1
|
Li J, Li C, Zhao Z, Guo Y, Chen H, Liu P, Zhao M, Guo J. Biomolecules meet organic frameworks: from synthesis strategies to diverse applications. NANOSCALE 2024; 16:4529-4541. [PMID: 38293903 DOI: 10.1039/d3nr05586h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Biomolecules are essential in pharmaceuticals, biocatalysts, biomaterials, etc., but unfortunately they are extremely susceptible to extraneous conditions. When biomolecules meet porous organic frameworks, significantly improved thermal, chemical, and mechanical stabilities are not only acquired for raw biomolecules, but also molecule sieving, substrate enrichment, chirality property, and other functionalities are additionally introduced for application expansions. In addition, the intriguing synergistic effect stemming from elaborate and concerted interactions between biomolecules and frameworks can further enhance application performances. In this paper, the synthesis strategies of the so-called bio-organic frameworks (BOFs) in recent years are systematically reviewed and classified. Additionally, their broad applications in biomedicine, catalysis, separation, sensing, and imaging are introduced and discussed. Before ending, the current challenges and prospects in the future for this infancy-stage but significant research field are also provided. We hope that this review will offer a concise but comprehensive vision of designing and constructing multifunctional BOF materials as well as their full explorations in various fields.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Chunyan Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Zelong Zhao
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Yuxue Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Hongli Chen
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tiangong University, Tianjin 300387, China
| | - Pai Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Meiting Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Jun Guo
- State Key Laboratory of Separation Membrane and Membrane Process, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
2
|
Tanaka M, Tsuboi Y, Yuyama KI. Formation of a core-shell droplet in a thermo-responsive ionic liquid/water mixture by using optical tweezers. Chem Commun (Camb) 2022; 58:11787-11790. [PMID: 36168832 DOI: 10.1039/d2cc02699f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many chemical and biological processes involve phase separation; however, controlling this is challenging. Here, we demonstrate local phase separation using optical tweezers in a thermo-responsive ionic liquid/water solution. Upon near-infrared laser irradiation, a single droplet is formed at the focal spot. The droplet has a core consisting of highly concentrated ionic liquid. The mechanism of the core-shell droplet formation is discussed in view of the spatial distribution of optical and thermal potentials.
Collapse
Affiliation(s)
- Maho Tanaka
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan.
| | - Yasuyuki Tsuboi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan.
| | - Ken-Ichi Yuyama
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan.
| |
Collapse
|
3
|
Xia L, Wang Q, Hu M. Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:763-777. [PMID: 36051312 PMCID: PMC9379653 DOI: 10.3762/bjnano.13.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 05/09/2023]
Abstract
Various kinds of monocrystalline coordination polymers are available thanks to the rapid development of related synthetic strategies. The intrinsic properties of coordination polymers have been carefully investigated on the basis of the available monocrystalline samples. Regarding the great potential of coordination polymers in various fields, it becomes important to tailor the properties of coordination polymers to meet practical requirements, which sometimes cannot be achieved through molecular/crystal engineering. Nanoarchitectonics offer unique opportunities to manipulate the properties of materials through integration of the monocrystalline building blocks with other components. Recently, nanoarchitectonics has started to play a significant role in the field of coordination polymers. In this short review, we summarize recent advances in nanoarchitectures based on monocrystalline coordination polymers that are formed through confined assembly. We first discuss the crystallization of coordination polymer single crystals inside confined liquid networks or on substrates through assembly of nodes and ligands. Then, we discuss assembly of preformed coordination polymer single crystals inside confined liquid networks or on substrates. In each part, we discuss the properties of the coordination polymer single crystals as well as their performance in energy, environmental, and biomedical applications.
Collapse
Affiliation(s)
- Lingling Xia
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Qinyue Wang
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ming Hu
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Synthesis of zeolitic imidazolate framework-8 and gold nanoparticles in a sustained out-of-equilibrium state. Sci Rep 2022; 12:222. [PMID: 34996999 PMCID: PMC8741818 DOI: 10.1038/s41598-021-03942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
The design and synthesis of crystalline materials are challenging due to the proper control over the size and polydispersity of the samples, which determine their physical and chemical properties and thus applicability. Metal − organic frameworks (MOFs) are promising materials in many applications due to their unique structure. MOFs have been predominantly synthesized by bulk methods, where the concentration of the reagents gradually decreased, which affected the further nucleation and crystal growth. Here we show an out-of-equilibrium method for the generation of zeolitic imidazolate framework-8 (ZIF-8) crystals, where the non-equilibrium crystal growth is maintained by a continuous two-side feed of the reagents in a hydrogel matrix. The size and the polydispersity of the crystals are controlled by the fixed and antagonistic constant mass fluxes of the reagents and by the reaction time. We also present that our approach can be extended to synthesize gold nanoparticles in a redox process.
Collapse
|
5
|
Rodrigo G, Ballesteros-Garrido R. Metal-organic frameworks in pursuit of size: the development of macroscopic single crystals REMINDER: Personal invitation to contribute to Dalton Transactions - CoordNetworks. Dalton Trans 2022; 51:7775-7782. [DOI: 10.1039/d2dt00560c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks are versatile structures with many different applications, from the industry to the clinic. Despite multiple synthesis approaches are possible to coordinate metals and organic ligands, some common strategies...
Collapse
|
6
|
Calvo Galve N, Abrishamkar A, Sorrenti A, Di Rienzo L, Satta M, D'Abramo M, Coronado E, de Mello AJ, Mínguez Espallargas G, Puigmartí-Luis J. Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF. Angew Chem Int Ed Engl 2021; 60:15920-15927. [PMID: 33729645 DOI: 10.1002/anie.202101611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/09/2022]
Abstract
Coordination polymers (CPs), including metal-organic frameworks (MOFs), are crystalline materials with promising applications in electronics, magnetism, catalysis, and gas storage/separation. However, the mechanisms and pathways underlying their formation remain largely undisclosed. Herein, we demonstrate that diffusion-controlled mixing of reagents at the very early stages of the crystallization process (i.e., within ≈40 ms), achieved by using continuous-flow microfluidic devices, can be used to enable novel crystallization pathways of a prototypical spin-crossover MOF towards its thermodynamic product. In particular, two distinct and unprecedented nucleation-growth pathways were experimentally observed when crystallization was triggered under microfluidic mixing. Full-atom molecular dynamics simulations also confirm the occurrence of these two distinct pathways during crystal growth. In sharp contrast, a crystallization by particle attachment was observed under bulk (turbulent) mixing. These unprecedented results provide a sound basis for understanding the growth of CPs and open up new avenues for the engineering of porous materials by using out-of-equilibrium conditions.
Collapse
Affiliation(s)
- Néstor Calvo Galve
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Afshin Abrishamkar
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Alessandro Sorrenti
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.,Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Quimica Teorica i Computacional, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Lorenzo Di Rienzo
- Fondazione Istituto Italiano di Tecnologia (IIT), Center for Life Nano Science, Viale Regina Elena 291, I00161, Roma, Italy
| | - Mauro Satta
- ISMN (CNR) c/o Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Andrew J de Mello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Josep Puigmartí-Luis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.,Departament de Ciència dels Materials i Química Física and Institut de Quimica Teorica i Computacional, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
7
|
Calvo Galve N, Abrishamkar A, Sorrenti A, Di Rienzo L, Satta M, D'Abramo M, Coronado E, Mello AJ, Mínguez Espallargas G, Puigmartí‐Luis J. Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Néstor Calvo Galve
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia C/ Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Afshin Abrishamkar
- Institute of Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | - Alessandro Sorrenti
- Institute of Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Quimica Teorica i Computacional Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Lorenzo Di Rienzo
- Fondazione Istituto Italiano di Tecnologia (IIT) Center for Life Nano Science Viale Regina Elena 291 I00161 Roma Italy
| | - Mauro Satta
- ISMN (CNR) c/o Department of Chemistry Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Marco D'Abramo
- Department of Chemistry Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia C/ Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Andrew J. Mello
- Institute of Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | | | - Josep Puigmartí‐Luis
- Institute of Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
- Departament de Ciència dels Materials i Química Física and Institut de Quimica Teorica i Computacional Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
8
|
Contreras‐Pereda N, Rodríguez‐San‐Miguel D, Franco C, Sevim S, Vale JP, Solano E, Fong W, Del Giudice A, Galantini L, Pfattner R, Pané S, Mayor TS, Ruiz‐Molina D, Puigmartí‐Luis J. Synthesis of 2D Porous Crystalline Materials in Simulated Microgravity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101777. [PMID: 34089271 PMCID: PMC11469204 DOI: 10.1002/adma.202101777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/10/2021] [Indexed: 06/12/2023]
Abstract
To date, crystallization studies conducted in space laboratories, which are prohibitively costly and unsuitable to most research laboratories, have shown the valuable effects of microgravity during crystal growth and morphogenesis. Herein, an easy and highly efficient method is shown to achieve space-like experimentation conditions on Earth employing custom-made microfluidic devices to fabricate 2D porous crystalline molecular frameworks. It is confirmed that experimentation under these simulated microgravity conditions has unprecedented effects on the orientation, compactness and crack-free generation of 2D porous crystalline molecular frameworks as well as in their integration and crystal morphogenesis. It is believed that this work will provide a new "playground" to chemists, physicists, and materials scientists that desire to process unprecedented 2D functional materials and devices.
Collapse
Affiliation(s)
- Noemí Contreras‐Pereda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterraBarcelona08193Spain
| | - David Rodríguez‐San‐Miguel
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichZurich8093Switzerland
- Departament de Ciència dels Materials i Química FísicaInstitut de Química Teòrica i ComputacionalBarcelona08028Spain
| | - Carlos Franco
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichZurich8093Switzerland
| | - Semih Sevim
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichZurich8093Switzerland
| | - João Pedro Vale
- SIMTECH LaboratoryTransport Phenomena Research CentreEngineering Faculty of Porto UniversityPorto4200–465Portugal
| | - Eduardo Solano
- ALBA SynchrotronCarrer de la Llum 2–26Cerdanyola del VallèsBarcelona08290Spain
| | - Wye‐Khay Fong
- Discipline of ChemistrySchool of Environmental and Life SciencesUniversity of NewcastleCallaghanNSW2308Australia
| | | | - Luciano Galantini
- Department of ChemistrySapienza University of RomeP. le A. Moro 5Rome00185Italy
| | - Raphael Pfattner
- Institut de Ciència de Materials de BarcelonaICMAB‐CSICCampus UABBellaterra08193Spain
| | - Salvador Pané
- Multi‐Scale Robotics LabETH ZurichTannenstrasse 3ZurichCH‐8092Switzerland
| | - Tiago Sotto Mayor
- SIMTECH LaboratoryTransport Phenomena Research CentreEngineering Faculty of Porto UniversityPorto4200–465Portugal
| | - Daniel Ruiz‐Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterraBarcelona08193Spain
| | - Josep Puigmartí‐Luis
- Departament de Ciència dels Materials i Química FísicaInstitut de Química Teòrica i ComputacionalBarcelona08028Spain
- ICREAPg. Lluís Companys 23Barcelona08010Spain
| |
Collapse
|
9
|
Rabe T, Grape ES, Rohr H, Reinsch H, Wöhlbrandt S, Lieb A, Inge AK, Stock N. Isoreticular Chemistry of Group 13 Metal-Organic Framework Compounds Based on V-Shaped Linker Molecules: Exceptions to the Rule? Inorg Chem 2021; 60:8861-8869. [PMID: 34105945 DOI: 10.1021/acs.inorgchem.1c00767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following the concept of isoreticular chemistry, we carried out a systematic study on Ga-containing metal-organic frameworks (MOFs) using six V-shaped linker molecules of differing sizes, geometries, and additional functional groups. The linkers included three isophthalic acid derivatives (m-H2BDC-R, R = CH3, OCH3, NHCOCH3), thiophene-2,5-dicarboxylic acid (H2TDC), and two 4,4'-sulfonyldibenzoic acid derivatives (H2SDBA, DPSTA). The crystal structures of seven compounds were elucidated by a combination of model building, single-crystal X-ray diffraction (SCXRD), three-dimensional electron diffraction (3D ED), and Rietveld refinements against powder X-ray diffraction (PXRD) data. Four new Ga-MOFs that are isoreticular with their aluminum counterparts, i.e. Ga-CAU-10-R (Ga(OH)(m-BDC-R); R = OCH3, NHCOCH3), Ga-CAU-11 (Ga(OH)(SDBA)), and Ga-CAU-11-COOH (Ga(OH)(H2DPSTC)), were obtained. For the first time large single crystals of a MOF crystallizing in the CAU-10 structure type could be isolated, i.e. Ga-CAU-10-OCH3, which permitted a detailed structural characterization. In addition, the use of 5-methylisophthalic acid and thiophene-2,5-dicarboxylic acid resulted in two new Ga-MOFs denoted Ga-CAU-49 and Ga-CAU-51, respectively, which are not isostructural with any known Al-MOF. The crystal structure of Ga-CAU-49 ([Ga4(m-HBDC-CH3)2(m-BDC-CH3)3(OH)4(H2O)]) contains an unprecedented rod-shaped inorganic building unit (IBU) of the formula ∞1{Ga16(OH)18O60}, composed of corner-sharing GaO5 and GaO6 polyhedra. In Ga-CAU-51 ([Ga(OH)(C5H2O2S)]) chains of alternating cis and trans corner-sharing GaO6 polyhedra form the IBU. A detailed characterization of the title compounds was carried out, including nitrogen gas and water vapor sorption measurements. Ga-CAU-11 was the only compound exhibiting porosity toward nitrogen with a type I isotherm, a specific surface area of aS,BET = 210 m2/g, and a micropore volume of Vmic = 0.09 cm3/g. The new MOF Ga-CAU-51 exhibits exceptional water sorption properties with a reversible S-shaped isotherm and a high uptake around p/p0 = 0.38 of mads = 370 mg/g.
Collapse
Affiliation(s)
- Timo Rabe
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Hauke Rohr
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Helge Reinsch
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Stephan Wöhlbrandt
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Alexandra Lieb
- Institute of Chemistry at the Otto-von-Guericke-University in Magdeburg 39106 Magdeburg, Germany
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Norbert Stock
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| |
Collapse
|
10
|
Abstract
Physical adsorption remains a promising method for achieving fast, reversible hydrogen storage at both ambient and cryogenic conditions. Research in this area has recently shifted to focus primarily on the volumetric (H2 stored/delivered per volume) gains achieved within an adsorptive storage system over that of pure H2 compression; however, the methodology for estimating a volumetric stored or delivered amount requires several assumptions related to the ultimate packing of the adsorbent material into an actual storage system volume. In this work, we critically review the different assumptions commonly employed, and thereby categorize and compare the volumetric storage and delivery across numerous different porous materials including benchmark metal-organic frameworks, porous carbons, and zeolites. In several cases, there is a significant gain in both storage and delivery by the addition of an adsorbent to the high-pressure H2 storage system over that of pure compression, even at room temperature. Lightweight, low-density materials remain the optimal adsorbents at low temperature, while higher density, open metal-containing frameworks are necessary for high-density room temperature storage and delivery.
Collapse
|
11
|
Altintas C, Altundal OF, Keskin S, Yildirim R. Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation. J Chem Inf Model 2021; 61:2131-2146. [PMID: 33914526 PMCID: PMC8154255 DOI: 10.1021/acs.jcim.1c00191] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The acceleration in design of new metal organic frameworks (MOFs) has led scientists to focus on high-throughput computational screening (HTCS) methods to quickly assess the promises of these fascinating materials in various applications. HTCS studies provide a massive amount of structural property and performance data for MOFs, which need to be further analyzed. Recent implementation of machine learning (ML), which is another growing field in research, to HTCS of MOFs has been very fruitful not only for revealing the hidden structure-performance relationships of materials but also for understanding their performance trends in different applications, specifically for gas storage and separation. In this review, we highlight the current state of the art in ML-assisted computational screening of MOFs for gas storage and separation and address both the opportunities and challenges that are emerging in this new field by emphasizing how merging of ML and MOF simulations can be useful.
Collapse
Affiliation(s)
- Cigdem Altintas
- Department
of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Omer Faruk Altundal
- Department
of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department
of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ramazan Yildirim
- Department
of Chemical Engineering, Boğaziçi
University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
12
|
Zhang W, Li Y, Shi C, Qi R, Hu M. Single-Crystal Lattice Filling in Connected Spaces inside 3D Networks. J Am Chem Soc 2021; 143:6447-6459. [PMID: 33878868 DOI: 10.1021/jacs.0c12545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Connected vessel effects have been widely utilized from ancient times. It is quite interesting to know whether there are any special effects when single-crystal lattices fill the connected spaces inside 3D networks. In some single-crystal and 3D network pairs, there seems to exist a specific rule: when single-crystal lattices fill the connected spaces inside 3D networks, the front of the lattice in each channel is determined by the symmetrical center of the lattice structure. However, this needs to be validated by using various single-crystal lattice to fill the 3D networks with different compositions. Here we report a method to establish a gradient environment which can favor the formation of a micrometer-sized single crystal lattice across various 3D networks. The fronts of the filled lattices form the shapes which are the equilibrium shapes of the single crystals no matter what the single crystals or the 3D networks are, indicating the specific rule while the single-crystal lattices fill the 3D networks. The single crystals filled in the connected spaces inside 3D networks, which are functional materials, and had alternating properties, such as 4-fold higher electronic conductivity, which improve their performance in applications.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yucen Li
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Chunjing Shi
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ruijuan Qi
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ming Hu
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
13
|
Tanaka Y, Yamada S, Tanaka D. Continuous Fluidic Techniques for the Precise Synthesis of Metal-Organic Frameworks. Chempluschem 2021; 86:650-661. [PMID: 33864353 DOI: 10.1002/cplu.202000798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/31/2021] [Indexed: 12/18/2022]
Abstract
The continuous fluidics-based synthesis of metal-organic frameworks (MOFs) has attracted considerable attention, resulting in advancements in the reaction efficiency, a continuous production of complex structures, and access to products that are difficult or impossible to attain by bulk synthetic routes. This Minireview discusses the continuous fluidics-based synthesis of MOFs in terms of reaction process control, and is divided into three chapters dealing with the efficient synthesis of high-quality MOFs, the confined-space synthesis of MOF composites with diverse morphologies, and the selective synthesis of metastable products. The products of continuous fluidic synthetic process are introduced (e. g., uniform products, composites, fibers, membranes, and metastable products with advantageous properties that cannot be obtained by bulk synthesis), and their usefulness is demonstrated by referencing representative examples.
Collapse
Affiliation(s)
- Yoko Tanaka
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Saki Yamada
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
14
|
Crivello C, Sevim S, Graniel O, Franco C, Pané S, Puigmartí-Luis J, Muñoz-Rojas D. Advanced technologies for the fabrication of MOF thin films. MATERIALS HORIZONS 2021; 8:168-178. [PMID: 34821295 DOI: 10.1039/d0mh00898b] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic framework (MOF) thin films represent a milestone in the development of future technological breakthroughs. The processability of MOFs as films on surfaces together with their major features (i.e. tunable porosity, large internal surface area, and high crystallinity) is broadening their range of applications to areas such as gas sensing, microelectronics, photovoltaics, and membrane-based separation technologies. Despite the recent attention that MOF thin films have received, many challenges still need to be addressed for their manufacturing and integrability, especially when an industrial scale-up perspective is envisioned. In this brief review, we introduce several appealing approaches that have been developed in the last few years. First, a summary of liquid phase strategies that comprise microfluidic methods and supersaturation-driven crystallization processes is described. Then, gas phase approaches based on atomic layer deposition (ALD) are also presented.
Collapse
Affiliation(s)
- Chiara Crivello
- Laboratoire des Matérieaux et do Génie Physique (LMGP), Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Albalad J, Sumby CJ, Maspoch D, Doonan CJ. Elucidating pore chemistry within metal–organic frameworks via single crystal X-ray diffraction; from fundamental understanding to application. CrystEngComm 2021. [DOI: 10.1039/d1ce00067e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The application of metal–organic frameworks (MOFs) to diverse chemical sectors is aided by their crystallinity, which permits the use of X-ray crystallography to characterise their pore chemistry and provides invaluable insight into their properties.
Collapse
Affiliation(s)
- Jorge Albalad
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Christopher J. Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- Barcelona Institute of Science and Technology
- Barcelona
- Spain
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
16
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Beyond Frameworks: Structuring Reticular Materials across Nano-, Meso-, and Bulk Regimes. Angew Chem Int Ed Engl 2020; 59:22350-22370. [PMID: 32449245 PMCID: PMC7756821 DOI: 10.1002/anie.201914461] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Reticular materials are of high interest for diverse applications, ranging from catalysis and separation to gas storage and drug delivery. These open, extended frameworks can be tailored to the intended application through crystal-structure design. Implementing these materials in application settings, however, requires structuring beyond their lattices, to interface the functionality at the molecular level effectively with the macroscopic world. To overcome this barrier, efforts in expressing structural control across molecular, nano-, meso-, and bulk regimes is the essential next step. In this Review, we give an overview of recent advances in using self-assembly as well as externally controlled tools to manufacture reticular materials over all the length scales. We predict that major research advances in deploying these two approaches will facilitate the use of reticular materials in addressing major needs of society.
Collapse
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Zhe Ji
- Department of ChemistryStanford UniversityStanfordCalifornia94305-5012USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
- BCMaterialsBasque Center for MaterialsUPV/EHU Science Park48940LeioaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
17
|
Legrand A, Wang Z, Troyano J, Furukawa S. Directional asymmetry over multiple length scales in reticular porous materials. Chem Sci 2020; 12:18-33. [PMID: 34163581 PMCID: PMC8178947 DOI: 10.1039/d0sc05008c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In nature and synthetic materials, asymmetry is a useful tool to create complex and functional systems constructed from a limited number of building blocks. Reticular chemistry has allowed the synthesis of a wide range of discrete and extended structures, from which modularity permits the controlled assembly of their constituents to generate asymmetric configurations of pores or architectures. In this perspective, we present the different strategies to impart directional asymmetry over nano/meso/macroscopic length scales in porous materials and the resulting novel properties and applications. Design strategies for the controlled assembly of discrete and extended reticular materials with asymmetric configurations of pores or architectures.![]()
Collapse
Affiliation(s)
- Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Javier Troyano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
18
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Mehr als nur ein Netzwerk: Strukturierung retikulärer Materialien im Nano‐, Meso‐ und Volumenbereich. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Zhe Ji
- Department of Chemistry Stanford University Stanford Kalifornien 94305-5012 USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
- BCMaterials Basque Center for Materials UPV/EHU Science Park 48940 Leioa Spanien
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spanien
| |
Collapse
|
19
|
Fan Q, Li L, Xue H, Zhou H, Zhao L, Liu J, Mao J, Wu S, Zhang S, Wu C, Li X, Zhou X, Wang J. Precise Control Over Kinetics of Molecular Assembly: Production of Particles with Tunable Sizes and Crystalline Forms. Angew Chem Int Ed Engl 2020; 59:15141-15146. [PMID: 32432368 DOI: 10.1002/anie.202003922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/03/2020] [Indexed: 11/08/2022]
Abstract
It has been long-pursued but remains a challenge to precisely manipulate the molecular assembly process to obtain desired functional structures. Reported here is the control over the assembly of solute molecules, by a programmed recrystallization of solvent crystal grains, to form micro/nanoparticles with tunable sizes and crystalline forms. A quantitative correlation between the protocol of recrystallization temperature and the assembly kinetics results in precise control over the size of assembled particles, ranging from single-atom catalysts, pure drug nanoparticles, to sub-millimeter organic-semiconductor single crystals. The extensive regulation of the assembly rates leads to the unique and powerful capability of tuning the stacking of molecules, involving the formation of single crystals of notoriously crystallization-resistant molecules and amorphous structures of molecules with a very high propensity to crystallize, which endows it with wide-ranging applications.
Collapse
Affiliation(s)
- Qingrui Fan
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Linhai Li
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Han Xue
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Heng Zhou
- Key Laboratory of Protein Sciences, Tsinghua University), Ministry of Education, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Lishan Zhao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Liu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junqiang Mao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuwang Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shizhong Zhang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of future technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xueming Li
- Key Laboratory of Protein Sciences, Tsinghua University), Ministry of Education, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Zhou
- School of Physical Sciences & CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China.,School of future technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Fan Q, Li L, Xue H, Zhou H, Zhao L, Liu J, Mao J, Wu S, Zhang S, Wu C, Li X, Zhou X, Wang J. Precise Control Over Kinetics of Molecular Assembly: Production of Particles with Tunable Sizes and Crystalline Forms. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qingrui Fan
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Linhai Li
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Han Xue
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Heng Zhou
- Key Laboratory of Protein Sciences Tsinghua University) Ministry of Education Beijing China
- School of Life Sciences Tsinghua University Beijing China
| | - Lishan Zhao
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jie Liu
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junqiang Mao
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Shuwang Wu
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shizhong Zhang
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of future technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenyang Wu
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xueming Li
- Key Laboratory of Protein Sciences Tsinghua University) Ministry of Education Beijing China
- School of Life Sciences Tsinghua University Beijing China
| | - Xin Zhou
- School of Physical Sciences & CAS Center for Excellence in Topological Quantum Computation University of Chinese Academy of Sciences Beijing 100049 China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Jianjun Wang
- Key Laboratory of Green Printing Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
- School of future technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|