1
|
Rihon J, Mattelaer CA, Montalvão RW, Froeyen M, Pinheiro VB, Lescrinier E. Structural insights into the morpholino nucleic acid/RNA duplex using the new XNA builder Ducque in a molecular modeling pipeline. Nucleic Acids Res 2024; 52:2836-2847. [PMID: 38412249 PMCID: PMC11014352 DOI: 10.1093/nar/gkae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
The field of synthetic nucleic acids with novel backbone structures [xenobiotic nucleic acids (XNAs)] has flourished due to the increased importance of XNA antisense oligonucleotides and aptamers in medicine, as well as the development of XNA processing enzymes and new XNA genetic materials. Molecular modeling on XNA structures can accelerate rational design in the field of XNAs as it contributes in understanding and predicting how changes in the sugar-phosphate backbone impact on the complementation properties of the nucleic acids. To support the development of novel XNA polymers, we present a first-in-class open-source program (Ducque) to build duplexes of nucleic acid analogs with customizable chemistry. A detailed procedure is described to extend the Ducque library with new user-defined XNA fragments using quantum mechanics (QM) and to generate QM-based force field parameters for molecular dynamics simulations within standard packages such as AMBER. The tool was used within a molecular modeling workflow to accurately reproduce a selection of experimental structures for nucleic acid duplexes with ribose-based as well as non-ribose-based nucleosides. Additionally, it was challenged to build duplexes of morpholino nucleic acids bound to complementary RNA sequences.
Collapse
Affiliation(s)
- Jérôme Rihon
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| | - Charles-Alexandre Mattelaer
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
- Quantum Chemistry and Physical Chemistry, Celestijnenlaan 200f, Box 2404, B-3001, Leuven, Belgium
| | - Rinaldo Wander Montalvão
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
- Gain Therapeutics sucursal en España, Barcelona Science Park, Baldiri Reixac 4-10, 08028 Barcelona, Spain
| | - Mathy Froeyen
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| | - Vitor Bernardes Pinheiro
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| | - Eveline Lescrinier
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| |
Collapse
|
2
|
Zhou L, He K, Kang SM, Zhou XY, Zou H, Liu N, Wu ZQ. Photoswitchable Enantioselective and Helix-Sense Controlled Living Polymerization. Angew Chem Int Ed Engl 2023; 62:e202310105. [PMID: 37957131 DOI: 10.1002/anie.202310105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
A pair of enantiomeric photoswitchable PdII catalysts, alkyne-PdII /LR-azo and alkyne-PdII /LS-azo , were prepared via the coordination of alkyne-PdII and azobenzene-modified phosphine ligands LR-azo and LS-azo . Owing to the cis-trans photoisomerization of the azobenzene moiety, alkyne-PdII /LR-azo and alkyne-PdII /LS-azo exhibited different polymerization activities, helix-sense selectivities, and enantioselectivities during the polymerization of isocyanide monomers under irradiation of different wavelength lights. Furthermore, the achiral isocyanide monomer A-1 could be polymerized efficiently using alkyne-PdII /LR-azo under dark condition in a living/controlled manner. Further, it generated single right-handed helical poly-A-1m (LR-azo ), confirmed by the circular dichroism spectra and atomic force microscopy images. However, the polymerization of A-1 almost could not be initiated under 420 nm light in identical conditions of dark condition. Moreover, the photoswitchable catalyst alkyne-PdII /LR-azo exhibited high enantioselectivity for the polymerization of the racemates of L-1 and D-1, respectively. D-1 was polymerized preferentially under dark condition with a D-1/L-1 rate ratio of 70, yielding single right-handed polyisocyanides. Additionally, reversible enantioselectivity was observed under 420 nm light using alkyne-PdII /LR-azo , and the calculated polymerization rate ratio of L-1/D-1 was 57 because of the isomerization of the azobenzene moiety of the catalyst. Furthermore, alkyne-PdII /LS-azo showed opposite enantioselectivity and helix-sense selectivity during the polymerization of the racemates of L-1 and D-1.
Collapse
Affiliation(s)
- Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Kai He
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Shu-Ming Kang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xing-Yu Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
3
|
Wang X, Yu Z, Huang Z, Zhou N, Cheng X, Zhang Z, Zhang W, Zhu X. Unraveling Dynamic Helicity Inversion and Chirality Transfer through the Synthesis of Discrete Azobenzene Oligomers by an Iterative Exponential Growth Strategy. Angew Chem Int Ed Engl 2023:e202315686. [PMID: 38085492 DOI: 10.1002/anie.202315686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 12/23/2023]
Abstract
Unraveling the chirality transfer mechanism of polymer assemblies and controlling their handedness is beneficial for exploring the origin of hierarchical chirality and developing smart materials with desired chiroptical activities. However, polydisperse polymers often lead to an ambiguous or statistical evaluation of the structure-property relationship, and it remains unclear how the iterative number of repeating units function in the helicity inversion of polymer assemblies. Herein, we report the macroscopic helicity and dynamic manipulation of the chiroptical activity of supramolecular assemblies from discrete azobenzene-containing oligomers (azooligomers), together with the helicity inversion and morphological transition achieved solely by changing the iterative chain lengths. The corresponding assemblies also differ from their polydisperse counterparts in terms of thermodynamic properties, chiroptical activities, and morphological control.
Collapse
Affiliation(s)
- Xiao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihong Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Dhara D, Mulard LA, Hollenstein M. Expedient synthesis of l-heptose derived septacidin building blocks from l-glucose. Carbohydr Res 2023; 534:108985. [PMID: 38016254 DOI: 10.1016/j.carres.2023.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
Bacterial natural products containing heptosides such as septacidin represent interesting scaffolds for the development of drugs to combat antimicrobial resistance. However, very few synthetic strategies have been reported to grant access to these derivatives. Here, we have devised a synthetic pathway to l-glycero-l-glucoheptoside, a key building block en route to septacidin, directly from l-glucose. Importantly, we show that carbon homologation at C6, encompassing oxidation of the C6-OH followed by methylenation, is significantly influenced by the nature of the C4-moiety. In order to observe the effect of various patterns, namely azide (N3), p-methoxybenzyloxy (OPMB), and benzyloxy (OBn), a thorough analysis was conducted on the corresponding l-glucosides. The results unveiled a distinct trend where the efficiency of methylenation followed the trend OBn > OPMB > N3. Finally, the C6-alkene was dihydroxylated in the presence of osmium tetroxide to yield the expected l/d-glycero-l-glucoheptosides. The lead building block, which features a C-4 azide, was delivered as a phenyl thioglycoside. Added to the suitable masking of the 6,7-diol, this combination enables further functionalization to achieve versatile compounds of biological interest. The study insights into the interplay between substitution at C-4 and carbon homologation at C-6 provide valuable guidance for future endeavors in the synthesis of these carbohydrate molecules.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, 28 Rue Du Docteur Roux, 75724, Paris, Cedex 15, France; Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue Du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, 28 Rue Du Docteur Roux, 75724, Paris, Cedex 15, France.
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue Du Docteur Roux, 75724, Paris, Cedex 15, France.
| |
Collapse
|
5
|
Mattelaer CA, Mattelaer HP, Rihon J, Froeyen M, Lescrinier E. Efficient and Accurate Potential Energy Surfaces of Puckering in Sugar-Modified Nucleosides. J Chem Theory Comput 2021; 17:3814-3823. [PMID: 34000809 DOI: 10.1021/acs.jctc.1c00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Puckering of the sugar unit in nucleosides and nucleotides is an important structural aspect that directly influences the helical structure of nucleic acids. The preference for specific puckering modes in nucleic acids can be analyzed via in silico conformational analysis, but the large amount of conformations and the accuracy of the analysis leads to an extensive amount of computational time. In this paper, we show that the combination of geometry optimizations with the HF-3c method with single point energies at the RI-MP2 level results in accurate results for the puckering potential energy surface (PES) of DNA and RNA nucleosides while significantly reducing the necessary computational time. Applying this method to a series of known xeno nucleic acids (XNAs) allowed us to rapidly explore the puckering PES of each of the respective nucleosides and to explore the puckering PES of six-membered modified XNA (HNA and β-homo-DNA) for the first time.
Collapse
Affiliation(s)
- Charles-Alexandre Mattelaer
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000 Leuven, Belgium
| | - Henri-Philippe Mattelaer
- Campus Drie Eiken, Laboratory of Medicinal Chemistry, UAntwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jérôme Rihon
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000 Leuven, Belgium
| | - Matheus Froeyen
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000 Leuven, Belgium
| | - Eveline Lescrinier
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Li X, Chi XL, Xiao DR, Shen J. Helical Coordination Polymers Based on Keggin-type POMs and N-donor Ligand. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xu Li
- State Key Laboratory of Mechanical Transmission; College of Materials Science and Engineering; Chongqing University; 400044 Chongqing P. R. China
| | - Xiao-Lin Chi
- College of Chemistry and Chemical Engineering; Southwest University; 400715 Chongqing P. R. China
| | - Dong-Rong Xiao
- College of Chemistry and Chemical Engineering; Southwest University; 400715 Chongqing P. R. China
| | - Jun Shen
- State Key Laboratory of Mechanical Transmission; College of Materials Science and Engineering; Chongqing University; 400044 Chongqing P. R. China
| |
Collapse
|
7
|
Sharpe DJ, Röder K, Wales DJ. Energy Landscapes of Deoxyxylo- and Xylo-Nucleic Acid Octamers. J Phys Chem B 2020; 124:4062-4068. [PMID: 32336100 PMCID: PMC7304908 DOI: 10.1021/acs.jpcb.0c01420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Artificial
analogues of the natural nucleic acids have attracted
interest as a diverse class of information storage molecules capable
of self-replication. In this study, we use the computational potential
energy landscape framework to investigate the structural and dynamical
properties of xylo- and deoxyxylo-nucleic acids (XyNA and dXyNA),
which are derived from their respective RNA and DNA analogues by inversion
of a single chiral center in the sugar moiety of the nucleotides.
For an octameric XyNA sequence and the analogue dXyNA, we observe
facile conformational transitions between a left-handed helix, which
is the free energy global minimum, and a ladder-type structure with
approximately zero helicity. The competing ensembles are better separated
in the dXyNA, making it a more suitable candidate for a molecular
switch, whereas the XyNA exhibits additional flexibility. Both energy
landscapes exhibit greater frustration than we observe in RNA or DNA,
in agreement with the higher degree of optimization expected from
the principle of minimal frustration in evolved biomolecules.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Konstantin Röder
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
The furanosidic scaffold of d-ribose: a milestone for cell life. Biochem Soc Trans 2020; 47:1931-1940. [PMID: 31697320 DOI: 10.1042/bst20190749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 01/15/2023]
Abstract
The recruitment of the furanosidic scaffold of ribose as the crucial step for nucleotides and then for nucleic acids synthesis is presented. Based on the view that the selection of molecules to be used for relevant metabolic purposes must favor structurally well-defined molecules, the inadequacy of ribose as a preferential precursor for nucleotides synthesis is discussed. The low reliability of ribose in its furanosidic hemiacetal form must have played ab initio against the choice of d-ribose for the generation of d-ribose-5-phosphate, the fundamental precursor of the ribose moiety of nucleotides. The latter, which is instead generated through the 'pentose phosphate pathway' is strictly linked to the affordable and reliable pyranosidic structure of d-glucose.
Collapse
|
9
|
Chaput JC, Herdewijn P, Hollenstein M. Orthogonal Genetic Systems. Chembiochem 2020; 21:1408-1411. [PMID: 31889390 DOI: 10.1002/cbic.201900725] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 01/02/2023]
Abstract
Xenobiology is an emerging area of synthetic biology that aims to safeguard genetically engineered cells by storing synthetic biology information in xeno-nucleic acid polymers (XNAs). Critical to the success of this effort is the need to establish cellular systems that can maintain an XNA chromosome in actively dividing cells. This viewpoint discusses the structural parameters of the nucleic acid backbone that should be considered when designing an orthogonal genetic system that can replicate without interference from the endogenous genome. In addition to practical value, these studies have the potential to provide new fundamental insight into the structure and function properties of unnatural nucleic acid polymers.
Collapse
Affiliation(s)
- John C Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, 101 Theory, Irvine, CA, 92617, USA
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Institut Pasteur, 28 rue du Docteur Roux, 75724, Paris, France
| |
Collapse
|
10
|
Pant P, Jayaram B. C5' omitted DNA enhances bendability and protein binding. Biochem Biophys Res Commun 2019; 514:979-984. [PMID: 31092333 DOI: 10.1016/j.bbrc.2019.05.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022]
Abstract
Protein-DNA interactions are of great biological importance. The specificity and strength of these intimate contacts are crucial in the proper functioning of a cell, wherein the role of DNA dynamic bendability has been a matter of discussion. We relate DNA bendability to protein binding by introducing some simple modifications in the DNA structure. We removed C5' carbon in first modified structure and the second has an additional carbon between C3' and 3'-OH, hereby pronounced as C(-) and C(+) nucleic acids respectively. We observed that C(+) nucleic acid retains B-DNA duplex as seen by means of 500 ns long molecular dynamics (MD) simulations, structural and energetic calculations, while C(-) nucleic acid attains a highly bend structure. We transferred these observations to a protein-DNA system in order to monitor as to what extent the bendability enhances the protein binding. The energetics of binding is explored by performing 100 ns long MD simulations on control and modified DNA-protein complexes followed by running MM-PBSA/GBSA calculations on the resultant structures. It is observed that C(+) nucleic acid has protein binding in close correspondence to the control system (∼-14 kcal/mol) due to their relatable structure, while the C(-) nucleic acid displayed high binding to the protein (∼-18 kcal/mol). DelPhi based calculations reveal that the high binding could be the result of enhanced electrostatic interactions caused by exposed bases in the bend structure for protein recognition. Such modified oligonucleotides, due to their improved binding to protein and resistance to nuclease degradation, have a great therapeutic value.
Collapse
Affiliation(s)
- Pradeep Pant
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India; Supercomputing Facility for Bioinformatics & Computational Biology, Hauz Khas, New Delhi, 110016, India
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India; Supercomputing Facility for Bioinformatics & Computational Biology, Hauz Khas, New Delhi, 110016, India; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
11
|
Bauwens B, Rozenski J, Herdewijn P, Robben J. A Single Amino Acid Substitution in Therminator DNA Polymerase Increases Incorporation Efficiency of Deoxyxylonucleotides. Chembiochem 2018; 19:2410-2420. [PMID: 30204290 DOI: 10.1002/cbic.201800411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 11/11/2022]
Abstract
Deoxyxylonucleic acid (dxNA) is a synthetic polymer that might have potential for heredity and evolution. Because of dxNA's unusual backbone geometry, sequence information stored in it is presumed to be inaccessible to natural nucleic acids or proteins. Despite a large structural similarity with natural nucleotides, incorporation of 2'-deoxyxylonucleotides (dxNTs) through the action of polymerases is limited. We present the identification of a mutant of the DNA polymerase Therminator with increased tolerance to deoxyxylose-induced backbone distortions. Whereas the original polymerase stops after incorporation of two consecutive dxNTs, the mutant is able to catalyse the extension of incorporated dxNTs with 2'-deoxyribonucleotides (dNTs) and the incorporation of up to four dxNTs alternates with dNTs, thereby translocating a highly distorted double helix throughout the entire polymerase. A single His-to-Arg substitution very close to the catalytic site residues is held to be responsible for interaction with the primer phosphate groups and for stabilizing nucleotide sugar-induced distortions during incorporation and translocation.
Collapse
Affiliation(s)
- Boris Bauwens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| | - Jef Rozenski
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1030, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, box 1030, 3000, Leuven, Belgium
| | - Johan Robben
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| |
Collapse
|
12
|
Ramaswamy A, Smyrnova D, Froeyen M, Maiti M, Herdewijn P, Ceulemans A. Molecular Dynamics of Double Stranded Xylo-Nucleic Acid. J Chem Theory Comput 2017; 13:5028-5038. [PMID: 28742346 DOI: 10.1021/acs.jctc.7b00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Xylo-nucleic acid (XyloNA) is a synthetic analogue of ribo-nucleic acid (RNA), where the ribose sugar has been replaced by xylose. We present a molecular dynamics study of the conformational evolution of XyloNA double strand oligomers derived from A-RNA through the substitution of β-d-ribofuranose by β-d-xylofuranose and having lengths of 8, 16, and 29 base pairs, using a set of independent all-atom simulations performed at various time scales ranging from 55 to 100 ns, with one long 500 ns simulation of the 29-mer. In order to validate the robustness of XyloNA conformation, a set of simulations using various cutoff distances and solvation box dimensions has also been performed. These independent simulations reveal the uncoiling or elongation of the initial conformation to form an open ladder type transient state conformation and the subsequent formation of a highly flexible duplex with a tendency to coil in a left-handed fashion. The observed open ladder conformation is in line with recently obtained NMR data on the XyloNA 8-mer derived using 5'-d(GUGUACAC)-3'. The observed negative interbase pair twist leads to the observed highly flexible left-handed duplex, which is significantly less rigid than the stable left-handed dXyloNA duplex having a strong negative twist. A comparison between the xylo-analogues of DNA and RNA shows a clear distinction between the helical parameters, with implications for the pairing mechanism.
Collapse
Affiliation(s)
- Amutha Ramaswamy
- Laboratory for Quantum Chemistry, KULeuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Centre for Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry 605014, India
| | - Daryna Smyrnova
- Laboratory for Quantum Chemistry, KULeuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Mathy Froeyen
- Laboratory for Medicinal Chemistry, KULeuven , Herestraat 49, B-3000 Leuven, Belgium
| | - Mohitosh Maiti
- Laboratory for Medicinal Chemistry, KULeuven , Herestraat 49, B-3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, KULeuven , Herestraat 49, B-3000 Leuven, Belgium
| | - Arnout Ceulemans
- Laboratory for Quantum Chemistry, KULeuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
13
|
Wang P, Amato NJ, Wang Y. Cytotoxic and Mutagenic Properties of C3'-Epimeric Lesions of 2'-Deoxyribonucleosides in Escherichia coli Cells. Biochemistry 2017. [PMID: 28650656 DOI: 10.1021/acs.biochem.7b00146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS), resulting from endogenous metabolism and/or environmental exposure, can induce damage to the 2-deoxyribose moiety in DNA. Specifically, a hydrogen atom from each of the five carbon atoms in 2-deoxyribose can be abstracted by hydroxyl radical, and improper chemical repair of the ensuing radicals formed at the C1', C3', and C4' positions can lead to the stereochemical inversion at these sites to yield epimeric 2-deoxyribose lesions. Although ROS-induced single-nucleobase lesions have been well studied, the biological consequences of the C3'-epimeric lesions of 2'-deoxynucleosides, i.e., 2'-deoxyxylonucleosides (dxN), have not been comprehensively investigated. Herein, we assessed the impact of dxN lesions on the efficiency and fidelity of DNA replication in Escherichia coli cells by conducting a competitive replication and adduct bypass assay with single-stranded M13 phage containing a site-specifically incorporated dxN. Our results revealed that, of the four dxN lesions, only dxG constituted a strong impediment to DNA replication, and intriguingly, dxT and dxC conferred replication bypass efficiencies higher than those of the unmodified counterparts. In addition, the three SOS-induced DNA polymerases (Pol II, Pol IV, and Pol V) did not play any appreciable role in bypassing these lesions. Among the four dxNs, only dxA directed a moderate frequency of dCMP misincorporation. These results provided important insights into the impact of the C3'-epimeric lesions on DNA replication in E. coli cells.
Collapse
Affiliation(s)
- Pengcheng Wang
- Environmental Toxicology Graduate Program and ‡Department of Chemistry, University of California , Riverside, California 92521-0403, United States
| | - Nicholas J Amato
- Environmental Toxicology Graduate Program and ‡Department of Chemistry, University of California , Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and ‡Department of Chemistry, University of California , Riverside, California 92521-0403, United States
| |
Collapse
|
14
|
Jana NC, Pramanik K, Bauzá A, Brandão P, Patra M, Frontera A, Panja A. Pseudohalides regulated diverse helicity in copper(II) coordination polymers derived from a bis(aminoethoxy) ligand. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Rungsung I, Ramaswamy A. Insights into the structural dynamics of Liver kinase B1 (LKB1) by the binding of STe20 Related Adapterα (STRADα) and Mouse protein 25α (MO25α) co-activators. J Biomol Struct Dyn 2016; 35:1138-1152. [PMID: 27160967 DOI: 10.1080/07391102.2016.1173593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
LKB1, the tumour suppressor, is found mutated in Peutz-Jeghers syndrome (PJS). The LKB1 is a serine-threonine kinase protein that is allosterically activated by the binding of STRADα and MO25α without phosphorylating the Thr212 present at activation loop. The present study aims to highlight the structural dynamics and complexation mechanism during the allosteric activation of LKB1 by these co-activators using molecular dynamics simulations. The all atom simulations performed on the complexes of LKB1 with ATP, STRADα, and MO25α for a period of 30 ns reveal that binding of STRADα and MO25α significantly stabilizes the highly flexible regions of LKB1 such as ATP binding region (β1-β2 loop), catalytic & activation loop segments and αG helix. Also, binding of STRADα and MO25α to LKB1 promotes coordinated motion between N- and C-lobes along with the catalytic & activation loops by forming H-bonds between LKB1 and co-activators, which further facilitate to establish the conserved attributes of active LKB1 such as (i) formation of salt bridge between Lys78 and Glu98, (ii) formation of stable hydrophobic R- and C-spines, and (iii) interaction between both catalytic and activation loops. Especially, the residues of LKB1 interacting with STRADα (Arg74, Glu342) and MO25α (Glu165, Pro203 and Phe204) are observed to play a significant role in stabilizing the (LKB1-ATP)-(STRADα-ATP)-MO25α complex. Overall, the present work highlighting the structural dynamics of LKB1 by the binding of allosteric co-activators is expected to provide a basic understanding on drug design specific to PJS syndrome.
Collapse
Affiliation(s)
- Ikrormi Rungsung
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| | - Amutha Ramaswamy
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| |
Collapse
|
16
|
Ghosh S, Chakrabarti R. Spontaneous Unzipping of Xylonucleic Acid Assisted by a Single-Walled Carbon Nanotube: A Computational Study. J Phys Chem B 2016; 120:3642-52. [DOI: 10.1021/acs.jpcb.6b02035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soumadwip Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 40076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 40076, India
| |
Collapse
|
17
|
Chen Y, Chi XL, Xu YC, Wang XC, Xiao DR. Helical Coordination Polymers Based on A Tripodal N-donor Ligand. Z Anorg Allg Chem 2015. [DOI: 10.1002/zaac.201500680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Maiti M, Maiti M, Knies C, Dumbre S, Lescrinier E, Rosemeyer H, Ceulemans A, Herdewijn P. Xylonucleic acid: synthesis, structure, and orthogonal pairing properties. Nucleic Acids Res 2015; 43:7189-200. [PMID: 26175047 PMCID: PMC4551940 DOI: 10.1093/nar/gkv719] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 11/22/2022] Open
Abstract
There is a common interest for studying xeno-nucleic acid systems in the fields of synthetic biology and the origin of life, in particular, those with an engineered backbone and possessing novel properties. Along this line, we have investigated xylonucleic acid (XyloNA) containing a potentially prebiotic xylose sugar (a 3'-epimer of ribose) in its backbone. Herein, we report for the first time the synthesis of four XyloNA nucleotide building blocks and the assembly of XyloNA oligonucleotides containing all the natural nucleobases. A detailed investigation of pairing and structural properties of XyloNAs in comparison to DNA/RNA has been performed by thermal UV-melting, CD, and solution state NMR spectroscopic studies. XyloNA has been shown to be an orthogonal self-pairing system which adopts a slightly right-handed extended helical geometry. Our study on one hand, provides understanding for superior structure-function (-pairing) properties of DNA/RNA over XyloNA for selection as an informational polymer in the prebiotic context, while on the other hand, finds potential of XyloNA as an orthogonal genetic system for application in synthetic biology.
Collapse
Affiliation(s)
- Mohitosh Maiti
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Munmun Maiti
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Christine Knies
- Organic Materials Chemistry and Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse. 7, D-49069 Osnabrück, Germany
| | - Shrinivas Dumbre
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Eveline Lescrinier
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Helmut Rosemeyer
- Organic Materials Chemistry and Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse. 7, D-49069 Osnabrück, Germany
| | - Arnout Ceulemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Rai N, Ramaswamy A. Temperature dependent dynamics of DegP-trimer: A molecular dynamics study. Comput Struct Biotechnol J 2015; 13:329-38. [PMID: 25987966 PMCID: PMC4434178 DOI: 10.1016/j.csbj.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 11/18/2022] Open
Abstract
DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns) and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46–80 of LA loop express a flip towards right (at 280) and left ( at 320 K) with respect to the fixed β-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate.
Collapse
Affiliation(s)
- Nivedita Rai
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Amutha Ramaswamy
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
20
|
Niu W, Li L, Liu X, Wang N, Liu J, Zhou W, Tang Z, Chen S. Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: An Efficient Electrocatalyst for Oxygen Reduction Reaction. J Am Chem Soc 2015; 137:5555-62. [DOI: 10.1021/jacs.5b02027] [Citation(s) in RCA: 566] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wenhan Niu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ligui Li
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Xiaojun Liu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Nan Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Liu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Weijia Zhou
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Shaowei Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
21
|
Cao LH, Wei YL, Ji C, Ma ML, Zang SQ, Mak TCW. A Multifunctional 3D Chiral Porous Ferroelectric Metal-Organic Framework for Sensing Small Organic Molecules and Dye Uptake. Chem Asian J 2014; 9:3094-8. [DOI: 10.1002/asia.201402785] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Indexed: 11/09/2022]
|
22
|
Li FA, Yang WC, Bai SZ. A 3D cadmium coordination polymer with 2-fold interpenetration structure and helical chains based on biphenyl-4-hydroxyl-3,3′-bicarboxylic acid: Synthesis and crystal structure and properties. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.04.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Yang GS, Li L, Liu CB, Liu H, Wen YH, Wen HL. Self-assembly and structures of new lanthanide coordination polymers with 1,3-phenylenebis(oxy)diacetic acid. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Luo YH, Gu LL, Yu XY, Yue FX, Chen X, Zhang H. A novel 3D self-catenated coordination polymer with multiform helical chains. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2013.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Stoop M, Meher G, Karri P, Krishnamurthy R. Chemical etiology of nucleic acid structure: the pentulofuranosyl oligonucleotide systems: the (1'→3')-β-L-ribulo, (4'→3')-α-L-xylulo, and (1'→3')-α-L-xylulo nucleic acids. Chemistry 2013; 19:15336-45. [PMID: 24150882 DOI: 10.1002/chem.201302219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Indexed: 11/11/2022]
Abstract
Under potentially prebiotic scenarios, ribose (pentose), the component of RNA is formed in meager amounts, as opposed to ribulose and xylulose (pentuloses). Consequently, replacement of ribose in RNA, with pentulose sugars, gives rise to prospective oligonucleotide candidates that are potentially prebiotic structural variants of RNA that could be formed by the same type of chemical pathways that gave rise to RNA from ribose. The potentially natural alternative (1'→3')-ribulo oligonucleotides and (4'→3')- and (1'→3')-xylulo oligonucleotides consisting of adenine and thymine were synthesized and found to exhibit no self-pairing or cross-pairing with RNA. This signifies that even though pentulose sugars may have been abundant in a prebiotic scenario, the pentulose nucleic acids (NAs), if and when formed, would not have been competitors of RNA, or interfered with the emergence of RNA as a functional informational system. The reason for the lack of base pairing in pentulose NA highlights the contrasting and central role played by the furanosyl ring in RNA and pentulose NA, enabling and optimizing the base pairing in RNA, while impeding it in pentulose NA.
Collapse
Affiliation(s)
- Matthias Stoop
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037 (USA), Fax: (+1) 858-784-8-9573
| | | | | | | |
Collapse
|
26
|
Ji J, Zhang Y, Yang Y, Xu H, Wen Y. Self‐Assembly of Four Helical Metal–Organic Frameworks Based on 3‐[4‐(Carboxymethoxy)phenyl]propanoic Acid Ligands: Syntheses, Crystal Structures, and Properties. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ji
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, P. R. China, Fax: +86‐579‐82282234, http://whs.zjnu.edu.cn
| | - You Zhang
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, P. R. China, Fax: +86‐579‐82282234, http://whs.zjnu.edu.cn
| | - Yuan‐Fa Yang
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, P. R. China, Fax: +86‐579‐82282234, http://whs.zjnu.edu.cn
| | - Hai Xu
- Department of Chemistry, Central South University, Changsha 410083, P. R. China
| | - Yi‐Hang Wen
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, P. R. China, Fax: +86‐579‐82282234, http://whs.zjnu.edu.cn
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002, P. R. China
| |
Collapse
|
27
|
Zhao RL, Yue KF, Zhou CS, Cheng QDM, Shi JT, Liu YL, Wang YY. A study of zinc(II) coordination polymers with identical meso-helix based on 1,4-bis(2-methyl-imidazol-1-yl)butane. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Structure-directing role of anionic ligands in the assembly of Cd(II) coordination polymers based on SO42−/3,5-dicarboxybenzenesulfonate and flexible bis(benzimidazole) derivatives. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.08.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Liu LL, Huang JJ, Wang XL, Liu GC, Yang S, Lin HY. Ligand-controlled assembly of cobalt(II) metal–organic complexes from different semirigid bis(imidazole) derivatives and aromatic monocarboxylates: Electrochemical behaviors and fluorescent properties. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2012.09.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
31
|
D'Alonzo D, Guaragna A, Palumbo G. Exploring the role of chirality in nucleic acid recognition. Chem Biodivers 2012; 8:373-413. [PMID: 21404424 DOI: 10.1002/cbdv.201000303] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study of the base-pairing properties of nucleic acids with sugar moieties in the backbone belonging to the L-series (β-L-DNA, β-L-RNA, and their analogs) are reviewed. The major structural factors underlying the formation of stable heterochiral complexes obtained by incorporation of modified nucleotides into natural duplexes, or by hybridization between homochiral strands of opposite sense of chirality are highlighted. In addition, the perspective use of L-nucleic acids as candidates for various therapeutic applications, or as tools for both synthetic biology and etiology-oriented investigations on the structure and stereochemistry of natural nucleic acids is discussed.
Collapse
Affiliation(s)
- Daniele D'Alonzo
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia, 4, I-80126 Napoli.
| | | | | |
Collapse
|
32
|
Li X, Zhao W, Zhang Y, Zhang Y, Tan J, Lu Y, Feng X, Yang X. Synthesis, Structures, and Properties of two Helical Structures from Rigid Carboxylate Ligand and Flexible N-Bridging Ligands. Z Anorg Allg Chem 2012. [DOI: 10.1002/zaac.201100519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Maiti M, Siegmund V, Abramov M, Lescrinier E, Rosemeyer H, Froeyen M, Ramaswamy A, Ceulemans A, Marx A, Herdewijn P. Solution structure and conformational dynamics of deoxyxylonucleic acids (dXNA): an orthogonal nucleic acid candidate. Chemistry 2011; 18:869-79. [PMID: 22180030 DOI: 10.1002/chem.201102509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Indexed: 01/05/2023]
Abstract
Orthogonal nucleic acids are chemically modified nucleic acid polymers that are unable to transfer information with natural nucleic acids and thus can be used in synthetic biology to store and transfer genetic information independently. Recently, it was proposed that xylose-DNA (dXNA) can be considered to be a potential candidate for an orthogonal system. Herein, we present the structure in solution and conformational analysis of two self-complementary, fully modified dXNA oligonucleotides, as determined by CD and NMR spectroscopy. These studies are the initial experimental proof of the structural orthogonality of dXNAs. In aqueous solution, dXNA duplexes predominantly form a linear ladderlike (type-1) structure. This is the first example of a furanose nucleic acid that adopts a ladderlike structure. In the presence of salt, an equilibrium exists between two types of duplex form. The corresponding nucleoside triphosphates (dXNTPs) were synthesized and evaluated for their ability to be incorporated into a growing DNA chain by using several natural and mutant DNA polymerases. Despite the structural orthogonality of dXNA, DNA polymerase β mutant is able to incorporate the dXNTPs, showing DNA-dependent dXNA polymerase activity.
Collapse
Affiliation(s)
- Mohitosh Maiti
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Eschenmoser A. Ätiologie potentiell primordialer Biomolekül-Strukturen: Vom Vitamin B12 zu den Nukleinsäuren und der Frage nach der Chemie der Entstehung des Lebens - ein Rückblick. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103672] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Eschenmoser A. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life's origin: a retrospective. Angew Chem Int Ed Engl 2011; 50:12412-72. [PMID: 22162284 DOI: 10.1002/anie.201103672] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Indexed: 11/10/2022]
Abstract
"We'll never be able to know" is a truism that leads to resignation with respect to any experimental effort to search for the chemistry of life's origin. But such resignation runs radically counter to the challenge imposed upon chemistry as a natural science. Notwithstanding the prognosis according to which the shortest path to understanding the metamorphosis of the chemical into the biological is by way of experimental modeling of "artificial chemical life", the scientific search for the route nature adopted in creating the life we know will arguably never truly end. It is, after all, part of the search for our own origin.
Collapse
Affiliation(s)
- Albert Eschenmoser
- Organisch-chemisches Laboratorium der ETH Zürich, Hönggerberg, Wolfgang-Pauli-Str. 10, CHI H309, CH-8093 Zürich, Switzerland
| |
Collapse
|
36
|
Li X, Bing Y, Zha MQ, Liang YX, Pan JG, Wang DJ. Self-assembly of metal–organic frameworks: From packing helical channels to 2-fold interpenetration helical layers. CrystEngComm 2011. [DOI: 10.1039/c1ce05727h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Gokhale SS, Gogoi K, Kumar VA. Probing Binding Preferences of DNA and RNA: Backbone Chirality of Thioacetamido-Linked Nucleic Acids and iso-Thioacetamido-Linked Nucleic Acids to Differentiate DNA versus RNA Selective Binding. J Org Chem 2010; 75:7431-4. [DOI: 10.1021/jo1014036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sachin S. Gokhale
- Division Of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| | - Khirud Gogoi
- Division Of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| | - Vaijayanti A. Kumar
- Division Of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| |
Collapse
|
38
|
Totsingan F, Jain V, Bracken WC, Faccini A, Tedeschi T, Marchelli R, Corradini R, Kallenbach NR, Green MM. Conformational Heterogeneity in PNA:PNA Duplexes. Macromolecules 2010. [DOI: 10.1021/ma902797f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Filbert Totsingan
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003
- Herman F. Mark Polymer Research Institute, Polytechnic Institute of New York University, 6 MetroTech Center, Brooklyn, New York 11201
- Dipartimento di Chimica Organica ed Industriale, Università di Parma, Via G.P. Usberti 17/A, 43100 Parma, Italy
| | - Vipul Jain
- Herman F. Mark Polymer Research Institute, Polytechnic Institute of New York University, 6 MetroTech Center, Brooklyn, New York 11201
| | - W. Clay Bracken
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021
| | - Andrea Faccini
- Dipartimento di Chimica Organica ed Industriale, Università di Parma, Via G.P. Usberti 17/A, 43100 Parma, Italy
| | - Tullia Tedeschi
- Dipartimento di Chimica Organica ed Industriale, Università di Parma, Via G.P. Usberti 17/A, 43100 Parma, Italy
| | - Rosangela Marchelli
- Dipartimento di Chimica Organica ed Industriale, Università di Parma, Via G.P. Usberti 17/A, 43100 Parma, Italy
| | - Roberto Corradini
- Dipartimento di Chimica Organica ed Industriale, Università di Parma, Via G.P. Usberti 17/A, 43100 Parma, Italy
| | - Neville R. Kallenbach
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003
| | - Mark M. Green
- Herman F. Mark Polymer Research Institute, Polytechnic Institute of New York University, 6 MetroTech Center, Brooklyn, New York 11201
| |
Collapse
|