1
|
Krueger TD, Chen C, Fang C. Deciphering ultrafast structural dynamics of the red Kaede chromophore in solution and a photoconvertible fluorescent protein. J Chem Phys 2025; 162:165103. [PMID: 40272993 DOI: 10.1063/5.0268655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Photoconvertible fluorescent proteins (pcFPs) have enabled exquisite images of cellular structures due to their genetic encodability and red-shifted emission with high brightness, hence receiving increased traction in the field. However, the red form of Kaede-like pcFPs after photoconversion remains underexplored. We implemented ultrafast electronic and vibrational spectroscopies on the red Kaede chromophore in solution vs the protein pocket of the least-evolved ancestor (LEA, a Kaede-like green-to-red pcFP) to gain crucial insights into the photophysical processes of the chromophore. The measured fluorescence quantum yield (FQY) values were correlated with ultrafast dynamics to reveal that hydrogen-bonding interactions with the solvent can quench the excited-state Kaede in solution. A viscosity-dependent sub-ps decay indicates nonradiative relaxation involving swift chromophore conformational motions. Femtosecond transient absorption and stimulated Raman spectroscopy (FSRS) reveal an additional ∼1 ps decay of the photoconverted red form of LEA that is absent in green LEA before photoconversion. Transient structural dynamics from FSRS elucidate this decay to involve the phenolate and imidazolinone ring twists that are implicated during cis → trans isomerization and on → off photoswitching in phototransformable fluorescent proteins (FPs). Compared to green-emitting species, the FQY of red LEA (∼0.58) and many other red FPs are often reduced, limiting their applications in modern bioimaging techniques. By shining more light on the often overlooked photoconverted form of pcFPs with ultrafast spectroscopies, we envision such essential mechanistic insights to enable a bottom-up approach for rationally improving the brightness of red-emitting LEA and many other controllable bioprobes, including FPs.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
2
|
Zheng S, Shi X, Lin J, Yang Y, Xin Y, Bai X, Zhu H, Chen H, Wu J, Zheng X, Lin L, Huang Z, Yang S, Hu F, Liu W. Structural basis for the fast maturation of pcStar, a photoconvertible fluorescent protein. Acta Crystallogr D Struct Biol 2025; 81:181-195. [PMID: 40094266 DOI: 10.1107/s2059798325002141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) serve as key players in single-molecule localization super-resolution imaging. As an early engineered variant, mEos3.2 has limited applications, mostly due to its slow maturation rate. The recent advent of a novel variant, pcStar, obtained by the simple mutation of only three amino acids (D28E/L93M/N166G) in mEos3.2, exhibits significantly accelerated maturation and enhanced fluorescent brightness. This improvement represents an important advance in the field of biofluorescence by enabling early detection with reliable signals, essential for labelling dynamic biological processes. However, the mechanism underlying the significant improvement in fluorescent performance from mEos3.2 to pcStar remains elusive, preventing the rational design of more robust variants through mutagenesis. In this study, we determined the crystal structures of mEos3.2 and pcStar in their green states at atomic resolution and performed molecular-dynamics simulations to reveal significant divergences between the two proteins. Our structural and computational analyses revealed crucial features that are distinctively present in pcStar, including the presence of an extra solvent molecule, high conformational stability and enhanced interactions of the chromophore with its surroundings, tighter tertiary-structure packing and dynamic central-helical deformation. Resulting from the triple mutations, all of these structural features are likely to establish a mechanistic link to the greatly improved fluorescent performance of pcStar. The data described here not only provide a good example illustrating how distant amino-acid substitutions can affect the structure and bioactivity of a protein, but also give rise to strategic considerations for the future engineering of more widely applicable PCFPs.
Collapse
Affiliation(s)
- Shuping Zheng
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiangrui Shi
- Institute of Immunology, PLA, Army Medical University, Chongqing, People's Republic of China
| | - Junjin Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yiwei Yang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Yiting Xin
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xinru Bai
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Huachen Zhu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Hui Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jiasen Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaowei Zheng
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhihong Huang
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Sheng Yang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, People's Republic of China
| | - Fen Hu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wei Liu
- Institute of Immunology, PLA, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Wulffelé J, Maity A, Ayala I, Gambarelli S, Brutscher B, Bourgeois D. Light-Induced Conformational Heterogeneity Induces Positive Photoswitching in Photoconvertible Fluorescent Proteins of the EosFP Family. J Am Chem Soc 2025; 147:10357-10368. [PMID: 40085482 DOI: 10.1021/jacs.4c17311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) of the EosFP family are commonly used in ensemble pulse-chase and single-molecule localization or tracking approaches. However, these fluorescent proteins exhibit highly complex photophysical behaviors. In the green-form, recent NMR experiments revealed that mEos4b and other PCFP variants exist in two different conformational states at thermal equilibrium, which limits their effective photoconversion efficiency. Here, we investigate the conformational heterogeneity of mEos4b in the photoconverted red-form, employing a combination of solution NMR, UV-vis spectroscopy and fluorescence imaging. Only a single red population of mEos4b is observed at thermal equilibrium. However, a second population emerges under illumination with 405 or 488 nm light, which slowly decays in the dark or can be swiftly reverted under 561 nm light. This second population manifests itself through a pH-dependent positive photoswitching mechanism that adds to the already characterized negative photoswitching assigned to cis-trans isomerization of the chromophore. Our data indicate that positive photoswitching, instead, results from the light-induced formation of a second fluorescent state with a cis configuration of the chromophore that exhibits a substantially increased pKa. Such a mechanism, suggested to result from rewiring of the H-bonding network around the first amino acid of the chromophore, adds to the panoply of switching scenarios observed in fluorescent proteins. It bears consequences for the spectroscopic characterization of PCFPs, reduces their apparent brightness and generates short-lived off-times perturbing single-molecule localization microscopy applications.
Collapse
Affiliation(s)
- Jip Wulffelé
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, Grenoble, Cedex 9 38044, France
| | - Arijit Maity
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, Grenoble, Cedex 9 38044, France
| | - Isabel Ayala
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, Grenoble, Cedex 9 38044, France
| | - Serge Gambarelli
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble F-38000, France
| | - Bernhard Brutscher
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, Grenoble, Cedex 9 38044, France
| | - Dominique Bourgeois
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, Grenoble, Cedex 9 38044, France
| |
Collapse
|
4
|
Fang C, Rega N, Biczysko M. Editorial: Hot topic: excited state processes in biomolecules. Front Chem 2024; 12:1467074. [PMID: 39144700 PMCID: PMC11322346 DOI: 10.3389/fchem.2024.1467074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Nadia Rega
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | | |
Collapse
|
5
|
Breen B, Whitelegge JP, Wachter RM. Kinetic isotope effect reveals rate-limiting step in green-to-red photoconvertible fluorescent proteins. Protein Sci 2024; 33:e5069. [PMID: 38864740 PMCID: PMC11168066 DOI: 10.1002/pro.5069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Photoconvertible fluorescent proteins (pcFPs) undergo a slow photochemical transformation when irradiated with blue light. Since their emission is shifted from green to red, pcFPs serve as convenient fusion tags in several cutting-edge biological imaging technologies. Here, a pcFP termed the Least Evolved Ancestor (LEA) was used as a model system to determine the rate-limiting step of photoconversion. Perdeuterated histidine residues were introduced by isotopic enrichment and chromophore content was monitored by absorbance. pH-dependent photoconversion experiments were carried out by exposure to 405-nm light followed by dark equilibration. The loss of green chromophore correlated well with the rise of red, and maximum photoconversion rates were observed at pH 6.5 (0.059 ± 0.001 min-1 for red color acquisition). The loss of green and the rise of red provided deuterium kinetic isotope effects (DKIEs) that were identical within error, 2.9 ± 0.9 and 3.8 ± 0.6, respectively. These data indicate that there is one rate-determining step in the light reactions of photoconversion, and that CH bond cleavage occurs in the transition state of this step. We propose that these reactions are rate-limited on the min time scale by the abstraction of a proton at the His62 beta-carbon. A conformational intermediate such as a twisted or isomerized chromophore is proposed to slowly equilibrate in the dark to generate the red form. Additionally, His62 may shuttle protons to activate Glu211 to serve as a general base, while also facilitating beta-elimination. This idea is supported by a recent X-ray structure of methylated His62.
Collapse
Affiliation(s)
- Bella Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, NPI‐Semel InstituteUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Rebekka M. Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| |
Collapse
|
6
|
Gavshina AV, Solovyev ID, Khrenova MG, Boyko KM, Varfolomeeva LA, Minyaev ME, Popov VO, Savitsky AP. The role of the correlated motion(s) of the chromophore in photoswitching of green and red forms of the photoconvertible fluorescent protein mSAASoti. Sci Rep 2024; 14:8754. [PMID: 38627478 PMCID: PMC11021400 DOI: 10.1038/s41598-024-59364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Wild-type SAASoti and its monomeric variant mSAASoti can undergo phototransformations, including reversible photoswitching of the green form to a nonfluorescent state and irreversible green-to-red photoconversion. In this study, we extend the photochemistry of mSAASoti variants to enable reversible photoswitching of the red form. This result is achieved by rational and site-saturated mutagenesis of the M163 and F177 residues. In the case of mSAASoti it is M163T substitution that leads to the fastest switching and the most photostable variant, and reversible photoswitching can be observed for both green and red forms when expressed in eukaryotic cells. We obtained a 13-fold increase in the switching efficiency with the maximum switching contrast of the green form and the appearance of comparable switching of the red form for the C21N/M163T mSAASoti variant. The crystal structure of the C21N mSAASoti in its green on-state was obtained for the first time at 3.0 Å resolution, and it is in good agreement with previously calculated 3D-model. Dynamic network analysis reveals that efficient photoswitching occurs if motions of the 66H residue and phenyl fragment of chromophore are correlated and these moieties belong to the same community.
Collapse
Affiliation(s)
- Alexandra V Gavshina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya D Solovyev
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Maria G Khrenova
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
7
|
Maity A, Wulffelé J, Ayala I, Favier A, Adam V, Bourgeois D, Brutscher B. Structural Heterogeneity in a Phototransformable Fluorescent Protein Impacts its Photochemical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306272. [PMID: 38146132 PMCID: PMC10933604 DOI: 10.1002/advs.202306272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Photoconvertible fluorescent proteins (PCFP) are important cellular markers in advanced imaging modalities such as photoactivatable localization microscopy (PALM). However, their complex photophysical and photochemical behavior hampers applications such as quantitative and single-particle-tracking PALM. This work employs multidimensional NMR combined with ensemble fluorescence measurements to show that the popular mEos4b in its Green state populates two conformations (A and B), differing in side-chain protonation of the conserved residues E212 and H62, altering the hydrogen-bond network in the chromophore pocket. The interconversion (protonation/deprotonation) between these two states, which occurs on the minutes time scale in the dark, becomes strongly accelerated in the presence of UV light, leading to a population shift. This work shows that the reversible photoswitching and Green-to-Red photoconversion properties differ between the A and B states. The chromophore in the A-state photoswitches more efficiently and is proposed to be more prone to photoconversion, while the B-state shows a higher level of photobleaching. Altogether, this data highlights the central role of conformational heterogeneity in fluorescent protein photochemistry.
Collapse
Affiliation(s)
- Arijit Maity
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Jip Wulffelé
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Isabel Ayala
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Adrien Favier
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Virgile Adam
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Dominique Bourgeois
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Bernhard Brutscher
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| |
Collapse
|
8
|
Krueger TD, Henderson JN, Breen IL, Zhu L, Wachter RM, Mills JH, Fang C. Capturing excited-state structural snapshots of evolutionary green-to-red photochromic fluorescent proteins. Front Chem 2023; 11:1328081. [PMID: 38144887 PMCID: PMC10748491 DOI: 10.3389/fchem.2023.1328081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.
Collapse
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Isabella L. Breen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Rebekka M. Wachter
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
9
|
Krueger TD, Chen C, Fang C. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chem Asian J 2023; 18:e202300668. [PMID: 37682793 DOI: 10.1002/asia.202300668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| |
Collapse
|
10
|
Bourges AC, Moeyaert B, Bui TYH, Bierbuesse F, Vandenberg W, Dedecker P. Quantitative determination of the full switching cycle of photochromic fluorescent proteins. Chem Commun (Camb) 2023. [PMID: 37377004 DOI: 10.1039/d3cc01617j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In this study, we develop a general analytical model of the photochromism of fluorescent proteins and apply it to spectroscopic measurements performed on six different labels. Our approach provides quantitative explanations for phenomena such as the existence of positive and negative switching, limitations in the photochromism contrast, and the fact that initial switching cycles may differ from subsequent ones. It also allows us to perform the very first measurement of all four isomerization quantum yields involved in the switching process.
Collapse
|
11
|
Liu D, Pan L, Zhai H, Qiu HJ, Sun Y. Virus tracking technologies and their applications in viral life cycle: research advances and future perspectives. Front Immunol 2023; 14:1204730. [PMID: 37334362 PMCID: PMC10272434 DOI: 10.3389/fimmu.2023.1204730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Viruses are simple yet highly pathogenic microorganisms that parasitize within cells and pose serious threats to the health, economic development, and social stability of both humans and animals. Therefore, it is crucial to understand the dynamic mechanism of virus infection in hosts. One effective way to achieve this is through virus tracking technology, which utilizes fluorescence imaging to track the life processes of virus particles in living cells in real-time, providing a comprehensively and detailed spatiotemporal dynamic process and mechanism of virus infection. This paper provides a broad overview of virus tracking technology, including the selection of fluorescent labels and virus labeling components, the development of imaging microscopes, and its applications in various virus studies. Additionally, we discuss the possibilities and challenges of its future development, offering theoretical guidance and technical support for effective prevention and control of the viral disease outbreaks and epidemics.
Collapse
Affiliation(s)
| | | | | | - Hua-Ji Qiu
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| | - Yuan Sun
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| |
Collapse
|
12
|
Ghelani T, Escher M, Thomas U, Esch K, Lützkendorf J, Depner H, Maglione M, Parutto P, Gratz S, Matkovic-Rachid T, Ryglewski S, Walter AM, Holcman D, O‘Connor Giles K, Heine M, Sigrist SJ. Interactive nanocluster compaction of the ELKS scaffold and Cacophony Ca 2+ channels drives sustained active zone potentiation. SCIENCE ADVANCES 2023; 9:eade7804. [PMID: 36800417 PMCID: PMC9937578 DOI: 10.1126/sciadv.ade7804] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/17/2023] [Indexed: 06/01/2023]
Abstract
At presynaptic active zones (AZs), conserved scaffold protein architectures control synaptic vesicle (SV) release by defining the nanoscale distribution and density of voltage-gated Ca2+ channels (VGCCs). While AZs can potentiate SV release in the minutes range, we lack an understanding of how AZ scaffold components and VGCCs engage into potentiation. We here establish dynamic, intravital single-molecule imaging of endogenously tagged proteins at Drosophila AZs undergoing presynaptic homeostatic potentiation. During potentiation, the numbers of α1 VGCC subunit Cacophony (Cac) increased per AZ, while their mobility decreased and nanoscale distribution compacted. These dynamic Cac changes depended on the interaction between Cac channel's intracellular carboxyl terminus and the membrane-close amino-terminal region of the ELKS-family protein Bruchpilot, whose distribution compacted drastically. The Cac-ELKS/Bruchpilot interaction was also needed for sustained AZ potentiation. Our single-molecule analysis illustrates how the AZ scaffold couples to VGCC nanoscale distribution and dynamics to establish a state of sustained potentiation.
Collapse
Affiliation(s)
- Tina Ghelani
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Molecular and Theoretical Neuroscience Leibniz-Forschungs Institut für Molekulare Pharmakologie (FMP) im CharitéCrossOver (CCO) Charité–University Medicine Berlin Charité Campus Mitte, Charité Platz, 110117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Marc Escher
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Ulrich Thomas
- Department of Cellular Neurobiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Klara Esch
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Janine Lützkendorf
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Harald Depner
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Marta Maglione
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
- Institute for Chemistry and Biochemistry, SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, 14195 Berlin, Germany
| | - Pierre Parutto
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
- Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
- Churchill College, University of Cambridge, Cambridge CB3 0DS, UK
| | - Scott Gratz
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Tanja Matkovic-Rachid
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander M. Walter
- Molecular and Theoretical Neuroscience Leibniz-Forschungs Institut für Molekulare Pharmakologie (FMP) im CharitéCrossOver (CCO) Charité–University Medicine Berlin Charité Campus Mitte, Charité Platz, 110117 Berlin, Germany
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - David Holcman
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
- Churchill College, University of Cambridge, Cambridge CB3 0DS, UK
| | - Kate O‘Connor Giles
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Stephan J. Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
13
|
Krueger TD, Tang L, Fang C. Delineating Ultrafast Structural Dynamics of a Green-Red Fluorescent Protein for Calcium Sensing. BIOSENSORS 2023; 13:bios13020218. [PMID: 36831983 PMCID: PMC9954042 DOI: 10.3390/bios13020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 05/14/2023]
Abstract
Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions. Using steady-state electronic measurements (UV/Visible absorption and emission), along with time-resolved spectroscopic techniques including femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS), the potential energy surfaces of these unique biosensors are unveiled with vivid details. The ground-state structural characterization of the Ca2+-free biosensor via FSRS reveals a more spacious protein pocket that allows the chromophore to efficiently twist and reach a dark state. In contrast, the more compressed cavity within the Ca2+-bound biosensor results in a more heterogeneous distribution of chromophore populations that results in multi-step excited state proton transfer (ESPT) pathways on the sub-140 fs, 600 fs, and 3 ps timescales. These results enable rational design strategies to enlarge the spectral separation between the protonated/deprotonated forms and the Stokes shift leading to a larger dynamic range and potentially higher fluorescence quantum yield, which should be broadly applicable to the calcium imaging and biosensor communities.
Collapse
|
14
|
Single molecule imaging simulations with advanced fluorophore photophysics. Commun Biol 2023; 6:53. [PMID: 36646743 PMCID: PMC9842740 DOI: 10.1038/s42003-023-04432-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Advanced fluorescence imaging techniques such as single-molecule localization microscopy (SMLM) fundamentally rely on the photophysical behavior of the employed fluorophores. This behavior is generally complex and impacts data quality in a subtle manner. A simulation software named Single-Molecule Imaging Simulator (SMIS) is introduced that simulates a widefield microscope and incorporates fluorophores with their spectral and photophysical properties. With SMIS, data collection schemes combining 3D, multicolor, single-particle-tracking or quantitative SMLM can be implemented. The influence of advanced fluorophore characteristics, imaging conditions, and environmental parameters can be evaluated, facilitating the design of real experiments and their proper interpretation.
Collapse
|
15
|
Mukherjee S, Manna P, Douglas N, Chapagain PP, Jimenez R. Conformational Dynamics of mCherry Variants: A Link between Side-Chain Motions and Fluorescence Brightness. J Phys Chem B 2023; 127:52-61. [PMID: 36574626 DOI: 10.1021/acs.jpcb.2c05584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 3-fold higher brightness of the recently developed mCherry-XL red fluorescent protein (FP) compared to its progenitor, mCherry, is due to a significant decrease in the nonradiative decay rate underlying its increased fluorescence quantum yield. To examine the structural and dynamic role of the four mutations that distinguish the two FPs and closely related variants, we employed microsecond time scale, all-atom molecular dynamics simulations. The simulations revealed that the I197R mutation leads to the formation of multiple hydrogen-bonded contacts and increased rigidity of the β-barrel. In particular, mCherryXL showed reduced nanosecond time scale breathing of the gap between the β7 and β10-strands, which was previously shown to be the most flexible region of mCherry. Together with experimental results, the simulations also reveal steric interactions of residue 161 and a network of hydrogen-bonding interactions of the chromophore with residues at positions 59, 143, and 163 that are critical in perturbing the chromophore electronic structure. Finally, we shed light on the conformational dynamics of the conserved residues R95 and S146, which are hydrogen-bonded to the chromophore, and provide physical insights into the observed photophysics. To the best of our knowledge, this is the first study that evaluates the conformational space for a set of closely related FPs generated by directed evolution.
Collapse
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nancy Douglas
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, 11200 SW Eighth Street, CP204, Miami, Florida 33199, United States
| | - Ralph Jimenez
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
16
|
Krueger TD, Tang L, Chen C, Zhu L, Breen IL, Wachter RM, Fang C. To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins. Protein Sci 2023; 32:e4517. [PMID: 36403093 PMCID: PMC9793981 DOI: 10.1002/pro.4517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π-π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60-67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.
Collapse
Affiliation(s)
| | - Longteng Tang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Cheng Chen
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Liangdong Zhu
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Isabella L. Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Rebekka M. Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Chong Fang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
17
|
Adam V, Hadjidemetriou K, Jensen N, Shoeman RL, Woodhouse J, Aquila A, Banneville AS, Barends TRM, Bezchastnov V, Boutet S, Byrdin M, Cammarata M, Carbajo S, Eleni Christou N, Coquelle N, De la Mora E, El Khatib M, Moreno Chicano T, Bruce Doak R, Fieschi F, Foucar L, Glushonkov O, Gorel A, Grünbein ML, Hilpert M, Hunter M, Kloos M, Koglin JE, Lane TJ, Liang M, Mantovanelli A, Nass K, Nass Kovacs G, Owada S, Roome CM, Schirò G, Seaberg M, Stricker M, Thépaut M, Tono K, Ueda K, Uriarte LM, You D, Zala N, Domratcheva T, Jakobs S, Sliwa M, Schlichting I, Colletier JP, Bourgeois D, Weik M. Rational Control of Off-State Heterogeneity in a Photoswitchable Fluorescent Protein Provides Switching Contrast Enhancement. Chemphyschem 2022; 23:e202200192. [PMID: 35959919 DOI: 10.1002/cphc.202200192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/25/2022] [Indexed: 01/07/2023]
Abstract
Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.
Collapse
Affiliation(s)
- Virgile Adam
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | | | - Nickels Jensen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany and University Medical Center of Göttingen, Clinic for Neurology, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Joyce Woodhouse
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Andrew Aquila
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Anne-Sophie Banneville
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Victor Bezchastnov
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Martin Byrdin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, Rennes, France
| | - Sergio Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Nina Eleni Christou
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Nicolas Coquelle
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Eugenio De la Mora
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Mariam El Khatib
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Tadeo Moreno Chicano
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Oleksandr Glushonkov
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Alexander Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Marie Luise Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mark Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Marco Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jason E Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Thomas J Lane
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Angela Mantovanelli
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Karol Nass
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Japan.,Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Christopher M Roome
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Matthew Seaberg
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Miriam Stricker
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Michel Thépaut
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Japan.,Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Lucas M Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, 59000, France
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Ninon Zala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Tatiana Domratcheva
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany.,Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany and University Medical Center of Göttingen, Clinic for Neurology, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, 59000, France
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | | | - Dominique Bourgeois
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| |
Collapse
|
18
|
Chen H, Liu L, Qian K, Liu H, Wang Z, Gao F, Qu C, Dai W, Lin D, Chen K, Liu H, Cheng Z. Bioinspired large Stokes shift small molecular dyes for biomedical fluorescence imaging. SCIENCE ADVANCES 2022; 8:eabo3289. [PMID: 35960804 PMCID: PMC9374339 DOI: 10.1126/sciadv.abo3289] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Long Stokes shift dyes that minimize cross-talk between the excitation source and fluorescent emission to improve the signal-to-background ratio are highly desired for fluorescence imaging. However, simple small molecular dyes with large Stokes shift (more than 120 nanometers) and near-infrared (NIR) emissions have been rarely reported so far. Here, inspired by the chromophore chemical structure of fluorescent proteins, we designed and synthesized a series of styrene oxazolone dyes (SODs) with simple synthetic methods, which show NIR emissions (>650 nanometers) with long Stokes shift (ranged from 136 to 198 nanometers) and small molecular weight (<450 daltons). The most promising SOD9 shows rapid renal excretion and blood-brain barrier passing properties. After functioning with the mitochondrial-targeted triphenylphosphonium (TPP) group, the resulting SOD9-TPP can be engineered for head-neck tumor imaging, fluorescence image-guided surgery, brain neuroimaging, and on-site pathologic analysis. In summary, our findings add an essential small molecular dye category to the classical dyes.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lingjun Liu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hailong Liu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiming Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Gao
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenhao Dai
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Daizong Lin
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
19
|
Super-Resolution Microscopy and Their Applications in Food Materials: Beyond the Resolution Limits of Fluorescence Microscopy. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Wulffele J, Thédié D, Glushonkov O, Bourgeois D. mEos4b Photoconversion Efficiency Depends on Laser Illumination Conditions Used in PALM. J Phys Chem Lett 2022; 13:5075-5080. [PMID: 35653150 DOI: 10.1021/acs.jpclett.2c00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) are widely employed as markers in photoactivated localization microscopy (PALM). However, their highly complex photophysical behavior complicates their usage. The fact that only a limited fraction of a PCFP ensemble can form the photoconverted state upon near-UV light illumination, termed photoconversion efficiency (PCE), lowers the achievable spatial resolution in PALM and creates undercounting errors in quantitative counting applications. Here, we show that the PCE of mEos4b is not a fixed property of this PCFP but strongly depends on illumination conditions. Attempts to reduce long-lived blinking in red mEos4b by application of 488 nm light lead to a reduction of the PCE. Furthermore, the PCE of mEos4b strongly depends on the applied 405 nm power density. A refined photophysical model of mEos4b accounts for the observed effects, involving nonlinear green-state photobleaching upon violet light illumination favored by photon absorption by a putative radical dark state.
Collapse
Affiliation(s)
- Jip Wulffele
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
| | - Daniel Thédié
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
- University of Edinburgh, Roger Land Building, The King's Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Oleksandr Glushonkov
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
| |
Collapse
|
21
|
Mukherjee S, Thomas C, Wilson R, Simmerman E, Hung ST, Jimenez R. Characterizing Dark State Kinetics and Single Molecule Fluorescence of FusionRed and FusionRed-MQ at Low Irradiances. Phys Chem Chem Phys 2022; 24:14310-14323. [DOI: 10.1039/d2cp00889k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of dark states causes fluorescence intermittency of single molecules due to transitions between “on” and “off” states. Genetically encodable markers such as fluorescent proteins (FPs) exhibit dark states...
Collapse
|
22
|
Mancebo A, Mehra D, Banerjee C, Kim DH, Puchner EM. Efficient Cross-Correlation Filtering of One- and Two-Color Single Molecule Localization Microscopy Data. FRONTIERS IN BIOINFORMATICS 2021; 1:739769. [PMID: 36303727 PMCID: PMC9581065 DOI: 10.3389/fbinf.2021.739769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Single molecule localization microscopy has become a prominent technique to quantitatively study biological processes below the optical diffraction limit. By fitting the intensity profile of single sparsely activated fluorophores, which are often attached to a specific biomolecule within a cell, the locations of all imaged fluorophores are obtained with ∼20 nm resolution in the form of a coordinate table. While rendered super-resolution images reveal structural features of intracellular structures below the optical diffraction limit, the ability to further analyze the molecular coordinates presents opportunities to gain additional quantitative insights into the spatial distribution of a biomolecule of interest. For instance, pair-correlation or radial distribution functions are employed as a measure of clustering, and cross-correlation analysis reveals the colocalization of two biomolecules in two-color SMLM data. Here, we present an efficient filtering method for SMLM data sets based on pair- or cross-correlation to isolate localizations that are clustered or appear in proximity to a second set of localizations in two-color SMLM data. In this way, clustered or colocalized localizations can be separately rendered and analyzed to compare other molecular properties to the remaining localizations, such as their oligomeric state or mobility in live cell experiments. Current matrix-based cross-correlation analyses of large data sets quickly reach the limitations of computer memory due to the space complexity of constructing the distance matrices. Our approach leverages k-dimensional trees to efficiently perform range searches, which dramatically reduces memory needs and the time for the analysis. We demonstrate the versatile applications of this method with simulated data sets as well as examples of two-color SMLM data. The provided MATLAB code and its description can be integrated into existing localization analysis packages and provides a useful resource to analyze SMLM data with new detail.
Collapse
Affiliation(s)
- Angel Mancebo
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, United States
| | - Dushyant Mehra
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Chiranjib Banerjee
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, United States
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Elias M. Puchner
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
23
|
Osuga M, Nishimura T, Suetsugu S. Development of a green reversibly photoswitchable variant of Eos fluorescent protein with fixation resistance. Mol Biol Cell 2021; 32:br7. [PMID: 34495704 PMCID: PMC8693962 DOI: 10.1091/mbc.e21-01-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/11/2022] Open
Abstract
Superresolution microscopy determines the localization of fluorescent proteins with high precision, beyond the diffraction limit of light. Superresolution microscopic techniques include photoactivated localization microscopy (PALM), which can localize a single protein by the stochastic activation of its fluorescence. In the determination of single-molecule localization by PALM, the number of molecules that can be analyzed per image is limited. Thus, many images are required to reconstruct the localization of numerous molecules in the cell. However, most fluorescent proteins lose their fluorescence upon fixation. Here, we combined the amino acid substitutions of two Eos protein derivatives, Skylan-S and mEos4b, which are a green reversibly photoswitchable fluorescent protein (RSFP) and a fixation-resistant green-to-red photoconvertible fluorescent protein, respectively, resulting in the fixation-resistant Skylan-S (frSkylan-S), a green RSFP. The frSkylan-S protein is inactivated by excitation light and reactivated by irradiation with violet light, and retained more fluorescence after aldehyde fixation than Skylan-S. The qualities of the frSkylan-S fusion proteins were sufficiently high in PALM observations, as examined using α-tubulin and clathrin light chain. Furthermore, frSkylan-S can be combined with antibody staining for multicolor imaging. Therefore, frSkylan-S is a green fluorescent protein suitable for PALM imaging under aldehyde-fixation conditions.
Collapse
Affiliation(s)
- Mitsuo Osuga
- Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | | | - Shiro Suetsugu
- Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
24
|
Nienhaus K, Nienhaus GU. Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chem Biol 2021; 2:796-814. [PMID: 34458811 PMCID: PMC8341165 DOI: 10.1039/d1cb00014d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Optical fluorescence microscopy has taken center stage in the exploration of biological structure and dynamics, especially on live specimens, and super-resolution imaging methods continue to deliver exciting new insights into the molecular foundations of life. Progress in the field, however, crucially hinges on advances in fluorescent marker technology. Among these, fluorescent proteins (FPs) of the GFP family are advantageous because they are genetically encodable, so that live cells, tissues or organisms can produce these markers all by themselves. A subclass of them, photoactivatable FPs, allow for control of their fluorescence emission by light irradiation, enabling pulse-chase imaging and super-resolution microscopy. In this review, we discuss FP variants of the EosFP clade that have been optimized by amino acid sequence modification to serve as markers for various imaging techniques. In general, two different modes of photoactivation are found, reversible photoswitching between a fluorescent and a nonfluorescent state and irreversible green-to red photoconversion. First, we describe their basic structural and optical properties. We then summarize recent research aimed at elucidating the photochemical processes underlying photoactivation. Finally, we briefly introduce various advanced imaging methods facilitated by specific EosFP variants, and show some exciting sample applications.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Department of Physics, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
25
|
Christou NE, Giandoreggio-Barranco K, Ayala I, Glushonkov O, Adam V, Bourgeois D, Brutscher B. Disentangling Chromophore States in a Reversibly Switchable Green Fluorescent Protein: Mechanistic Insights from NMR Spectroscopy. J Am Chem Soc 2021; 143:7521-7530. [PMID: 33966387 DOI: 10.1021/jacs.1c02442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The photophysical properties of fluorescent proteins, including phototransformable variants used in advanced microscopy applications, are influenced by the environmental conditions in which they are expressed and used. Rational design of improved fluorescent protein markers requires a better understanding of these environmental effects. We demonstrate here that solution NMR spectroscopy can detect subtle changes in the chemical structure, conformation, and dynamics of the photoactive chromophore moiety with atomic resolution, providing such mechanistic information. Studying rsFolder, a reversibly switchable green fluorescent protein, we have identified four distinct configurations of its p-HBI chromophore, corresponding to the cis and trans isomers, with each one either protonated (neutral) or deprotonated (anionic) at the benzylidene ring. The relative populations and interconversion kinetics of these chromophore species depend on sample pH and buffer composition that alter in a complex way the strength of H-bonds that contribute in stabilizing the chromophore within the protein scaffold. We show in particular the important role of histidine-149 in stabilizing the neutral trans chromophore at intermediate pH values, leading to ground-state cis-trans isomerization with a peculiar pH dependence. We discuss the potential implications of our findings on the pH dependence of the photoswitching contrast, a critical parameter in nanoscopy applications.
Collapse
Affiliation(s)
- Nina Eleni Christou
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | | | - Isabel Ayala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Oleksandr Glushonkov
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Virgile Adam
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Dominique Bourgeois
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Bernhard Brutscher
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
26
|
De Zitter E, Hugelier S, Duwé S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P. Structure-Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System*. Angew Chem Int Ed Engl 2021; 60:10073-10081. [PMID: 33543524 DOI: 10.1002/anie.202015201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/05/2022]
Abstract
Anisotropic environments can drastically alter the spectroscopy and photochemistry of molecules, leading to complex structure-function relationships. We examined this using fluorescent proteins as easy-to-modify model systems. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, including the determination of 43 crystal structures. Correlation and principal component analysis confirmed the complex relationship between structure and spectroscopy, but also allowed us to identify consistent trends and to relate these to the spatial organization. We find that changes in spectroscopic properties can come about through multiple underlying mechanisms, of which polarity, hydrogen bonding and presence of water molecules are key modulators. We anticipate that our findings and rich structure/spectroscopy dataset can open opportunities for the development and evaluation of new and existing protein engineering methods.
Collapse
Affiliation(s)
- Elke De Zitter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium.,Present address: University Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Siewert Hugelier
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Sam Duwé
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium.,Present address: Advanced Optical Microscopy Centre, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
| | - Wim Vandenberg
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| |
Collapse
|
27
|
De Zitter E, Hugelier S, Duwé S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P. Structure–Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elke De Zitter
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
- Present address: University Grenoble Alpes CEA CNRS IBS 71 Avenue des Martyrs 38000 Grenoble France
| | - Siewert Hugelier
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Sam Duwé
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
- Present address: Advanced Optical Microscopy Centre Hasselt University Agoralaan building C 3590 Diepenbeek Belgium
| | - Wim Vandenberg
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Alison G. Tebo
- Janelia Research Campus Howard Hughes Medical Institute 19700 Helix Drive Ashburn Virginia 20147 USA
| | - Luc Van Meervelt
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Peter Dedecker
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| |
Collapse
|
28
|
Reciprocal stabilization of glycine receptors and gephyrin scaffold proteins at inhibitory synapses. Biophys J 2021; 120:805-817. [PMID: 33539789 DOI: 10.1016/j.bpj.2021.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 02/03/2023] Open
Abstract
Postsynaptic scaffold proteins immobilize neurotransmitter receptors in the synaptic membrane opposite to presynaptic vesicle release sites, thus ensuring efficient synaptic transmission. At inhibitory synapses in the spinal cord, the main scaffold protein gephyrin assembles in dense molecule clusters that provide binding sites for glycine receptors (GlyRs). Gephyrin and GlyRs can also interact outside of synapses, where they form receptor-scaffold complexes. Although several models for the formation of postsynaptic scaffold domains in the presence of receptor-scaffold interactions have been advanced, a clear picture of the coupled dynamics of receptors and scaffold proteins at synapses is lacking. To characterize the GlyR and gephyrin dynamics at inhibitory synapses, we performed fluorescence time-lapse imaging after photoconversion to directly visualize the exchange kinetics of recombinant Dendra2-gephyrin in cultured spinal cord neurons. Immuno-immobilization of endogenous GlyRs with specific antibodies abolished their lateral diffusion in the plasma membrane, as judged by the lack of fluorescence recovery after photobleaching. Moreover, the cross-linking of GlyRs significantly reduced the exchange of Dendra2-gephyrin compared with control conditions, suggesting that the kinetics of the synaptic gephyrin pool is strongly dependent on GlyR-gephyrin interactions. We did not observe any change in the total synaptic gephyrin levels after GlyR cross-linking, however, indicating that the number of gephyrin molecules at synapses is not primarily dependent on the exchange of GlyR-gephyrin complexes. We further show that our experimental data can be quantitatively accounted for by a model of receptor-scaffold dynamics that includes a tightly interacting receptor-scaffold domain, as well as more loosely bound receptor and scaffold populations that exchange with extrasynaptic pools. The model can make predictions for single-molecule data such as typical dwell times of synaptic proteins. Taken together, our data demonstrate the reciprocal stabilization of GlyRs and gephyrin at inhibitory synapses and provide a quantitative understanding of their dynamic organization.
Collapse
|
29
|
Sample Preparation and Imaging Conditions Affect mEos3.2 Photophysics in Fission Yeast Cells. Biophys J 2021; 120:21-34. [PMID: 33217381 PMCID: PMC7820738 DOI: 10.1016/j.bpj.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023] Open
Abstract
Photoconvertible fluorescent proteins (PCFPs) are widely used in super-resolution microscopy and studies of cellular dynamics. However, our understanding of their photophysics is still limited, hampering their quantitative application. For example, we do not know the optimal sample preparation methods or imaging conditions to count protein molecules fused to PCFPs by single-molecule localization microscopy in live and fixed cells. We also do not know how the behavior of PCFPs in live cells compares with fixed cells. Therefore, we investigated how formaldehyde fixation influences the photophysical properties of the popular green-to-red PCFP mEos3.2 in fission yeast cells under a wide range of imaging conditions. We estimated photophysical parameters by fitting a three-state model of photoconversion and photobleaching to the time course of fluorescence signal per yeast cell expressing mEos3.2. We discovered that formaldehyde fixation makes the fluorescence signal, photoconversion rate, and photobleaching rate of mEos3.2 sensitive to the buffer conditions likely by permeabilizing the yeast cell membrane. Under some imaging conditions, the time-integrated mEos3.2 signal per yeast cell is similar in live cells and fixed cells imaged in buffer at pH 8.5 with 1 mM DTT, indicating that light chemical fixation does not destroy mEos3.2 molecules. We also discovered that 405-nm irradiation drove some red-state mEos3.2 molecules to enter an intermediate dark state, which can be converted back to the red fluorescent state by 561-nm illumination. Our findings provide a guide to quantitatively compare conditions for imaging mEos3.2-tagged molecules in yeast cells. Our imaging assay and mathematical model are easy to implement and provide a simple quantitative approach to measure the time-integrated signal and the photoconversion and photobleaching rates of fluorescent proteins in cells.
Collapse
|
30
|
Tang L, Zhang S, Zhao Y, Rozanov ND, Zhu L, Wu J, Campbell RE, Fang C. Switching between Ultrafast Pathways Enables a Green-Red Emission Ratiometric Fluorescent-Protein-Based Ca 2+ Biosensor. Int J Mol Sci 2021; 22:E445. [PMID: 33466257 PMCID: PMC7794744 DOI: 10.3390/ijms22010445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023] Open
Abstract
Ratiometric indicators with long emission wavelengths are highly preferred in modern bioimaging and life sciences. Herein, we elucidated the working mechanism of a standalone red fluorescent protein (FP)-based Ca2+ biosensor, REX-GECO1, using a series of spectroscopic and computational methods. Upon 480 nm photoexcitation, the Ca2+-free biosensor chromophore becomes trapped in an excited dark state. Binding with Ca2+ switches the route to ultrafast excited-state proton transfer through a short hydrogen bond to an adjacent Glu80 residue, which is key for the biosensor's functionality. Inspired by the 2D-fluorescence map, REX-GECO1 for Ca2+ imaging in the ionomycin-treated human HeLa cells was achieved for the first time with a red/green emission ratio change (ΔR/R0) of ~300%, outperforming many FRET- and single FP-based indicators. These spectroscopy-driven discoveries enable targeted design for the next-generation biosensors with larger dynamic range and longer emission wavelengths.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| | - Shuce Zhang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
| | - Yufeng Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
| | - Nikita D. Rozanov
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| | - Jiahui Wu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (S.Z.); (Y.Z.); (J.W.); or
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA; (L.T.); (N.D.R.); (L.Z.)
| |
Collapse
|