1
|
Benny J, Saito T, Liu J. Nitrosation mechanisms, kinetics, and dynamics of the guanine and 9-methylguanine radical cations by nitric oxide-Radical-radical combination at different electron configurations. J Chem Phys 2024; 161:125101. [PMID: 39319660 DOI: 10.1063/5.0230367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
As a precursor to various reactive nitrogen species formed in biological systems, nitric oxide (•NO) participates in numerous processes, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. Forming guanine radical cations is another common DNA lesion resulting from ionization and oxidation damage. As such, the interaction of •NO with guanine radical cations (G•+) may contribute to the radiosensitization of •NO. An intriguing aspect of this process is the participation of multiple spin configurations in the reaction, including open-shell singlet 1,OS[G•+(↑)⋯(↓)•NO], closed-shell singlet 1,CS[G(↑↓)⋯NO+], and triplet 3[G•+(↑)⋯(↑)•NO]. In this study, the reactions of •NO with both unsubstituted guanine radical cations (in the 9HG•+ conformation) and 9-methylguanine radical cations (9MG•+, a guanosine-mimicking model compound) were investigated in the absence and presence of monohydration of radical cations. Kinetic-energy dependent reaction product ions and cross sections were measured using an electrospray ionization guided-ion beam tandem mass spectrometer. The reaction mechanisms, kinetics, and dynamics were comprehended by interpreting the reaction potential energy surface using spin-projected density functional theory, coupled cluster theory, and multiconfiguration complete active space second-order perturbation theory, followed by RRKM kinetics modeling. The combined experimental and computational findings revealed closed-shell singlet 1,CS[7-NO-9MG]+ as the major, exothermic product and triplet 3[8-NO-9MG]+ as the minor, endothermic product. Singlet biradical products were not detected due to high reaction endothermicities, activation barriers, and inherent instability.
Collapse
Affiliation(s)
- Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Toru Saito
- Department of Biomedical Information Science, Graduate School of Information Science, Hiroshima City University, 731-3194 Hiroshima, Japan
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| |
Collapse
|
2
|
Wei Z, Yu L, Feng Y, Gan Z, Shen Y, Peng S, Xiao Y. Bioinspired Heterocoordination in Adaptable Cobalt Metal-Organic Framework for DNA Epigenetic Modification Detection. Anal Chem 2024; 96:9984-9993. [PMID: 38833588 DOI: 10.1021/acs.analchem.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Metal-organic frameworks (MOFs) show unique advantages in simulating the dynamics and fidelity of natural coordination. Inspired by zinc finger protein, a second linker was introduced to affect the homogeneous MOF system and thus facilitate the emergence of diverse functionalities. Under the systematic identification of 12 MOF species (i.e., metal ions, linkers) and 6 second linkers (trigger), a dissipative system consisting of Co-BDC-NO2 and o-phenylenediamine (oPD) was screened out, which can rapidly and in situ generate a high photothermal complex (η = 36.9%). Meanwhile, both the carboxylation of epigenetic modifications and metal ion (Fe3+, Ni2+, Cu2+, Zn2+, Co2+ and Mn2+) screening were utilized to improve the local coordination environment so that the adaptable Co-MOF growth on the DNA strand was realized. Thus, epigenetic modification information on DNA was converted to an amplified metal ion signal, and then oPD was further introduced to generate bimodal dissipative signals by which a simple, high-sensitivity detection strategy of 5-hydroxymethylcytosine (LOD = 0.02%) and 5-formylcytosine (LOD = 0.025‰) was developed. The strategy provides one low-cost method (< 0.01 $/sample) for quantifying global epigenetic modifications, which greatly promotes epigenetic modification-based early disease diagnosis. This work also proposes a general heterocoordination design concept for molecular recognition and signal transduction, opening a new MOF-based sensing paradigm.
Collapse
Affiliation(s)
- Zhongyu Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yumin Feng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhiwen Gan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yongjin Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Benny J, Liu J. Spin-orbit charge transfer from guanine and 9-methylguanine radical cations to nitric oxide radicals and the induced triplet-to-singlet intersystem crossing. J Chem Phys 2023; 159:085102. [PMID: 37638623 DOI: 10.1063/5.0160921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Nitric oxide (●NO) participates in many biological activities, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. To help understand the radiosensitization of ●NO, we report reaction dynamics between ●NO and the radical cations of guanine (a 9HG●+ conformer) and 9-methylguanine (9MG●+). On the basis of the formation of 9HG●+ and 9MG●+ in the gas phase and the collisions of the radical cations with ●NO in a guided-ion beam mass spectrometer, the charge transfer reactions of 9HG●+ and 9MG●+ with ●NO were examined. For both reactions, the kinetic energy-dependent product ion cross sections revealed a threshold energy that is 0.24 (or 0.37) eV above the 0 K product 9HG (or 9MG) + NO+ asymptote. To interrogate this abnormal threshold behavior, the reaction potential energy surface for [9MG + NO]+ was mapped out at closed-shell singlet, open-shell singlet, and triplet states using density functional and coupled cluster theories. The results showed that the charge transfer reaction requires the interaction of a triplet-state surface originating from a reactant-like precursor complex 3[9MG●+(↑)⋅(↑)●NO] with a closed-shell singlet-state surface evolving from a charge-transferred complex 1[9MG⋅NO+]. During the reaction, an electron is transferred from π∗(NO) to perpendicular π∗(9MG), which introduces a change in orbital angular momentum. The latter offsets the change in electron spin angular momentum and facilitates intersystem crossing. The reaction threshold in excess of the 0 K thermochemistry and the low charge-transfer efficiency are rationalized by the vibrational excitation in the product ion NO+ and the kinetic shift arising from a long-lived triplet intermediate.
Collapse
Affiliation(s)
- Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| |
Collapse
|
4
|
Moe MM, Saito T, Tsai M, Liu J. Singlet O 2 Oxidation of the Radical Cation versus the Dehydrogenated Neutral Radical of 9-Methylguanine in a Watson-Crick Base Pair. Consequences of Structural Context. J Phys Chem B 2022; 126:5458-5472. [PMID: 35849846 DOI: 10.1021/acs.jpcb.2c03748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In DNA, guanine is the most susceptible to oxidative damage by exogenously and endogenously produced electronically excited singlet oxygen (1O2). The reaction mechanism and the product outcome strongly depend on the nucleobase ionization state and structural context. Previously, exposure of a monomeric 9-methylguanine radical cation (9MG•+, a model guanosine compound) to 1O2 was found to result in the formation of an 8-peroxide as the initial product. The present work explores the 1O2 oxidation of 9MG•+ and its dehydrogenated neutral form [9MG - H]• within a Watson-Crick base pair consisting of one-electron-oxidized 9-methylguanine-1-methylcytosine [9MG·1MC]•+. Emphasis is placed on entangling the base pair structural context and intra-base pair proton transfer with and consequences thereof on the singlet oxygenation of guanine radical species. Electrospray ionization coupled with guided-ion beam tandem mass spectrometry was used to study the formation and reaction of guanine radical species in the gas phase. The 1O2 oxidation of both 9MG•+ and [9MG - H]• is exothermic and proceeds barrierlessly either in an isolated monomer or within a base pair. Single- and multi-referential theories were tested for treating spin contaminations and multi-configurations occurring in radical-1O2 interactions, and reaction potential energy surfaces were mapped out to support experimental findings. The work provides a comprehensive profile for the singlet oxygenation of guanine radicals in different charge states and in the absence and the presence of base pairing. All results point to an 8-peroxide as the major oxidation product in the experiment, and the oxidation becomes slightly more favorable in a neutral radical form. On the basis of a variety of reaction pathways and product profiles observed in the present and previous studies, the interplay between guanine structure, base pairing, and singlet oxygenation and its biological implications are discussed.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| | - Toru Saito
- Department of Biomedical Information Science, Graduate School of Information Science, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, 731-3194 Hiroshima, Japan
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Avenue, Long Island City, New York 11101, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
5
|
Zhou W, Liu J. Reaction mechanism and dynamics for C8-hydroxylation of 9-methylguanine radical cation by water molecules. Phys Chem Chem Phys 2021; 23:24464-24477. [PMID: 34698322 DOI: 10.1039/d1cp03884b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In contrast to their spontaneous deprotonation in aqueous solution, reactions of guanine and guanosine radical cations with water in the gas phase are exclusively initiated by hydration of the radical cations as reported in recent work (Y. Sun et al., Phys. Chem. Chem. Phys., 2018, 20, 27510). As gas-phase hydration reactions closely mimic the actual scenario for guanine radical cations in double-stranded DNA, exploration of subsequent reactions within their water complexes can provide an insight into the resulting oxidative damage to nucleosides. Herein guided-ion beam mass spectrometry experiment and direct dynamics trajectory simulations were carried out to examine prototype complexes of the 9-methylguanine radical cation with one and two water ligands (i.e., 9MG˙+·(H2O)1-2) in the gas phase, wherein the complexes were activated by collisional activation in the experiment and by thermal excitation at high temperatures in the simulations. Guided by mass spectroscopic measurements, trajectory results and reaction potential energy surface, three reaction pathways were identified. The first two reaction pathways start with H-atom abstraction from water by the O6 and N7 atoms in 9MG˙+ and are referred to as HAO6 and HAN7, respectively. The primary products of HAO6 and HAN7 reactions, including [9MG + HO6]+/[9MG + HN7]+ and ˙OH, react further to either form [8OH-9MG + HO6]˙+ and [8OH-9MG + HN7]˙+via C8-hydroxylation or form radical cations of 6-enol-guanine (6-enol-G˙+) and 7H-guanine (7HG˙+) via SN2-type methanol elimination. The third reaction pathway corresponds to the formation of 8OH-9MG+ by H elimination from the complex, referred to as HE. Among these product channels, [8OH-9MG + HN7]˙+ has the most favorable formation probability, especially in the presence of additional water molecules. This product may serve as a preceding structure to the 8-oxo-7,8-dihydroguanine lesion in DNA and has implications for health effects of radiation exposure and radiation therapy.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
6
|
Sun Y, Tsai M, Moe MM, Liu J. Dynamics and Multiconfiguration Potential Energy Surface for the Singlet O2 Reactions with Radical Cations of Guanine, 9-Methylguanine, 2′-Deoxyguanosine, and Guanosine. J Phys Chem A 2021; 125:1564-1576. [DOI: 10.1021/acs.jpca.1c00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College 31-10 Thomson Avenue, Long Island City, New York 11101, United States
| | - May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
7
|
Huang Q, Li J, Shi T, Liang J, Wang Z, Bai L, Deng Z, Zhao YL. Defense Mechanism of Phosphorothioated DNA under Peroxynitrite-Mediated Oxidative Stress. ACS Chem Biol 2020; 15:2558-2567. [PMID: 32816442 DOI: 10.1021/acschembio.0c00591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA phosphorothioation (PT) exists in many pathogenic bacteria; however, the mechanism of PT-DNA resistance to the immune response is unclear. In this work, we meticulously investigated the peroxynitrite (PN) tolerance using PT-bioengineered E. coli strains. The in vivo experiment confirms that the S+ strain survives better than the S- strain under moderately oxidative stress. The LCMS, IC, and GCMS experiments demonstrated that phosphorothioate partially converted to phosphate, and the byproduct included sulfate and elemental sulfur. When O,O-diethyl thiophosphate ester (DETP) was used, the reaction rate k1 was determined to be 4.3 ± 0.5 M-1 s-1 in the first-order for both phosphorothioate and peroxynitrite at 35 °C and pH of 8.0. The IC50 values of phosphorothioate dinucleotides are dramatically increased by 400-700-fold compared to DETP. The SH/OH Yin-Yang mechanism rationalizes the in situ DNA self-defense against PN-mediated oxidative stress at the extra bioenergetic cost of DNA modification.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Sun Y, Moe MM, Liu J. Mass spectrometry and computational study of collision-induced dissociation of 9-methylguanine–1-methylcytosine base-pair radical cation: intra-base-pair proton transfer and hydrogen transfer, non-statistical dissociation, and reaction with a water ligand. Phys Chem Chem Phys 2020; 22:14875-14888. [DOI: 10.1039/d0cp01788d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and theoretical study is presented on the collision-induced dissociation of 9-methylguanine–1-methylcytosine base-pair radical cation ([9MG·1MC]˙+) and its monohydrate ([9MG·1MC]˙+·H2O) with Xe and Ar gases.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - May Myat Moe
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - Jianbo Liu
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| |
Collapse
|
9
|
Sun Y, Zhou W, Moe MM, Liu J. Reactions of water with radical cations of guanine, 9-methylguanine, 2′-deoxyguanosine and guanosine: keto–enol isomerization, C8-hydroxylation, and effects of N9-substitution. Phys Chem Chem Phys 2018; 20:27510-27522. [DOI: 10.1039/c8cp05453c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of D2O with guanine radical cations in nucleobases and nucleosides were studied in the gas phase using the guided-ion-beam experiment and computational modeling.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
| | - May Myat Moe
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| |
Collapse
|
10
|
Ming X, Matter B, Song M, Veliath E, Shanley R, Jones R, Tretyakova N. Mapping structurally defined guanine oxidation products along DNA duplexes: influence of local sequence context and endogenous cytosine methylation. J Am Chem Soc 2014; 136:4223-35. [PMID: 24571128 PMCID: PMC3985951 DOI: 10.1021/ja411636j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Indexed: 02/07/2023]
Abstract
DNA oxidation by reactive oxygen species is nonrandom, potentially leading to accumulation of nucleobase damage and mutations at specific sites within the genome. We now present the first quantitative data for sequence-dependent formation of structurally defined oxidative nucleobase adducts along p53 gene-derived DNA duplexes using a novel isotope labeling-based approach. Our results reveal that local nucleobase sequence context differentially alters the yields of 2,2,4-triamino-2H-oxal-5-one (Z) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) in double stranded DNA. While both lesions are overproduced within endogenously methylated (Me)CG dinucleotides and at 5' Gs in runs of several guanines, the formation of Z (but not OG) is strongly preferred at solvent-exposed guanine nucleobases at duplex ends. Targeted oxidation of (Me)CG sequences may be caused by a lowered ionization potential of guanine bases paired with (Me)C and the preferential intercalation of riboflavin photosensitizer adjacent to (Me)C:G base pairs. Importantly, some of the most frequently oxidized positions coincide with the known p53 lung cancer mutational "hotspots" at codons 245 (GGC), 248 (CGG), and 158 (CGC) respectively, supporting a possible role of oxidative degradation of DNA in the initiation of lung cancer.
Collapse
Affiliation(s)
- Xun Ming
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brock Matter
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Song
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth Veliath
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Ryan Shanley
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Roger Jones
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Angelé-Martínez C, Goodman C, Brumaghim J. Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences. Metallomics 2014; 6:1358-81. [DOI: 10.1039/c4mt00057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal ions cause various types of DNA damage by multiple mechanisms, and this damage is a primary cause of cell death and disease.
Collapse
Affiliation(s)
| | - Craig Goodman
- Department of Chemistry
- Clemson University
- Clemson, USA
| | | |
Collapse
|
12
|
Marcélis L, Moucheron C, Kirsch-De Mesmaeker A. Ru-TAP complexes and DNA: from photo-induced electron transfer to gene photo-silencing in living cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120131. [PMID: 23776293 DOI: 10.1098/rsta.2012.0131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this review, examples of applications of the photo-induced electron transfer (PET) process between photo-oxidizing Ru-TAP (TAP = 1,4,5,8-tetraazaphenanthrene) complexes and DNA or oligodeoxynucleotides (ODNs) are discussed. Applications using a free Ru-TAP complex (not chemically anchored to an ODN) are first considered. In this case, the PET gives rise to the production of an irreversible adduct of the Ru complex on a guanine (G) base, with formation of a covalent bond. After absorption of a second photon, this adduct can generate a bi-adduct, whereby the same complex binds to a second G moiety. These bi-adduct formations are responsible for photo-cross-linking between two strands of a duplex, each containing a G base, or between two G moieties of a single strand such as a telomeric sequence, as demonstrated by polyacrylamide gel electrophoresis analyses or mass spectrometry. Scanning force microscopy also allows the detection of such photobridgings with plasmid DNA. Other applications, for example with Ru-ODN, i.e. ODN with chemically anchored Ru-TAP complexes, are also discussed. It is shown that such Ru-ODN probes containing a G base in their own sequences are capable of photo-cross-linking selectively with their targeted complementary sequences, and, in the absence of such targets, they self-photo-inhibit. Such processes are applied successfully in gene photo-silencing of human papillomavirus cancer cells.
Collapse
Affiliation(s)
- Lionel Marcélis
- Chimie Organique et Photochimie, Université libre de Bruxelles, CP 160/08, 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium
| | | | | |
Collapse
|
13
|
Cauët E, Carette T, Lauzin C, Li JG, Loreau J, Delsaut M, Nazé C, Verdebout S, Vranckx S, Godefroid M, Liévin J, Vaeck N. From atoms to biomolecules: a fruitful perspective. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Omumi A, McLaughlin CK, Ben-Israel D, Manderville RA. Application of a fluorescent C-linked phenolic purine adduct for selective N7-metalation of DNA. J Phys Chem B 2012; 116:6158-65. [PMID: 22607044 DOI: 10.1021/jp303138s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The C-linked phenolic adduct, C8-(2″-hydroxyphenyl)-2'-deoxyguanosine (o-PhOHdG), has been employed to study the impact of N7-metalation of 2'-deoxyguanosine (dG) within duplex DNA. The phenolic group of o-PhOHdG assists selective metal ion coordination by the N7-site of the attached dG moiety, which is the most important metal binding site in duplex DNA. The biaryl nucleobase probe o-PhOHdG is highly fluorescent in water (Φ(fl) = 0.44), and changes in its absorption and emission were used to determine apparent association constants (K(a)) for binding to Cu(II), Ni(II), and Zn(II). The nucleoside was found to bind Cu(II) (log K(a) = 4.59) and Ni(II) (log K(a) = 3.65) effectively, but it showed relatively poor affinity for Zn(II) (log K(a) = 2.55). The fluorescent nucleobase o-PhOHdG was incorporated into a pyrimidine-rich oligonucleotide substrate (ODN1) and a purine-rich (ODN2) substrate to monitor selective binding of Cu(II) through fluorescence quenching of the enol emission of o-PhOHdG within the DNA substrates. The pyrimidine-rich substrate ODN1 was found to possess greater affinity for Cu(II) than the free nucleobase, while the purine-rich substrate ODN2 exhibited diminished Cu(II) binding affinity. The impact of Cu(II) on duplex stability and structure was determined using UV melting temperature analysis and circular dichroism (CD) measurements. These studies highlight the syn preference for Cu(II)-bound o-PhOHdG within ODN1 duplexes and demonstrate competitive Cu(II) binding by other natural dG nucleobases within ODN2. The metal binding properties of o-PhOHdG are compared to the structurally similar 2-(2'-hydroxyphenyl)benzoxazole (HBO) derivatives and the nucleoside C8-(2-pyridyl)-dG (2PydG) that has also been used to control N7-metal coordination in DNA. Our results show certain advantages to the use of o-PhOHdG that stem from its highly fluorescent nature in aqueous media and provide additional tools for studying the effects of N7-metalation on the structure and stability of duplex DNA.
Collapse
Affiliation(s)
- Alireza Omumi
- Department of Chemistry, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Douki T, Ravanat JL, Angelov D, Wagner JR, Cadet J. Effects of Duplex Stability on Charge-Transfer Efficiency within DNA. Top Curr Chem (Cham) 2012. [DOI: 10.1007/b94409] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Hirose W, Sato K, Matsuda A. Fluorescence Properties of 5-(5,6-Dimethoxybenzothiazol-2-yl)-2′-deoxyuridine (dbtU) and Oligodeoxyribonucleotides Containing dbtU. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100818] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Oka Y, Takei F, Nakatani K. Transformation of cytosine to uracil in single-stranded DNA via their oxime sulfonates. Chem Commun (Camb) 2010; 46:3378-80. [PMID: 20442906 DOI: 10.1039/b920758a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The novel transformation of cytosine oxime sulfonate (C*) to uracil sulfonate (U*) proceeded by a Co(II)-assisted benzoyl peroxide reaction, eventually leading to the conversion of cytosine to uracil.
Collapse
Affiliation(s)
- Yoshimi Oka
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
18
|
|
19
|
Yokojima S, Yoshiki N, Yanoi W, Okada A. Solvent effects on ionization potentials of guanine runs and chemically modified guanine in duplex DNA: effect of electrostatic interaction and its reduction due to solvent. J Phys Chem B 2010; 113:16384-92. [PMID: 19947608 PMCID: PMC2825092 DOI: 10.1021/jp9054582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
We examined the ionization potential (IP) corresponding to the free energy of a hole on duplex DNA by semiempirical molecular orbital theory with a continuum solvent model. As for the contiguous guanines (a guanine run), we found that the IP in the gas phase significantly decreases with the increasing number of nucleotide pairs of the guanine run, whereas the IP in water (OP, oxidation potential) only slightly does. The latter result is consistent with the experimental result for DNA oligomers in water. This decrease in the IP is mainly due to the attractive electrostatic interaction between the hole and a nucleotide pair in the duplex DNA. This interaction is reduced in water, which results in the small decrease in the IP in water. This mechanism explains the discrepancy between the experimental result and the previous computational results obtained by neglecting the solvent. As for the chemically modified guanine, the previous work showed that the removal of some solvent (water) molecules due to the attachment of a neutral functional group to a guanine in a duplex DNA stabilizes the hole on the guanine. One might naively have expected the opposite case, since a polar solvent usually stabilizes ions. This mechanism also explains this unexpected stabilization of a hole as follows. When some water molecules are removed, the attractive electrostatic interaction stabilizing the hole increases, and thus, the hole is stabilized. In order to design the hole energetics by a chemical modification of DNA, this mechanism has to be taken into account and can be used.
Collapse
Affiliation(s)
- Satoshi Yokojima
- Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| | | | | | | |
Collapse
|
20
|
Li H, Cukier RI, Bu Y. Remarkable metal counterion effect on the internucleotide J-couplings and chemical shifts of the N-H...N hydrogen bonds in the W-C base pairs. J Phys Chem B 2008; 112:9174-81. [PMID: 18598072 DOI: 10.1021/jp8030545] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of metal ion binding on the (2h) J(NN)-coupling and delta( (1)H)/Deltadelta( (15)N) chemical shifts of N-H...N H-bond units in internucleotide base pairs were explored by a combination of density functional theory calculations and molecular dynamics (MD) simulations. Results indicate that the NMR parameters vary considerably upon cation binding to the natural GC or AT base pairs, and thus can be used to identify the status of the base pairs, if cation-perturbed. The basic trend is that cation perturbation causes (2h) J(NN) to increase, Deltadelta( (15)N) to decrease, and delta( (1)H) to shift upfield for GC, and in the opposite directions for AT. The magnitudes of variation are closely related to the Lewis acidity of the metal ions. For both base pair series (M(z+)GC and M(z+)AT), these NMR parameters are linearly correlated among themselves. Their values depend strongly on the energy gaps (Delta(ELP-->sigma*)) and the second-order interaction energies ( E(2)) between the donor N lone pair (LP(N)) and the acceptor sigma* N-H localized NBO orbitals. In addition, the (2h) J NN changes are also sensitive to the amount of sigma charge transfer from LP(N) to sigma*(N-H) NBOs or from the purine to the pyrimidine moieties. The different trends are a consequence of the different H-bond patterns combined with the polarization effect of the metal ions in the cationized M(z+)AT series, M(z+) <-- A --> T, and the cationized GC series, M(z+) <-- G <-- C. The predicted cation-induced systematic trends of (2h) J(NN) and delta( (15)N, (1)H) in N-H...N H-bond units may provide a new approach to the determination of H-bond structure and strength in Watson-Crick base pairs, and provide an alternative probe of the heterogeneity of DNA sequences.
Collapse
Affiliation(s)
- Huifang Li
- The Center for Modeling & Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | | | | |
Collapse
|
21
|
Vinje J, Sletten E. Internal versus terminal metalation of double-helical oligodeoxyribonucleotides. Chemistry 2007; 12:676-88. [PMID: 16208725 DOI: 10.1002/chem.200500731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The formation of adducts between cis-[Pt(NH(3))(2)Cl(2)], Zn(II), and Mn(II) and double-stranded oligodeoxynucleotides was studied by 1D and 2D (1)H, (31)P, and (15)N NMR spectroscopy. For labile adducts involving Zn(II) and Mn(II), both (1)H chemical shifts (Zn(II)) and (1)H line-broadening effects (Mn(II)) showed that in the hexamer [d(GGCGCC)](2) I, the terminal G(1)-N7 is the exclusive binding site, while for the dodecamer [d(GGTACCGGTACC)](2) II, which contains both a terminal and internal GG pair, the preference for metal binding is the internal guanine G(7). Zn(II) binding to II was confirmed by natural-abundance 2D [(1)H,(15)N] HMBC NMR spectroscopy, which unambiguously showed that G(7)-N7 is the preferred binding site. The long duplex [d(GGTATATATACCGGTATATATACC)](2) III was expected to have a more pronounced accumulation of electrostatic potential towards the central part of the sequence (vs the terminal part) than does II. However, the Zn(II) titration of III showed no increase in coordination with the internal Gs (vs the terminal Gs), compared with what was observed for II. The reaction between the nonlabile metal complex cis-[PtCl(2)((15)NH(3))(2)] (cisplatin) and II showed a slight preference for the internal GG pair over the terminal GG pair. However, when the diaqua form of cisplatin cis-[Pt((15)NH(3))(2)(H(2)O)(2)] was reacted with II a more pronounced binding preference for the internal GG pair was observed.
Collapse
Affiliation(s)
- Jo Vinje
- Centre of Pharmacy, Department of Chemistry, University of Bergen, Norway.
| | | |
Collapse
|
22
|
Morrison H, Harmon H. “Hot Spots” Associated with the Photoinduced Binding of cis-Dichloro bis(1,10 phenanthroline)rhodium(III) Chloride to HIV-1 and c-raf DNA¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720731hsawtp2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Elias B, Kirsch-De Mesmaeker A. Photo-reduction of polyazaaromatic Ru(II) complexes by biomolecules and possible applications. Coord Chem Rev 2006. [DOI: 10.1016/j.ccr.2005.11.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
|
25
|
Westerhoff LM, Merz KM. Quantum mechanical description of the interactions between DNA and water. J Mol Graph Model 2006; 24:440-55. [PMID: 16199192 DOI: 10.1016/j.jmgm.2005.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/24/2005] [Accepted: 08/26/2005] [Indexed: 11/25/2022]
Abstract
In recent years, a lot of attention has been focused on the electronic properties of DNA. With recent advances in linear scaling quantum mechanics there are now new tools available to enhance our understanding of the electronic properties of DNA among other biomolecules. Using both explicit solvent models and implicit (continuum) solvent models, the electronic characteristics of a dodecamer duplex DNA have been fully studied using both divide and conquer (D&C), semi-empirical quantum mechanics and non-D&C semi-empirical quantum mechanics. According to the AM1 Hamiltonian, approximately 3.5 electrons (approximately 0.3 electron/base pair) are transferred from the duplex to the solvent. According to the density of state (DOS) analysis, in vacuo DNA has a band gap of approximately 1 eV showing that in the absence of solvent, the DNA may exhibit similar properties to those of a semiconductor. Upon increasing solvation (2.5-5.5 A), the band gap ranges from approximately 3 eV to approximately 6 eV. For the implicit solvent model, the band gap continues this widening trend to approximately 7 eV. Therefore, upon solvation and in the absence of dopants, the DNA should begin to loose its conductive properties. Finally, when one considers the energy and localization of the frontier orbitals (HOMO and LUMO), solvent has a stabilizing effect on the DNA system. The energy of the HOMO drops from approximately 15 eV in vacuo to approximately 2 eV for 5.5 A of water to approximately -8 eV for the implicit solvent model. Similarly, the LUMO drops from approximately 16 eV for in vacuo to approximately 9 eV for 5.5 A of water to approximately -1 eV for the implicit model. Beyond the importance of the computed results on the materials properties of DNA, the present work also shows that the behavior of intercalators will be affected by the electronic properties of DNA. This could have an impact on our understanding of how DNA based drugs interact with DNA and on the design of new DNA based small molecule drugs.
Collapse
Affiliation(s)
- Lance M Westerhoff
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
26
|
|
27
|
Yan S, Bu Y, Li P. Electronic effect on protonated hydrogen-bonded imidazole trimer and corresponding derivatives cationized by alkali metals (Li+, Na+, and K+). J Chem Phys 2005; 122:54311. [PMID: 15740326 DOI: 10.1063/1.1839855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The electronic effects on the protonated hydrogen-bonded imidazole trimer (Im)(3)H(+) and the derivatives cationized by alkali metals (Li(+), Na(+), and K(+)) are investigated using B3LYP method in conjunction with the 6-311+G( *) basis set. The prominent characteristics of (Im)(3)H(+) on reduction are the backflow of the transferred proton to its original fragment and the remoteness of the H atom from the attached side bare N atom. The proton transfer occurs on both reduction and oxidation for the corresponding hydrogen-bonded imidazole trimer. For the derivatives cationized by Li(+), (Im)(3)Li(+), the backflow of the transferred proton occurs on reduction. The electron detachment from respective highest occupied molecular orbital of (Im)(3)Na(+) and (Im)(3)K(+) causes the proton transferring from the fragment attached by the alkali metal cation to the middle one. The order of the adiabatic ionization potentials of (Im)(3)M(+) is (Im)(3)H(+)>(Im)(3)Li(+)>(Im)(3)Na(+)>(Im)(3)K(+); the order of (Im)(3)M indicates that (Im)(3)H is the easicst complex to be ionized. The polarity of (Im)(3)M(+) (M denotes H, Li, Na, and K) increases on both oxidation and reduction. The (Im)(3)M(+) complexes dissociate into (Im)(3) and M(+) except (Im)(3)H(+), which dissociates preferably into (Im)(3) (+) and H atom, while the neutral complexes [(Im)(3)M] dissociate into (Im)(3) and M. The stabilization energy of (Im)(3)Li(2+), (Im)(3)Na(2+), and (Im)(3)K(2+) indicate that their energies are higher as compared to those of the monomers.
Collapse
Affiliation(s)
- Shihai Yan
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | | | | |
Collapse
|
28
|
Crean CW, Camier R, Lawler M, Stevenson C, Davies RJH, Boyle PH, Kelly JM. Synthesis of N3- and 2-NH2-substituted 6,7-diphenylpterins and their use as intermediates for the preparation of oligonucleotide conjugates designed to target photooxidative damage on single-stranded DNA representing the bcr-abl chimeric gene. Org Biomol Chem 2004; 2:3588-601. [PMID: 15592617 DOI: 10.1039/b413655a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 17-mer oligodeoxynucleotide-5'-linked-(6,7-diphenylpterin) conjugates, 2 and 3, were prepared as photosensitisers for targeting photooxidative damage to a 34-mer DNA oligodeoxynucleotide (ODN) fragment 1 representing the chimeric bcr-abl gene that is implicated in the pathogenesis of chronic myeloid leukaemia (CML). The base sequence in the 17-mer was 3'G G T A G T T A T T C C T T C T T5'. In the first of these ODN conjugates (2) the pterin was attached at its N3 atom, via a -(CH2)3OPO(OH)- linker, to the 5'-OH group of the ODN. Conjugate 2 was prepared from 2-amino-3-(3-hydroxypropyl)-6,7-diphenyl-4(3H)-pteridinone 10, using phosphoramidite methodology. Starting material 10 was prepared from 5-amino-7-methylthiofurazano[3,4-d]pyrimidine 4 via an unusual highly resonance stabilised cation 8, incorporating the rare 2H,6H-pyrimido[6,1-b][1,3]oxazine ring system. In the characterisation of 10 two pteridine phosphazenes, 15 and 29, were obtained, as well as new products containing two uncommon tricyclic ring systems, namely pyrimido[2,1-b]pteridine (20 and 24) and pyrimido[1,2-c]pteridine (27). In the second ODN conjugate the linker was -(CH2)5CONH(CH2)6OPO(OH)- and was attached to the 2-amino group of the pterin. In the preparation of 3, the N-hydroxysuccinimide ester 37 of 2-(5-carboxypentylamino)-6,7-diphenyl-4(3H)-pteridinone was condensed with the hexylamino-modified 17-mer. Excitation of 36 with near UV light in the presence of the single-stranded target 34-mer, 5'T G A C C A T C A A T A A G14 G A A G18 A A G21 C C C T T C A G C G G C C3' 1 caused oxidative damage at guanine bases, leading to alkali-labile sites which were monitored by polyacrylamide gel electrophoresis. Cleavage was observed at all guanine sites with a marked preference for cleavage at G14. In contrast, excitation of ODN-pteridine conjugate 2 in the presence of 1 caused oxidation of the latter predominantly at G18, with a smaller extent of cleavage at G15 and G14 (in the double-stranded portion) and G21. These results contrast with our previous observation of specific cleavage at G21 with ruthenium polypyridyl sensitisers, and suggest that a different mechanism, probably one involving Type 1 photochemical electron transfer, is operative. Much lower yields were found with the ODN-pteridine conjugate 3, perhaps as a consequence of the longer linker between the ODN and the pteridine in this case.
Collapse
Affiliation(s)
- Conor W Crean
- Chemistry Department and Centre for Chemical Synthesis and Chemical Biology, Trinity College, University of Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Shihai Yan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Institute of Theoretical Chemistry, Shandong University, Jinan, 250100, P. R. China, and Department of Chemistry, Qufu Normal University, Qufu, 273165, P. R. China
| | - Yuxiang Bu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Institute of Theoretical Chemistry, Shandong University, Jinan, 250100, P. R. China, and Department of Chemistry, Qufu Normal University, Qufu, 273165, P. R. China
| |
Collapse
|
30
|
Senthilkumar K, Grozema FC, Guerra CF, Bickelhaupt FM, Siebbeles LDA. Mapping the sites for selective oxidation of guanines in DNA. J Am Chem Soc 2004; 125:13658-9. [PMID: 14599193 DOI: 10.1021/ja037027d] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effective energy of a positive charge when it is localized at a specific guanine nucleobase in DNA was calculated using density functional theory. The results demonstrate that the efficiency of a guanine to act as a hole-trap in DNA strongly depends on the nature of the flanking nucleobases. The presence of a pyrimidine base at the 3' position adjacent to a guanine significantly increases the localization energy of the positive charge. The calculated distributions of a positive charge in sequences of two or three adjacent guanines, flanked by other nucleobases, provide an explanation for experimental literature data on the site-selective oxidation of DNA.
Collapse
Affiliation(s)
- K Senthilkumar
- Radiation Chemistry Department, Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Yoshioka Y, Kawai H, Sato T, Yamaguchi K, Saito I. Ab initio molecular orbital study on the G-selectivity of GGG triplet in copper(I)-mediated one-electron oxidation. J Am Chem Soc 2003; 125:1968-74. [PMID: 12580624 DOI: 10.1021/ja028039m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The G-selectivity for Cu(I)-mediated one-electron oxidation of 5'-TG(1)G(2)G(3)-3' and 5'-CG(1)G(2)G(3)-3' has been examined by ab initio molecular orbital calculations. It was confirmed that G(1) is selectively damaged by Cu(I) ion for both 5'-TG(1)G(2)G(3)-3' and 5'-CG(1)G(2)G(3)-3', being good agreement with experimental results. The Cu(I)-mediated G(1)-selectivity is primarily due to the stability of the Cu(I)-coordinated complex, [-XG(1)G(2)G(3)-,-Cu(I)(H(2)O)(3)](+). The Cu(I) ion coordinates selectively to N7 of G(2) of 5'-G(1)G(2)G(3)-3' rather than N7 of G(1). The G(2)-selective coordination induces the G(1)-selective trap of a hole that is created by one-electron oxidation and migrates to GGG triplet. Therefore, the radical cation of G(1) is selectively created in both 5'-TG(1)G(2)G(3)-3' and 5'-CG(1)G(2)G(3)-3', giving the G(1)-selective damage of 5'-G(1)G(2)G(3)-3'.
Collapse
Affiliation(s)
- Yasunori Yoshioka
- Chemistry Department for Materials, Faculty of Engineering, Mie University, Tsu, Mie 514-8507, Japan.
| | | | | | | | | |
Collapse
|
32
|
Liu Y, Sletten E. Interaction between macrocyclic nickel complexes and the nucleotides GMP, AMP and ApG. J Inorg Biochem 2003; 93:190-6. [PMID: 12576281 DOI: 10.1016/s0162-0134(02)00572-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactions between the nucleotides GMP, AMP and ApG and the complexes Ni(tren), Ni(cyclam) and NiCR in aqueous solution have been monitored by (1)H, (15)N NMR and UV spectroscopy. The three nickel complexes display different properties in reactions with nucleotides. Ni(tren) which has a pseudo-octahedral coordination geometry was shown to bind to all three nucleotides. Ni(cyclam) and NiCR, both with four nitrogen atoms in a square planar arrangement are not able to bind to nucleotides efficiently because of steric hindrance. Oxidation of Ni(cyclam) by KHSO(5) to produce trivalent Ni(III)(cyclam) improves the coordination capacity, while oxidation of NiCR does not produce a similar effect. The nucleotides interact with trivalent nickel complexes to different extent. Ni(III)CR is seen to oxidize GMP gradually but does not affect AMP significantly. Ni(III)(cyclam), on the other hand, does not oxidize either GMP or AMP at the 1:1 concentration of oxidant used. This result is probably due to the lower redox potential of Ni(cyclam). ApG binds less efficiently to the Ni complexes but is easier oxidized than the mononucleotides.
Collapse
Affiliation(s)
- Yangzhong Liu
- Department of Chemistry, University of Bergen, Allegt. 41, N-5007 Bergen, Norway
| | | |
Collapse
|
33
|
Cream CW, Kavanagh YT, O'Keeffe CM, Lawler MP, Stevenson C, Davies RJH, Boyle PH, Kelly JM. Targeting of photooxidative damage on single-stranded DNA representing the bcr-abl chimeric gene using oligonucleotide-conjugates containing [Ru(phen)3](2+)-like photosensitiser groups. Photochem Photobiol Sci 2002; 1:1024-33. [PMID: 12661602 DOI: 10.1039/b207387k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photooxidative damage was induced predominantly at a single guanine base in a target DNA by irradiation (lambda > 330 nm) in the presence of complementary oligodeoxynucleotide conjugates (ODN-5'-linker-[Ru(phen)3]2+) (phen = 1,10-phenanthroline). The target DNA represents the b2a2 variant of the chimeric bcr-abl gene implicated in the pathogenesis of chronic myeloid leukaemia, and the sequence of the 17mer ODN component of the conjugate (3' G G T A G T T A T T C C T T C T T 5') was complementary to the junction region of the sense strand sequence of this oncogene. Two different conjugates were prepared, both of them by reaction of the appropriate succinimide ester with 5'-hexylamino-derivatised 17mer ODN. In Ru-ODN-1 (7) the linker was -(CH2)6-NHCO-bpyMe (-bpyMe = 4'-[4-methyl-2,2'-bipyridyl]), whereas in Ru-ODN-2 (13) it was -(CH2)6-NHCO-(CH2)3-CONH-phen. Photoexcitation of either of the conjugates when hybridised with the 32P-5'-end-labelled target 34mer 5'T G A C C A T C A A T A A G G A A G A A G21 C C C T T C A G C G G C C 3' (ODN binding site underlined) led to an alkali-labile site predominantly (> 90%) at the G21 base, which is at the junction of double-stranded and single-stranded regions of the hybrid. Greater yields were found with Ru-ODN-1 (7) than with Ru ODN-2 (13). In contrast to this specific cleavage with Ru-ODN-1 (7) or Ru-ODN-2 (13), alkali-labile sites were generated at all guanines when the 34mer was photolysed in the presence of the free sensitiser [Ru(phen)3]2+. Since [Ru(phen)3]2+ was shown to react with 2'-deoxyguanosine to form the diastereomers of a spiroiminodihydantoin derivative (the product from 1O2 reaction), 1O2 might also be an oxidizing species in the case of Ru-ODN-1 (7) and Ru-ODN-2 (13). Therefore to determine the range of reaction, a series of 'variant' targets was prepared, in which G21 was replaced with a cytosine and a guanine substituted for a base further towards the 3'-end (e.g. Variant 3; 5'T G A C C A T C A A T A A G G A A G A A C C G23 C T T C A G C G G32 C C3'). While it was noted that efficient reaction took place at distances apparently remote from the photosensitiser (e.g at G32, but not G23 for Variant 3), this effect could be attributed to hairpinning of the single-stranded region of the target. These results are therefore consistent with the photooxidative damage being induced by a reaction close to the photosensitiser rather than by a diffusible species such as 1O2.
Collapse
Affiliation(s)
- Conor W Cream
- Chemistry Department, Trinity College, University of Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang H, Miki E, Re S, Tokiwa H. Molecular geometries, vibrational analysis, bonding and molecular orbitals of the three isomers of [RuCl(qn)2NO] (Hqn=2-methyl-8-quinolinol or 2-chloro-8-quinolinol): density functional theory studies. Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(02)01093-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Gaballah ST, Netzel TL. Synthesis of 5-(pyridinyl and pyridiniumyl)-2'-deoxyuridine nucleosides: reversible electron traps for DNA. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2002; 21:681-94. [PMID: 12502283 DOI: 10.1081/ncn-120015725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The desire to produce reversible electron traps for direct, room temperature studies of excess electron transport in DNA duplexes and hairpins motivated our efforts first to link pyridines to 2'-deoxyuridine (pyridinyl-dU) and then to convert these new conjugates into pyridiniumyl-dU nucleosides. Base sensitivity studies presented here rule out general use of bipyridinediiumyl compounds, but show that pyridiniumyl compounds are suitable for use under the strand cleavage and base deprotection procedures required for automated solid-phase oligonucleotide synthesis. This paper presents the synthesis of four 5'-O-DMT-protected 5-(N-methylpyridiniumyl)-dU conjugates using either ethynyl or ethylenyl linkers to join the pyridiniumyl and dU subunits.
Collapse
Affiliation(s)
- Samir T Gaballah
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
36
|
Li X, Cai Z, Sevilla MD. Energetics of the Radical Ions of the AT and AU Base Pairs: A Density Functional Theory (DFT) Study. J Phys Chem A 2002. [DOI: 10.1021/jp021322n] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xifeng Li
- Department of Chemistry, Oakland University, Rochester, Michigan 48309
| | - Zhongli Cai
- Department of Chemistry, Oakland University, Rochester, Michigan 48309
| | - M. D. Sevilla
- Department of Chemistry, Oakland University, Rochester, Michigan 48309
| |
Collapse
|
37
|
|
38
|
Fu PKL, Bradley PM, van Loyen D, Dürr H, Bossmann SH, Turro C. DNA photocleavage by a supramolecular Ru(II)-viologen complex. Inorg Chem 2002; 41:3808-10. [PMID: 12132903 DOI: 10.1021/ic020136t] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel Ru(II) complex possessing two sequentially linked viologen units, Ru-V(1)-V(2)(6+), was synthesized and characterized. Upon excitation of the Ru(II) unit (lambda(exc) = 532 nm, fwhm approximately 10 ns), a long-lived charge-separated (CS) state is observed (tau = 1.7 micros) by transient absorption spectroscopy. Unlike Ru(bpy)(3)(2+), which cleaves DNA upon photolysis through the formation of reactive oxygen species, such as (1)O(2) and O(2)(-), the photocleavage of plasmid DNA by Ru-V(1)-V(2)(6+) is observed both in air and under N(2) atmosphere (lambda(irr) > 395 nm).
Collapse
Affiliation(s)
- Patty K-L Fu
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
39
|
Jortner J, Bixon M, Voityuk AA, Rösch N. Superexchange Mediated Charge Hopping in DNA. J Phys Chem A 2002. [DOI: 10.1021/jp014232b] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua Jortner
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel, and Institut für Physikalische und Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - M. Bixon
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel, and Institut für Physikalische und Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - Alexander A. Voityuk
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel, and Institut für Physikalische und Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - Notker Rösch
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel, and Institut für Physikalische und Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
40
|
Cadet J, Bellon S, Berger M, Bourdat AG, Douki T, Duarte V, Frelon S, Gasparutto D, Muller E, Ravanat JL, Sauvaigo S. Recent aspects of oxidative DNA damage: guanine lesions, measurement and substrate specificity of DNA repair glycosylases. Biol Chem 2002; 383:933-43. [PMID: 12222683 DOI: 10.1515/bc.2002.100] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review discusses recent aspects of oxidation reactions of DNA and model compounds involving mostly OH radicals, one-electron transfer process and singlet oxygen (1O2). Emphasis is placed on the formation of double DNA lesions involving a purine base on one hand and either a pyrimidine base or a 2-deoxyribose moiety on the other hand. Structural and mechanistic information is also provided on secondary oxidation reactions of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), a major DNA marker of oxidative stress. Another major topic which is addressed here deals with recent developments in the measurement of oxidative base damage to cellular DNA. This has been mostly achieved using the accurate and highly specific HPLC method coupled with the tandem mass spectrometry detection technique. Interestingly, optimized conditions of DNA extraction and subsequent work-up allow the accurate measurement of 11 modified nucleosides and bases within cellular DNA upon exposure to oxidizing agents, including UVA and ionizing radiations. In addition, the modified comet assay, which involves the use of bacterial DNA N-glycosylases to reveal two main classes of oxidative base damage, is applicable to isolated cells and is particularly suitable when only small amounts of biological material are available. Finally, recently available data on the substrate specificity of DNA repair enzymes belonging to the base excision pathways are briefly reviewed.
Collapse
Affiliation(s)
- Jean Cadet
- Service de Chimie Inorganique et Biologique & UMR 5046, Département de Recherche Fondamentale sur la Matière Condensée, CEA/Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schumm S, Prévost M, García-Fresnadillo D, Lentzen O, Moucheron C, Kirsch-De Mesmaeker A. Influence of the Sequence Dependent Ionization Potentials of Guanines on the Luminescence Quenching of Ru-Labeled Oligonucleotides: A Theoretical and Experimental Study. J Phys Chem B 2002. [DOI: 10.1021/jp013185k] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- S. Schumm
- Organic Chemistry and Photochemistry, Université libre de Bruxelles, CP 160/08, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, Ingénierie Biomoléculaire, Université libre de Bruxelles, CP 165/64, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, and Faculty of Chemistry, Universidad Complutense de Madrid, Avenida Complutense s/n, E−28040 Madrid, Spain
| | - M. Prévost
- Organic Chemistry and Photochemistry, Université libre de Bruxelles, CP 160/08, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, Ingénierie Biomoléculaire, Université libre de Bruxelles, CP 165/64, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, and Faculty of Chemistry, Universidad Complutense de Madrid, Avenida Complutense s/n, E−28040 Madrid, Spain
| | - D. García-Fresnadillo
- Organic Chemistry and Photochemistry, Université libre de Bruxelles, CP 160/08, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, Ingénierie Biomoléculaire, Université libre de Bruxelles, CP 165/64, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, and Faculty of Chemistry, Universidad Complutense de Madrid, Avenida Complutense s/n, E−28040 Madrid, Spain
| | - O. Lentzen
- Organic Chemistry and Photochemistry, Université libre de Bruxelles, CP 160/08, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, Ingénierie Biomoléculaire, Université libre de Bruxelles, CP 165/64, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, and Faculty of Chemistry, Universidad Complutense de Madrid, Avenida Complutense s/n, E−28040 Madrid, Spain
| | - C. Moucheron
- Organic Chemistry and Photochemistry, Université libre de Bruxelles, CP 160/08, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, Ingénierie Biomoléculaire, Université libre de Bruxelles, CP 165/64, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, and Faculty of Chemistry, Universidad Complutense de Madrid, Avenida Complutense s/n, E−28040 Madrid, Spain
| | - A. Kirsch-De Mesmaeker
- Organic Chemistry and Photochemistry, Université libre de Bruxelles, CP 160/08, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, Ingénierie Biomoléculaire, Université libre de Bruxelles, CP 165/64, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium, and Faculty of Chemistry, Universidad Complutense de Madrid, Avenida Complutense s/n, E−28040 Madrid, Spain
| |
Collapse
|
42
|
Brunaud G, Castet F, Fritsch A, Kreissler M, Ducasse L. Electron Interactions between Nucleoside Pairs in Canonical B-DNA: I. Transfer Integrals. J Phys Chem B 2001. [DOI: 10.1021/jp012737w] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. Brunaud
- Laboratoire de Physico-Chimie Moléculaire, UMR 5803 CNRS, Université Bordeaux I, 33405 Talence Cedex, France
| | - F. Castet
- Laboratoire de Physico-Chimie Moléculaire, UMR 5803 CNRS, Université Bordeaux I, 33405 Talence Cedex, France
| | - A. Fritsch
- Laboratoire de Physico-Chimie Moléculaire, UMR 5803 CNRS, Université Bordeaux I, 33405 Talence Cedex, France
| | - M. Kreissler
- Laboratoire de Physico-Chimie Moléculaire, UMR 5803 CNRS, Université Bordeaux I, 33405 Talence Cedex, France
| | - L. Ducasse
- Laboratoire de Physico-Chimie Moléculaire, UMR 5803 CNRS, Université Bordeaux I, 33405 Talence Cedex, France
| |
Collapse
|
43
|
Midorikawa K, Murata M, Oikawa S, Hiraku Y, Kawanishi S. Protective effect of phytic acid on oxidative DNA damage with reference to cancer chemoprevention. Biochem Biophys Res Commun 2001; 288:552-7. [PMID: 11676478 DOI: 10.1006/bbrc.2001.5808] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phytic acid (myo-inositol hexaphosphate) is one of the most promising cancer chemopreventive agents. We investigated the mechanism by which phytic acid expresses preventive action to cancer. Phytic acid inhibited the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in cultured cells treated with an H2O2-generating system, although it did not scavenge H2O2. Site-specific DNA damage by H2O2 and Cu(II) at GG and GGG sequences was inhibited by phytic acid, but not by myo-inositol. Phytic acid alone did not cause DNA damage and thus, it should not act as a prooxidant. We conclude that phytic acid acts as an antioxidant to inhibit the generation of reactive oxygen species from H2O2 by chelating metals, resulting in chemoprevention of cancer.
Collapse
Affiliation(s)
- K Midorikawa
- Department of Hygiene, Mie University School of Medicine, Mie, 514-8507, Japan
| | | | | | | | | |
Collapse
|
44
|
Voityuk AA, Jortner J, Bixon M, Rösch N. Electronic coupling between Watson–Crick pairs for hole transfer and transport in desoxyribonucleic acid. J Chem Phys 2001. [DOI: 10.1063/1.1352035] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Zhu Q, LeBreton PR. DNA Photoionization and Alkylation Patterns in the Interior of Guanine Runs. J Am Chem Soc 2000. [DOI: 10.1021/ja002523c] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Morrison H, Harmon H. "Hot spots" associated with the photoinduced binding of cis-dichloro bis(1,10 phenanthroline)rhodium(III) chloride to HIV-1 and c-raf DNA. Photochem Photobiol 2000; 72:731-8. [PMID: 11140260 DOI: 10.1562/0031-8655(2000)072<0731:hsawtp>2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The octahedral rhodium complex, cis-dichloro bis(1,10 phenanthroline)rhodium(III) chloride (BISPHEN), is known to form covalent linkages with DNA involving the attachment of the metal to a base. In order to determine the sequence selectivity of this chemistry, solutions of the complex containing one of the double-stranded DNA plasmids, pBSSK.c-raf (eco) or pBSKS+.XE.LTR-F (a construct that contains sequences derived from the long terminal repeat [LTR] region of the human immunodeficiency virus) have been irradiated using UVA light. The DNA samples were denatured after irradiation, a primer was annealed to one of the strands, and a complementary strand was constructed using a polymerase enzyme. Polyacrylamide gel sequencing analysis was used to reveal stops created in the complementary strand caused by the polymerase encountering a metal-bound base. The data indicate that "hot spots" primarily occur at, or adjacent to, guanines (G), with a particularly strong preference for strings of G. In the latter case, the hottest spot is at the 5'G. These results are consistent with our previously postulated mechanism for the covalent binding chemistry which involves photooxidation of deoxyguanosine by the excited state of the metal complex as the primary photochemical step.
Collapse
Affiliation(s)
- H Morrison
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA.
| | | |
Collapse
|
47
|
Davis WB, Naydenova I, Haselsberger R, Ogrodnik A, Giese B, Michel-Beyerle ME. Dynamics of Hole Trapping by G, GG, and GGG in DNA We thank Joshua Jortner, Notker Rösch, and Alexander Voityuk for stimulating discussions and critical reading of the manuscript. W.B.D. greatly appreciates a postdoc fellowship from the Alexander von Humboldt Foundation. Financial support from the Volkswagenstiftung is gratefully acknowledged. Angew Chem Int Ed Engl 2000; 39:3649-3652. [PMID: 11091427 DOI: 10.1002/1521-3773(20001016)39:20<3649::aid-anie3649>3.0.co;2-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- WB Davis
- Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany)
| | | | | | | | | | | |
Collapse
|
48
|
Davis W, Naydenova I, Haselsberger R, Ogrodnik A, Giese B, Michel-Beyerle M. Dynamics of Hole Trapping by G, GG, and GGG in DNA. Angew Chem Int Ed Engl 2000. [DOI: 10.1002/1521-3757(20001016)112:20<3795::aid-ange3795>3.0.co;2-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Nakamura T, Saito I. Mapping of the highest occupied molecular orbital of a DNA–RNA hybrid by cobalt–benzoyl peroxide oxidation. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)01380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|