy decomposition analysis (EDA). When the SO2 molecule acts as an acceptor, bonding in the bent coordination mode to the axial position of the d(8) or the d(10) metal center, the dominant contributor to the bonding is LAO(S) (Lewis Acidic Orbital, mainly composed of the px-orbital of the S atom) as an acceptor, while a dz(2) orbital centered on the metal is the corresponding donor. In contrast, the distinct collinear (or linear) coordination of the SO2 bound at the axial position of [Rh2(O2CCF3)4] and/or [M(CO)5] is associated with a dominant donation from a lone pair localized on the sulfur atom, σ*(Rh-Rh) and/or empty LAO(M) (mainly composed of the dz(2) orbital of the metal), respectively, acting as an acceptor orbital. The donor/acceptor capabilities of the SO2 molecule were also checked in adducts with organic Lewis acids (BH3, B(CF3)3) and Lewis bases (NH3, N(CH3)3, N-heterocyclic carbene).
Collapse
Affiliation(s)
- Jingbai Li
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois 60616, USA.
| | | |
Collapse
|
38
|
Graßl C, Bodensteiner M, Zabel M, Scheer M. Synthesis of arsenic-rich As n ligand complexes from yellow arsenic. Chem Sci 2014; 6:1379-1382. [PMID: 29560225 PMCID: PMC5811125 DOI: 10.1039/c4sc03543g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 11/28/2014] [Indexed: 11/21/2022] Open
Abstract
The reaction of [{η5-Cp'''Co}2{μ,η4:4-toluene}] with yellow arsenic yields the arsenic-rich As n ligand complexes [{Cp'''Co(μ,η2:2-As2)}2] (1), [(Cp'''Co)4(μ4,η4:4:2:2:1:1-As10)] (2) and [(Cp'''Co)3(μ3,η4:4:2:1-As12)] (3), which were comprehensively characterized. The molecular structure of 1 show a triple-decker complex with two As2 units forming the middle-deck; compound 2 contains an all-arsenic As10 analogue of dihydrofulvalene in the molecular structure. The As12 ligand in 3 represents the largest As n ligand complex reported so far.
Collapse
Affiliation(s)
- C Graßl
- Institut für Anorganische Chemie , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany .
| | - M Bodensteiner
- Institut für Anorganische Chemie , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany .
| | - M Zabel
- Institut für Anorganische Chemie , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany .
| | - M Scheer
- Institut für Anorganische Chemie , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany .
| |
Collapse
|
39
|
Schwarzmaier C, Timoshkin AY, Balázs G, Scheer M. Selektive Bildung und ungewöhnliche Reaktivität von Tetraarsabicyclo[1.1.0]butan-Komplexen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404653] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Reisinger S, Bodensteiner M, Pineda EM, McDouall JJW, Scheer M, Layfield RA. Addition of pnictogen atoms to chromium(ii): synthesis, structure and magnetic properties of a chromium(iv) phosphide and a chromium(iii) arsenide. Chem Sci 2014. [DOI: 10.1039/c4sc00666f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromium(ii) chloride reacts with LiCp* (Cp* = C5Me5) and LiE (SiMe3)2 (E = P or As) to give the chromium(iv) phosphide [(η5-Cp*Cr)(μ3-P)]4 (1) or the chromium(iii) arsenide [(η5-Cp*Cr)3(μ3-As)2] (2), respectively.
Collapse
Affiliation(s)
- Sabine Reisinger
- Institute für Anorganische Chemie
- Universität Regensburg
- 93040 Regensburg, Germany
| | - Michael Bodensteiner
- Institute für Anorganische Chemie
- Universität Regensburg
- 93040 Regensburg, Germany
| | - Eufemio Moreno Pineda
- School of Chemistry
- The University of Manchester
- Manchester, UK
- Photon Science Institute
- The University of Manchester
| | | | - Manfred Scheer
- Institute für Anorganische Chemie
- Universität Regensburg
- 93040 Regensburg, Germany
| | | |
Collapse
|
41
|
Heinl S, Scheer M. Activation of group 15 based cage compounds by [CpBIGFe(CO)2] radicals. Chem Sci 2014. [DOI: 10.1039/c4sc01213e] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sterically encumbered complex [CpBIGFe(CO)2]2 (1) (CpBIG = pentakis(4-n-butylphenyl)cyclopentadienyl) forms in solution radicals, which enable the selective cleavage of a E–E single bond (E = P, As) in the cage molecules P4, As4, P4S3 and P4Se3, respectively, already at room temperature.
Collapse
|
42
|
|
43
|
Schwarzmaier C, Bodensteiner M, Timoshkin AY, Scheer M. Der Zugang zu gemischten PnAsm-Ligandkomplexen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308239] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Schwarzmaier C, Bodensteiner M, Timoshkin AY, Scheer M. An Approach to Mixed PnAsmLigand Complexes. Angew Chem Int Ed Engl 2013; 53:290-3. [DOI: 10.1002/anie.201308239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Indexed: 11/09/2022]
|
45
|
Breunig JM, Tofan D, Cummins CC. Contrastingcyclo-P3Ligand Transfer Reactivity of Valence-Isoelectronic Aryloxide Complexes [(P3)Nb(ODipp)3]-and [(P3)W(ODipp)3]. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201301140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Schwarzmaier C, Schindler A, Heindl C, Scheuermayer S, Peresypkina EV, Virovets AV, Neumeier M, Gschwind R, Scheer M. Stabilisierung von tetraedrischen P4- und As4-Molekülen als Gäste in polymerer und sphärischer Umgebung. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306146] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Schwarzmaier C, Schindler A, Heindl C, Scheuermayer S, Peresypkina EV, Virovets AV, Neumeier M, Gschwind R, Scheer M. Stabilization of Tetrahedral P4and As4Molecules as Guests in Polymeric and Spherical Environments. Angew Chem Int Ed Engl 2013; 52:10896-9. [DOI: 10.1002/anie.201306146] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Indexed: 11/08/2022]
|
48
|
Schwarzmaier C, Timoshkin AY, Scheer M. An End-on-Coordinated As4Tetrahedron. Angew Chem Int Ed Engl 2013; 52:7600-3. [DOI: 10.1002/anie.201302882] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 11/10/2022]
|
49
|
Schwarzmaier C, Timoshkin AY, Scheer M. Ein end-on-koordiniertes As4-Tetraeder. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302882] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Rogachev AY, Hoffmann R. Hypervalent Compounds as Ligands: I3-Anion Adducts with Transition Metal Pentacarbonyls. Inorg Chem 2013; 52:7161-71. [DOI: 10.1021/ic400772u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Andrey Yu. Rogachev
- Baker Laboratory, Department of Chemistry
and Chemical
Biology, Cornell University, Ithaca, New
York 14853, United States
| | - Roald Hoffmann
- Baker Laboratory, Department of Chemistry
and Chemical
Biology, Cornell University, Ithaca, New
York 14853, United States
| |
Collapse
|