1
|
Yu X, Zhu S. Recent progress in the catalytic transformation of acetylene. Chem Soc Rev 2025. [PMID: 40327414 DOI: 10.1039/d4cs00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Acetylene, a traditional industrial raw material, has garnered increasing attention in modern organic synthesis over the past two decades. Its catalytic transformation has emerged as an atom-economical and efficient strategy for producing a variety of high value-added compounds. This review comprehensively summarizes recent advancements and breakthroughs in the catalytic conversion of acetylene, focusing on two main categories: transition-metal-catalyzed transformations and photo-catalyzed/promoted transformations. The discussions center on various reaction intermediates, including alkenylmetals, acetylides, metallacyclopentadienes or heterometallacycles, gold carbenes, alkenyl-Ni complexes, and vinyl radicals. Furthermore, this review delves into the detailed mechanisms and diverse derivatizations of these reactions, highlighting their significance in the development of versatile acetylene catalytic transformations.
Collapse
Affiliation(s)
- Xin Yu
- State Key Laboratory of Bio-based Fiber Materials, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Shifa Zhu
- State Key Laboratory of Bio-based Fiber Materials, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of Elemento-OrganicChemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Wang S, Shang Y, Wang M, Lai J, Jie X, Su W. Unlocking Reactivity of Unprotected Oximes via Green-Light-Driven Dual Copper/Organophotoredox Catalysis. Angew Chem Int Ed Engl 2025; 64:e202501806. [PMID: 40055987 DOI: 10.1002/anie.202501806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
Oximes are widely used precursors in synthetic chemistry due to their broad availability and versatile chemical properties, in which N─O bond fragmentation represents a key reactivity mode. However, these transformations typically require the use of oxygen-protected oximes, and a general strategy to directly utilize free oximes remains challenging due to their vulnerability to side reaction pathways, rendering low tendency towards N─OH bond cleavage. Here a unified platform is reported to achieve direct cyclization of unprotected oximes with enals, as well as other coupling partners through dual copper/organophotoredox catalysis under green light irradiation. This protocol enables concurrent activation of both N─OH and α-C(sp3)─H bonds of free oximes to form multisubstituted pyridines with exceeding structural diversity and functional group tolerance. In this process, Rose Bengal serves as a hydrogen atom transfer agent to generate radical intermediates. In the meanwhile, copper catalyst activates of free oximes via single-electron reduction-induced N─O bond fragmentation and controls the selectivity for intermediate trapping. The synthetic utility of this approach is further demonstrated by its successful applications in late-stage modification of biologically active compounds and rapid assembly of solvatochromic fluorescent materials.
Collapse
Affiliation(s)
- Shuping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P.R. China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Mengqi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Jiawen Lai
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P.R. China
| | - Xiaoming Jie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P.R. China
| |
Collapse
|
3
|
Han L, Zhou H, Hou J, Shi X, Li Q. The formation reaction of a carbon-carbon bond promoted by Eosin-Y under visible light. Org Biomol Chem 2025; 23:3741-3799. [PMID: 40159809 DOI: 10.1039/d5ob00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In recent years, photochemical organic conversion promoted by visible light has attracted the interest of many organic chemists. Compared with traditional methods, visible light for the photoredox catalysis of renewable energy has been proved to be a mild and powerful tool that can promote the activation of organic molecules through the single electron transfer (SET) process. Therefore, the formation reaction of a C-C bond can be achieved by activating these molecules with visible light, which can effectively modify the structure of these compounds and obtain compounds with multiple structures and functions. At present, this research has become an important research field in organic synthesis. Eosin-Y, a cheap and widely-used organic dye, has been employed as an economically and environmentally friendly substitute for many transition-metal-based photocatalysts. In recent years, it has gained much more attention due to its ease of handling and eco-friendliness, and it has great potential for applications in visible-light-mediated organic synthesis. This article reviews the research results on the formation of carbon-carbon bonds promoted by the organic photocatalyst Eosin-Y under visible light in recent years, and discusses representative examples and their different mechanistic pathways (such as SET, HAT, and energy transfer).
Collapse
Affiliation(s)
- Lirong Han
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Hui Zhou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Jinsong Hou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaohao Shi
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Qinghan Li
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
4
|
Yuan Z, Wang J, Li H, Li L, Ma P, Wang J, Niu J. Visible-Light-Responsive Tetranuclear Ir-Based Polyoxometalates Achieve Photocatalytic Baeyer-Villiger Oxidation of Ketones. Inorg Chem 2025; 64:5846-5855. [PMID: 40102192 DOI: 10.1021/acs.inorgchem.4c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Synthesizing efficient photocatalysts with a broad-spectrum response is crucial for improving solar energy utilization. In this work, we have constructed two examples of tetrameric Ir-based polyoxometalates by introducing an Ir ion. The introduction of Ir ions lowers the band gap energy, and the light absorption range is extended into the visible region. Both displayed satisfactory reactivity for the visible-light-catalyzed Baeyer-Villiger reaction of cyclohexanone, especially compound 1, which reacted up to 95.1% yield for 3 h with TON and TOF values of 951 and 510 h-1, respectively. Meanwhile, 1 also presents excellent cyclic and structural stability, and the yield can still reach 92.2% after five cyclic reactions.
Collapse
Affiliation(s)
- Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| |
Collapse
|
5
|
An B, Sun L, Sun T, Li Y. Radical Homopolymerization of Arylsulfonylated α-Olefins to Synthesize Polysulfones - a "SO 2-free" Approach. Angew Chem Int Ed Engl 2025; 64:e202421906. [PMID: 39875324 DOI: 10.1002/anie.202421906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Traditionally, α-olefins have been regarded as non-homopolymerizable substrates in textbook examples. However, they have the ability to copolymerize with sulfur dioxide, leading to the creation of alternating copolymers. These commodity poly(olefin sulfone)s exhibit a wide array of applications. Nevertheless, the synthesis process involving sulfur dioxide pose considerable hazards and practical difficulties. In this study, we report on the "SO2-free" radical homopolymerization of sulfonyl α-olefin monomers, resulting in the production of ABC sequence-controlled poly(vinylbenzothiazole-olefin-sulfone)s. This unique radical polymerization process is enhanced by 1,4/1,5-aryl migration, facilitated by the sulfonyl radicals involved in propagation. This demonstrated aryl group migration radical polymerization opens up new possibilities for synthesizing polysulfones with unprecedented main chain sequences and structures, which hold great promise as candidates for innovative polymeric materials.
Collapse
Affiliation(s)
- Bang An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lixing Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tingting Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
6
|
Yi P, Wu Y, Wang J, Liu Q, Xing Y, Lu Y, Ma C, Duan L, Zhao J, Meng Q. Photocatalytic acceptorless dehydrogenation of flavanones by cationic Eosin Y as a bifunctional catalyst. Org Biomol Chem 2025; 23:1574-1580. [PMID: 39760133 DOI: 10.1039/d4ob01759e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We report the first example of photocatalytic acceptorless dehydrogenation using cationic Eosin Y as a bifunctional photocatalyst, without metal catalysts or HAT reagents. Under Bayesian optimized conditions, a wide range of flavones were synthesized in moderate to excellent yields, many of which were reported with biological activities. Mechanistic studies suggest that flavones likely form through two HAT processes, with hydrogen release occurring via photoredox.
Collapse
Affiliation(s)
- Peiyu Yi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yufeng Wu
- State Key Laboratory of Fine Chemicals, Liaoning Provincial Key Laboratory of Chemical Safety and Emergency Technology, Department of Chemical Machinery and Safety, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Juntao Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qilei Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yafeng Xing
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yue Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liyuan Duan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| |
Collapse
|
7
|
Zhang M, Wu J. Bioinspired Synthesis of Cucurbalsaminones B and C. Angew Chem Int Ed Engl 2025; 64:e202417318. [PMID: 39501898 DOI: 10.1002/anie.202417318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 11/24/2024]
Abstract
Cucurbalsaminones B (1) and C (2) are two abeo-cucurbitane triterpenoids with a unique 5/6/3/6/5-fused ring system and exhibit potent multidrug resistance (MDR)-reversing activity. Herein, we report the first synthesis of these two natural products, both of them were accomplished in 14 steps from commercially available inexpensive resource compound lanosterol. Key features of this synthesis include a biomimetic tandem Wagner-Meerwein type lanostane-to-cucurbitane rearrangement followed by a bioinspired photochemical oxa-di-π-methane (ODPM) rearrangement to complete the skeleton construction and an Eosin Y photoinduced Barton-McCombie deoxygenation to realize the challenging oxidation state adjustment of the sterically hindered C11 position.
Collapse
Affiliation(s)
- Mengqing Zhang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| | - Jingjing Wu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
8
|
Wen SY, Chen JJ, Zheng Y, Han JX, Huang HM. Energy-Transfer Enabled 1,4-Aryl Migration. Angew Chem Int Ed Engl 2025; 64:e202415495. [PMID: 39498962 DOI: 10.1002/anie.202415495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
Functional group translocation is undoubtedly a pivotal synthetic transformation in organic chemistry. Numerous types of reactions involving radical 1,2-aryl or 1,4-aryl migration via electron transfer mechanism have been extensively investigated. Nevertheless, energy-transfer enabled 1,4-arylation remains unknown. Herein we disclose that an unprecedented di-π-ethane rearrangement featuring 1,4-aryl migration facilitated by energy transfer catalysis under visible light conditions. The newly developed mild protocol exhibits tolerance towards diverse functional groups and enables the migration of a multitude of aromatic rings, encompassing both electron-withdrawing and electron-rich functional groups. The open-shell strategy has also found successful application in the modification of several drugs. Large-scale experiments, continuous-flow experiment, and versatile manipulation of products have demonstrated the robustness and potential utility of this synthetic method. Preliminary mechanistic studies have supported the involvement of radical species in this di-π-ethane rearrangement and have also provided evidence for the energy transfer mechanism.
Collapse
Affiliation(s)
- Shu-Ya Wen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Jun-Jie Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Jia-Xun Han
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210 Shanghai, China
| |
Collapse
|
9
|
Zhang L, Huang Y, Hu P. Iron-Catalyzed SO 2-Retaining Smiles Rearrangement through Decarboxylation. Org Lett 2024; 26:10940-10945. [PMID: 39639825 DOI: 10.1021/acs.orglett.4c04107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Radical Smiles rearrangements have emerged as powerful methodologies for constructing carbon-carbon bonds through intramolecular radical addition and fragmentation under milder conditions, with SO2 released as a byproduct. However, SO2-retaining Smiles rearrangements, which can yield valuable alkyl sulfone derivatives, have been scarcely explored. In this study, we present an unprecedented iron-catalyzed SO2-retaining Smiles rearrangement initiated by the decarboxylation of aliphatic carboxylic acids. This approach provides a mild, cost-effective, and versatile pathway to sulfone-containing compounds, demonstrating broad substrate scope and functional group tolerance. It offers a promising strategy for synthesizing γ- and δ-aryl substituted alkyl sulfones, which are traditionally challenging to produce.
Collapse
Affiliation(s)
- Liang Zhang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yahao Huang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peng Hu
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| |
Collapse
|
10
|
Liu J, Wang W, Liao LL, Zhang W, Yue JP, Liu Y, Chen XW, Ye JH, Yu DG. Photo-induced carboxylation of C(sp 2)-S bonds in aryl thiols and derivatives with CO 2. Nat Commun 2024; 15:10132. [PMID: 39578448 PMCID: PMC11584649 DOI: 10.1038/s41467-024-53351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/04/2024] [Indexed: 11/24/2024] Open
Abstract
Aryl thiols have proven to be a useful class of electron donors and hydrogen atom sources in photochemical processes. However, the direct activation and functionalization of C(sp2)-S bonds in aryl thiols remains elusive in the field of photochemistry. Herein, a photochemical carboxylation of C(sp2)-S bonds in aryl thiols with CO2 is reported, providing a synthetic route to important aryl carboxylic acids. Moreover, different kinds of aryl thiol derivatives, benzeneselenol and diphenyl diselenide also show moderate-to-high reactivity in this transformation. Mechanistic studies, including DFT calculations, suggest that the in situ generated carbon dioxide radical anion (CO2•-) and disulfide might be the key intermediates, which undergo radical substitution to yield products. This reaction features mild and catalyst-free conditions, good functional group tolerance and wide substrate scope. Furthermore, the efficient degradation of polyphenylene sulfide highlights the usefulness of this methodology.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Li-Li Liao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Yi Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
11
|
Xu J, Zhou Y, Liu B. Dicarbofunctionalization of Vinylarenes with Pyridine and Aldehydes via Photocatalytic Hydrogen Atom Transfer. J Org Chem 2024; 89:15877-15883. [PMID: 39397537 DOI: 10.1021/acs.joc.4c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We describe a metal-free and mild three-component reaction utilizing vinylarenes, alkyl aldehydes, and 4-cyanopyridine. In this reaction, the scope of vinylarenes and alkyl aldehydes includes over 40 examples, generating a variety of β-pyridinyl ketones. Moreover, potential applications of this method have been demonstrated by the functionalization of pharmaceutical molecules. An acyl radical is proposed to be produced via a polarity-matched hydrogen atom transfer between alkyl aldehydes and a triplet-state diradical from benzophenone.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yiting Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
12
|
Nasirian A, Sung K, Jang HY, Yu S. Anomalous Reaction Pathways to Methane Production in Photocatalytic Ethanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52191-52199. [PMID: 39315488 DOI: 10.1021/acsami.4c08729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Photocatalytic reduction reactions occasionally utilize sacrificial agents to scavenge photogenerated holes, thus enhancing the kinetics and efficiency of electron harvesting. However, exploring alternative hole-mediated oxidation reactions and their potential impact on photoredox processes is limited. This study investigates the products resulting from the oxidation of ethanol, a commonly used hole scavenger, and the underlying mechanisms involved. We examine a homogeneous eosin Y photoreaction scheme containing a Cu complex coordinated with an N-heterocyclic carbene, a combination often employed in CO2 conversion. Under visible-light excitation, this photosystem yields methane as an unusual product, alongside acetaldehyde and carbon monoxide. Mechanistic analysis reveals that ethanol undergoes a catalytic cascade involving oxidative processes, C-C bond cleavage, and intermolecular hydrogen atom transfer. Notably, the Lewis-acidic metal center of the Cu complex activates a novel pathway for ethanol oxidation. This work presents the influence of catalyst selection and reaction condition optimization on the emergence of new or unexpected catalytic processes.
Collapse
|
13
|
Rao C, Zhang T, Huang H. Dialkylation of CF 2 unit enabled by cobalt electron-shuttle catalysis. Nat Commun 2024; 15:7924. [PMID: 39256384 PMCID: PMC11387730 DOI: 10.1038/s41467-024-51532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
The incorporation of difluoromethylene (CF2) group into chemical molecules often imparts desirable properties such as lipophilicity, binding affinity, and thermal stability. Consequently, the increasing demand for gem-difluoroalkylated compounds in drug discovery and materials science has continued to drive the development of practical methods for their synthesis. However, traditional synthetic methods such as deoxofluorination often confront challenges including complicated substrate synthesis sequences and poor functional group compatibility. In this context, we herein report a metal electron-shuttle catalyzed, modular synthetic methodology for difluoroalkylated compounds by assembling two C(sp3) fragments across CF2 unit in a single step. The approach harnesses a difluoromethylene synthon as a biradical linchpin, achieving the construction of two C(sp3)-CF2 bonds through radical addition to two different π-unsaturated molecules. This catalytic protocol is compatible with broad range of coupling partners including diverse olefins, iminiums, and hydrazones, supporting endeavors in the efficient construction of C(sp3)-rich difluoroalkylated molecules.
Collapse
Affiliation(s)
- Changqing Rao
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tianze Zhang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
14
|
Liu D, Hazra A, Liu X, Maity R, Tan T, Luo L. CdS Quantum Dot Gels as a Direct Hydrogen Atom Transfer Photocatalyst for C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202403186. [PMID: 38900647 PMCID: PMC11780880 DOI: 10.1002/anie.202403186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024]
Abstract
Here, we report CdS quantum dot (QD) gels, a three-dimensional network of interconnected CdS QDs, as a new type of direct hydrogen atom transfer (d-HAT) photocatalyst for C-H activation. We discovered that the photoexcited CdS QD gel could generate various neutral radicals, including α-amido, heterocyclic, acyl, and benzylic radicals, from their corresponding stable molecular substrates, including amides, thio/ethers, aldehydes, and benzylic compounds. Its C-H activation ability imparts a broad substrate and reaction scope. The mechanistic study reveals that this reactivity is intrinsic to CdS materials, and the neutral radical generation did not proceed via the conventional sequential electron transfer and proton transfer pathway. Instead, the C-H bonds are activated by the photoexcited CdS QD gel via a d-HAT mechanism. This d-HAT mechanism is supported by the linear correlation between the logarithm of the C-H bond activation rate constant and the C-H bond dissociation energy (BDE) with a Brønsted slope α=0.5. Our findings expand the currently limited direct hydrogen atom transfer photocatalysis toolbox and provide new possibilities for photocatalytic C-H activation.
Collapse
Affiliation(s)
- Daohua Liu
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Atanu Hazra
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Xiaolong Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Rajendra Maity
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Luo
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| |
Collapse
|
15
|
Ma WY, Leone M, Derat E, Retailleau P, Reddy CR, Neuville L, Masson G. Photocatalytic Asymmetric Acyl Radical Truce-Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides. Angew Chem Int Ed Engl 2024; 63:e202408154. [PMID: 38887967 DOI: 10.1002/anie.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
Collapse
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Etienne Derat
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
16
|
Sephton T, Large JM, Natrajan LS, Butterworth S, Greaney MF. XAT-Catalysis for Intramolecular Biaryl Synthesis. Angew Chem Int Ed Engl 2024; 63:e202407979. [PMID: 38818676 DOI: 10.1002/anie.202407979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Radical ipso-substitution offers an alternative to organometallic approaches for biaryl synthesis, but usually requires stoichiometric reagents such as tributyltin hydride. Here, we demonstrate that visible light photoredox catalysis can be used for ipso-biaryl synthesis, via a halogen-atom transfer (XAT) regime. Using amide substrates that promote ipso- over unwanted ortho-addition, we demonstrate smooth biaryl formation with no constraint on the electronic character of the migrating arene ring. The photoreaction can be combined in one operation to achieve a formal arylation of the inert aniline C-N bond.
Collapse
Affiliation(s)
- Thomas Sephton
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Jonathan M Large
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Louise S Natrajan
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Michael F Greaney
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
17
|
Lan L, Xu K, Zeng C. The merger of electro-reduction and hydrogen bonding activation for a radical Smiles rearrangement. Chem Sci 2024; 15:13459-13465. [PMID: 39183920 PMCID: PMC11339951 DOI: 10.1039/d4sc02821j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
The reductive activation of chemical bonds at less negative potentials provides a foundation for high functional group tolerance and selectivity, and it is one of the central topics in organic electrosynthesis. Along this line, we report the design of a dual-activation mode by merging electro-reduction with hydrogen bonding activation. As a proof of principle, the reduction potential of N-phenylpropiolamide was shifted positively by 218 mV. Enabled by this strategy, the radical Smiles rearrangement of N-arylpropiolamides without external radical precursors and prefunctionalization steps was accomplished. [DBU][HOAc], a readily accessible ionic liquid, was exploited for the first time both as a hydrogen bonding donor and as a supporting electrolyte.
Collapse
Affiliation(s)
- Liyuan Lan
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| | - Chengchu Zeng
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
18
|
Xu J, Li R, Ma Y, Zhu J, Shen C, Jiang H. Site-selective α-C(sp 3)-H arylation of dialkylamines via hydrogen atom transfer catalysis-enabled radical aryl migration. Nat Commun 2024; 15:6791. [PMID: 39117735 PMCID: PMC11310330 DOI: 10.1038/s41467-024-51239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Site-selective C(sp3)-H arylation is an appealing strategy to synthesize complex arene structures but remains a challenge facing synthetic chemists. Here we report the use of photoredox-mediated hydrogen atom transfer (HAT) catalysis to accomplish the site-selective α-C(sp3)-H arylation of dialkylamine-derived ureas through 1,4-radical aryl migration, by which a wide array of benzylamine motifs can be incorporated to the medicinally relevant systems in the late-stage installation steps. In contrast to previous efforts, this C-H arylation protocol exhibits specific site-selectivity, proforming predominantly on sterically more-hindered secondary and tertiary α-amino carbon centers, while the C-H functionalization of sterically less-hindered N-methyl group can be effectively circumvented in most cases. Moreover, a diverse range of multi-substituted piperidine derivatives can be obtained with excellent diastereoselectivity. Mechanistic and computational studies demonstrate that the rate-determining step for methylene C-H arylation is the initial H atom abstraction, whereas the radical ipso cyclization step bears the highest energy barrier for N-methyl functionalization. The relatively lower activation free energies for secondary and tertiary α-amino C-H arylation compared with the functionalization of methylic C-H bond lead to the exceptional site-selectivity.
Collapse
Affiliation(s)
- Jie Xu
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihan Li
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yijian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Zhu
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Heng Jiang
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Wang T, Chen L, Liu YY, Zhang ZB, Han P, Jing LH. Silylation and (Hetero)aryl/alkenylation of Unactivated Alkenes via Radical-Mediated Distal 1,4-Migration with Hydrosilanes under Organophotocatalysis. Org Lett 2024; 26:4526-4531. [PMID: 38761124 DOI: 10.1021/acs.orglett.4c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
We report a novel organic photoredox catalysis to achieve unprecedented γ-(hetero)aryl/alkenyl-δ-silyl aliphatic amines via silyl-mediated distal (hetero)aryl/alkenyl migration of aromatic/alkenyl amines bearing unactivated alkenes with hydrosilanes. This protocol features mild and metal-free reaction conditions, high atom economy, excellent selectivity, and functional group compatibility. Mechanistic studies suggest that silylation and (hetero)aryl/alkenylation involve photoredox hydrogen atom transfer catalysis and subsequent 1,4-migration of a remote (hetero)aryl/alkenyl group from nitrogen to carbon.
Collapse
Affiliation(s)
- Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Lu Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Yuan-Yuan Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Zheng-Bing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| |
Collapse
|
20
|
Patra J, Nair AM, Volla CMR. Expedient radical phosphonylations via ligand to metal charge transfer on bismuth. Chem Sci 2024; 15:7136-7143. [PMID: 38756813 PMCID: PMC11095378 DOI: 10.1039/d4sc00692e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Bismuth, in spite of its low cost and low toxicity, has found limited application in organic synthesis. Although the photoactivity of Bi(iii) salts has been well studied, this has not been effectively exploited in photocatalysis. To date, only a single report exists for the Bi-based photocatalysis, wherein carbon centered radicals were generated using ligand to metal charge transfer (LMCT) on bismuth. In this regard, expanding the horizon of bismuth LMCT catalysis for the generation of heteroatom centered radicals, we hereby report an efficient radical phosphonylation using BiCl3 as the LMCT catalyst. Phosphonyl radicals generated via visible-light induced LMCT of BiCl3 were subjected to a variety of transformations like alkylation, amination, alkynylation and cascade cyclizations. The catalytic system tolerated a wide range of substrate classes, delivering excellent yields of the scaffolds. The reactions were scalable and required low catalytic loading of bismuth. Detailed mechanistic studies were carried out to probe the reaction mechanism. Diverse radical phosphonylations leading to the formation of sp3-C-P, sp2-C-P, sp-C-P, and P-N bonds in the current work present the candidacy of bismuth as a versatile photocatalyst for small molecule activation.
Collapse
Affiliation(s)
- Jatin Patra
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
21
|
Wang J, Li L, Liu Y, Yuan Z, Meng S, Ma P, Wang J, Niu J. Intensifying Photocatalytic Baeyer-Villiger Oxidation of Ketones with the Introduction of Ru Metalloligands and Bimetallic Units in POM@MOF. Inorg Chem 2024; 63:7325-7333. [PMID: 38602808 DOI: 10.1021/acs.inorgchem.4c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The synthesis of visible light-responsive and efficient photocatalysts toward green Baeyer-Villiger oxidation organic synthesis is of extraordinary significance. In this work, we have synthesized two examples of visible light responsive crystalline polyoxometalate@metal-organic framework materials Ru-NiMo and Ru-CoMo by introducing Ru metalloligands and {CdM3O12} bimetallic units (M = Ni or Co). This is the first report of metalloligand-modified polyoxometalate@metal-organic framework materials with bimetallic nodes, and the materials form a three-dimensional framework directly through coordination bonds between {CdM3O12} bimetallic units and metalloligands. In particular, Ru-NiMo can achieve efficient photocatalytic conversion of cyclohexanone to ε-caprolactone in yields as high as 95.5% under visible light excitation in the range of λ > 400 nm, achieving a turnover number and turnover frequency of 955 and 440 h-1, respectively, which are the best known photocatalysts for Baeyer-Villiger oxidation, while apparent quantum yield measured at 485 nm is 4.4%. Moreover, Ru-NiMo exhibited excellent structural stability and recyclability, producing a 90.8% yield after five cycles of recycling.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sha Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
22
|
Sephton T, Charitou A, Trujillo C, Large JM, Butterworth S, Greaney MF. Aryne-Enabled C-N Arylation of Anilines. Angew Chem Int Ed Engl 2023; 62:e202310583. [PMID: 37850515 PMCID: PMC10952162 DOI: 10.1002/anie.202310583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Anilines are potentially high-value arylating agents, but are limited by the low reactivity of the strong C-N bond. We show that the reactive intermediate benzyne can be used to both activate anilines, and set-up an aryl transfer reaction in a single step. The reaction does not require any transition metal catalysts or stoichiometric organometallics, and establishes a metal-free route to valuable biaryl products by functionalizing the aniline C-N bond.
Collapse
Affiliation(s)
- Thomas Sephton
- School of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | | | | | - Jonathan M. Large
- LifeArc, Accelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterM13 9PLUK
| | | |
Collapse
|
23
|
Swaby C, Taylor A, Greaney MF. An NHC-Catalyzed Desulfonylative Smiles Rearrangement of Pyrrole and Indole Carboxaldehydes. J Org Chem 2023; 88:12821-12825. [PMID: 37589318 PMCID: PMC10476196 DOI: 10.1021/acs.joc.3c01089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/18/2023]
Abstract
The use of catalysis methods to enable Smiles rearrangement opens up new substrate classes for arylation under mild conditions. Here, we describe an N-heterocyclic carbene (NHC) catalysis system that accesses indole and pyrrole aldehyde substrates in a desulfonylative Smiles process. The reaction proceeds under mild, transition-metal-free conditions and captures acyl anion reactivity for the synthesis of a diverse array of 2-aroyl indoles and pyrroles from readily available sulfonamide starting materials.
Collapse
Affiliation(s)
| | | | - Michael F. Greaney
- Dept. of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| |
Collapse
|
24
|
Li R, Wu J. Reductive Aldol Approach to Natural Products: Bioinspired Synthesis of abeo-11(12 → 13)-Oleanane Triterpenoids. Org Lett 2023; 25:6278-6283. [PMID: 37595290 DOI: 10.1021/acs.orglett.3c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
A synthesis of alstoscholarinoid B (1) and 3β-acetoxy-11α-hydroxy-11(12 → 13)abeooleanan-12-al (2) has been accomplished in 7-9 steps and 10%-16% overall yield from oleanolic acid. This synthesis featured a bioinspired SmI2-mediated reductive aldol reaction to establish the abeo-11(12 → 13)-oleanane framework of both 1 and 2 and a retro-aldol/aldol/lactonization cascade to fully construct the skeleton of 1. Moreover, the investigation of the bioinspired aldol reaction also sheds light on the potential biogenesis of natural products.
Collapse
Affiliation(s)
- Ruoxi Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 429, Zhangheng Road, Shanghai 200213, P. R. China
| | - Jingjing Wu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 429, Zhangheng Road, Shanghai 200213, P. R. China
| |
Collapse
|
25
|
Wang Y, Zhao L, Liu S, Ji G, He C, Tang Y, Duan C. Mixed-Component Metal-Organic Framework for Boosting Synergistic Photoactivation of C(sp 3)-H and Oxygen. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16744-16754. [PMID: 36943723 DOI: 10.1021/acsami.2c23245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Synergistic catalysis is an efficient and powerful strategy for simultaneously activating reactants by multiple active sites to promote the efficiency of difficult and challenging catalytic reactions. Meanwhile, enzymes with multi-active-site synergistic catalytic properties possessing high efficiency and high selectivity have become the goal pursued in the field of catalytic chemistry in recent years. Metal-organic frameworks (MOFs), as an effective heterogeneous catalytic platform, that can integrate multiple active sites for synergistic catalysis like enzymatic systems have recently attracted interest. Herein, we report a doubly interpenetrated metal-organic framework with dual active sites, MnIII-porphyrin sites to directly activate molecular oxygen and fluoren-9-one sites to produce a hydrogen atom transfer (HAT) agent by the proton-coupled electron transfer (PCET) process to simultaneously activate inert C(sp3)-H bonds for efficient inert C(sp3)-H bond oxidation under mild conditions. The bifunctional mixed-component MOF structure forced the two catalytic sites closer together to a more suitable distance, exhibiting high photocatalytic activity for inert C(sp3)-H bond oxidation with almost unique selectivity under mild conditions. The density functional theory (DFT) calculation of free energy during the whole catalytic process demonstrated that it is likely that the synergistic catalytic process occurred in the interframework to accelerate the catalytic reaction. The assembling mixed-component MOF for synergistic catalysis would be a prospective approach for the inert C(sp3)-H photoactivation and functionalization.
Collapse
Affiliation(s)
- Yefei Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
26
|
Yang C, Zhou X, Shen L, Ke Z, Jiang H, Zeng W. Mn(I)-catalyzed sigmatropic rearrangement of β, γ-unsaturated alcohols. Nat Commun 2023; 14:1862. [PMID: 37012237 PMCID: PMC10070501 DOI: 10.1038/s41467-023-37299-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Sigmatropic rearrangement provides a versatile strategy to site-selectively reorganize carbon-skeleton with high atom- and step-economy. Herein, we disclose a Mn(I)-catalyzed sigmatropic rearrangement of β, γ-unsaturated alcohols via C-C σ bond activation. A variety of α-aryl-allylic alcohols and α-aryl-propargyl alcohols could undergo in-situ 1,2- or 1,3- sigmatropic rearrangements to allow for converting to complex structural arylethyl- and arylvinyl- carbonyl compounds under a simple catalytic system. More importantly, this catalysis model can be further applied to assemble macrocyclic ketones through bimolecular [2n + 4] coupling-cyclization and monomolecular [n + 1] ring-extension. The presented skeleton rearrangement would be a useful tool complementary to the traditional molecular rearrangement.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Xiaoyu Zhou
- School of Materials Science and Engineering, PFCM Lab, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lixing Shen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PFCM Lab, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China.
| |
Collapse
|
27
|
Hu C, Mena J, Alabugin IV. Design principles of the use of alkynes in radical cascades. Nat Rev Chem 2023:10.1038/s41570-023-00479-w. [PMID: 37117812 DOI: 10.1038/s41570-023-00479-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/30/2023]
Abstract
One of the simplest organic functional groups, the alkyne, offers a broad canvas for the design of cascade transformations in which up to three new bonds can be added to each of the two sterically unencumbered, energy-rich carbon atoms. However, kinetic protection provided by strong π-orbital overlap makes the design of new alkyne transformations a stereoelectronic puzzle, especially on multifunctional substrates. This Review describes the electronic properties contributing to the unique utility of alkynes in radical cascades. We describe how to control the selectivity of alkyne activation by various methods, from dynamic covalent chemistry with kinetic self-sorting to disappearing directing groups. Additionally, we demonstrate how the selection of reactive intermediates directly influences the propagation and termination of the cascade. Diverging from a common departure point, a carefully planned reaction route can allow access to a variety of products.
Collapse
|
28
|
Tang H, Zhang M, Zhang Y, Luo P, Ravelli D, Wu J. Direct Synthesis of Thioesters from Feedstock Chemicals and Elemental Sulfur. J Am Chem Soc 2023; 145:5846-5854. [PMID: 36854068 DOI: 10.1021/jacs.2c13157] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The development of a mild, atom- and step-economical catalytic strategy that effectively generates value-added molecules directly from readily available commodity chemicals is a central goal of organic synthesis. In this context, the thiol-ene click chemistry for carbon-sulfur (C-S) bond construction has found widespread applications in the synthesis of pharmaceuticals and functional materials. In contrast, the selective carbonyl thiyl radical addition to carbon-carbon multiple bonds remains underdeveloped. Herein, we report a carbonyl thiyl radical-based thioester synthesis through three-component coupling from feedstock aldehydes, alkenes, or alkynes and elemental sulfur by direct photocatalyzed hydrogen atom transfer. This method represents an orthogonal strategy to the conventional thiol-based nucleophilic substitution and exhibits a remarkably broad substrate scope ranging from simple commodity chemicals such as ethylene and acetylene to complex pharmaceutical molecules. This protocol can be easily extended to the synthesis of thiolactones, oligomer/polymers, and thioacids. Its synthetic utility has been demonstrated by a two-step synthesis of the drug esonarimod. Mechanistic studies indicate that the use of elemental sulfur to trap acyl radicals is both thermodynamically and kinetically favored, illustrating its great potential for the synthesis of sulfur-containing molecules.
Collapse
Affiliation(s)
- Haidi Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuchao Zhang
- Institute of Basic Medicine and Cancer (IBMC) Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| |
Collapse
|
29
|
Zhen G, Zeng G, Jiang K, Wang F, Cao X, Yin B. Visible-Light-Induced Diradical-Mediated ipso-Cyclization towards Double Dearomative [2+2]-Cycloaddition or Smiles-Type Rearrangement. Chemistry 2023; 29:e202203217. [PMID: 36460618 DOI: 10.1002/chem.202203217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
When mono-radical ipso-cyclization of aryl sulfonamides tend to undergo Smiles-type rearrangement through aromatization-driven C-S bond cleavage, diradical-mediated cyclization must perform in a distinct reaction pathway. It is interesting meanwhile challenging to tune the rate of C-S bond cleavage to achieve a chemically divergent reaction of (hetero) aryl sulfonamides in a visible-light induced energy transfer (EnT) reaction pathway involving diradical species. Herein a chemically divergent reaction based on the designed indole-tethered (hetero)arylsulfonamides is reported which involves a diradical-mediated ipso-cyclization and a controllable cleavage of an inherent C-S bond. The combined experimental and computational results have revealed that the cleavage of the C-S bond in these substrates can be controlled by tuning the heteroaryl moieties: a) If the (hetero)aryl is thienyl, furyl, phenanthryl, etc., the radical coupling of double dearomative diradicals (DDDR) precedes over C-S bond cleavage to afford cyclobutene fused indolines by double dearomative [2+2]-cycloaddition; b) if the (hetero)aryl is phenyl, naphthyl, pyridyl, indolyl etc., the cleavage of C-S bond in DDDR is favored over radical coupling to afford biaryl products.
Collapse
Affiliation(s)
- Guangjin Zhen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Furong Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
30
|
Jiang Z, Sun W, Yang Z, Pan H, Tang Z, Shi W, Xiang Y, Yan D, Teng H. Pyrene-Based D-A Molecules as Efficient Heterogeneous Catalysts for Visible-Light-Induced Aerobic Organic Transformations. CHEMSUSCHEM 2023; 16:e202202082. [PMID: 36479983 DOI: 10.1002/cssc.202202082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In this work, an efficient visible light promoted aerobic dehydro-coupling of amines, oxidation of thioethers and hydroxylation of arylboronic acids under benign conditions by using pyrene-based donor-acceptor (D-A) conjugated organic molecules was described. Donor-acceptor structure influences their π-conjugation and band gap a lot, and thereby enhances their visible light absorption ability, single electron transfer and oxidative behaviors. Alkynyl units in PS-IV play a crucial role in the catalyst which could serve as electron transferring bridge to strengthen electron delocalization, thus facilitating the single electron transfer from photosensitizer to substrates, and making it an efficient ⋅O2 - generator. While PS-III without alkynyl units tends to produce 1 O2 . Therefore, these molecules can serve as efficient catalysts for different kinds of visible-light-induced aerobic organic reactions. More importantly, the simply structured molecule is insoluble and stable in various solvents, and thus could be recycled as heterogeneous catalyst for many rounds with slight catalytic activity degradation. Besides, large scale (1 mol) reaction of benzylamine coupling proceeded smoothly under the standard conditions.
Collapse
Affiliation(s)
- Zhihui Jiang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wenhao Sun
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhenyan Yang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Hui Pan
- Jingzhou Institute for Food and Drug Control, Jingzhou, 434000, P. R. China
| | - Zubing Tang
- Downhole Operation Branch of Sinopec Southwest Petroleum Engineering Corporation, Deyang, 618000, P. R. China
| | - Wei Shi
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yonggang Xiang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Dingce Yan
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
31
|
Zhang J, Liu C, Qiao Y, Wei M, Guan W, Mao Z, Qin H, Fang Z, Guo K. Intramolecular trapping of spiro radicals to produce unusual cyclization products from usual migration substrates. Chem Sci 2023; 14:2461-2466. [PMID: 36873849 PMCID: PMC9977401 DOI: 10.1039/d2sc05768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
A conceptually new methodology to give unusual cyclization products from usual migration substrates was disclosed. The highly complex and structurally important and valuable spirocyclic compounds were produced through radical addition, intramolecular cyclization and ring opening instead of usual migration to the di-functionalization products of olefins. Furthermore, a plausible mechanism was proposed based on a series of mechanistic studies including radical trapping, radical clock, verification experiments of intermediates, isotope labeling and KIE experiments.
Collapse
Affiliation(s)
- Jingming Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yaqi Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Minghui Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Wenjing Guan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Ziren Mao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China .,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
32
|
Lv CJ. Synthesis and crystal structure of ethyl 4-((4-iodobenzyl)amino)benzoate, C 16H 16INO 2. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C16H16INO2, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 5.7004(2) Å, b = 6.8909(3) Å, c = 19.6509(8) Å, α = 100.035(4)°, β = 94.465(3)°, γ = 99.447(4)°, V = 745.27(5) Å3, Z = 2, R
gt
(F) = 0.0321, wR
ref
(F
2) = 0.0595, T = 100.15 K.
Collapse
Affiliation(s)
- Chun-Jie Lv
- Food and Pharmacy College, XuChang University , XuChang 461002 , Henan Province , P. R. China
| |
Collapse
|
33
|
Liu Y, Ding S, Xu M, Xu J, Cheng D, Wang H, Xu X. Synthesis of arylacylated oxindoles via visible light‐promoted Smiles rearrangement. ChemistrySelect 2022. [DOI: 10.1002/slct.202202563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yihuo Liu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Siyu Ding
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Mingli Xu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Jinli Xu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Dongping Cheng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hong Wang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xiaoliang Xu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
34
|
Zhao L, Cai W, Ji G, Wei J, Du Z, He C, Duan C. Anthraquinone-Based Metal-Organic Frameworks as a Bifunctional Photocatalyst for C-H Activation. Inorg Chem 2022; 61:9493-9503. [PMID: 35696346 DOI: 10.1021/acs.inorgchem.2c00441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) have gained attention as multifunctional catalytic platforms, allowing us to gain important insights into synergistically activating both C-H bonds and oxygen for improving oxidation. Herein, by ingenious incorporation of anthraquinone, we report an anthraquinone-based MOF as a bifunctional heterogeneous photocatalytic platform to simultaneously activate inert C(sp3)-H bonds and oxygen for C-H bond oxidation. Making use of the rigid framework with the fixation and isolation effect, both a great chemical stability and bifunctional synergistic photocatalytic effects were obtained through the immobilization of anthraquinone into a MOF. Importantly, while decorating two carboxyl groups on anthraquinone, the carbonyl groups of anthraquinone photosensitizers were not involved in coordinating the self-assembly and orderly arranged on the wall of channels that were constructed through a π-π interaction between the anthraquinone moieties in the adjacent layers, which was beneficial to form and stabilize the excited-state radical intermediates in the molecule-fenced channels, and the close proximity between the catalytic sites and the substrates to abstract a hydrogen atom from the substrate through the hydrogen atom transfer process aimed at activating the inertness of C-H bonds. Moreover, high-density-distributed anthraquinone dyes in the confined channels would activate oxygen to form singlet oxygen (1O2) through an energy transfer pathway, further promoting inert C(sp3)-H bond oxidation efficiency. Under visible light irradiation, this anthraquinone-based MOF was successfully applied to explore activation and oxidation of a series of substrates containing benzylic C(sp3)-H bonds in the presence of air or oxygen to produce the corresponding carbonyl products. This bifunctional photocatalytic platform based on a heterogeneous MOF provides an available catalytic avenue to develop a scalable and sustainable synthetic strategy using green and sustainable oxygen as the potent oxidant.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
35
|
Radhoff N, Studer A. 1,4-Aryl migration in ketene-derived enolates by a polar-radical-crossover cascade. Nat Commun 2022; 13:3083. [PMID: 35655065 PMCID: PMC9163183 DOI: 10.1038/s41467-022-30817-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
The arylation of carboxylic acid derivatives via Smiles rearrangement has gained great interest in recent years. Both radical and ionic approaches, as well as radical-polar crossover concepts, have been developed. In contrast, a reversed polar-radical crossover approach remains underexplored. Here we report a simple, efficient and scalable method for the preparation of sterically hindered and valuable α-quaternary amides via a polar-radical crossover-enolate oxidation-aryl migration pathway. A variety of easily accessible N-alkyl and N-arylsulfonamides are reacted with disubstituted ketenes to give the corresponding amide enolates, which undergo upon single electron transfer oxidation, a 1,4-aryl migration, desulfonylation, hydrogen atom transfer cascade to provide α-quaternary amides in good to excellent yields. Various mono- and di-substituted heteroatom-containing and polycyclic arenes engage in the aryl migration reaction. Functional group tolerance is excellent and substrates as well as reagents are readily available rendering the method broadly applicable. The α-arylation of amides via aryl migration has attracted considerable interest in recent years. Here, the authors report a method for the preparation of bulky α-quaternary amides via a polar-radical crossover enolate oxidation-aryl migration cascade.
Collapse
Affiliation(s)
- Niklas Radhoff
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany.
| |
Collapse
|
36
|
Zhao L, Du Z, Ji G, Wang Y, Cai W, He C, Duan C. Eosin Y-Containing Metal-Organic Framework as a Heterogeneous Catalyst for Direct Photoactivation of Inert C-H Bonds. Inorg Chem 2022; 61:7256-7265. [PMID: 35507831 DOI: 10.1021/acs.inorgchem.1c03813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xanthene dyes as a class of ideal organic homogeneous photocatalyst have received significant attention in C-H bond activation; however, the inherent nature of fast carrier recombination/deactivation and low stability limits their practical applications. Herein, by the ingenious decoration of eosin Y into a porous metal-organic framework (MOF), a high-performance heterogeneous MOF-based photocatalyst was prepared to efficiently activate inert C-H bonds on the reactants via the hydrogen atom transfer pathway for the functionalization of the C-H bonds. Taking advantage of the fixation effect of a rigid framework, the incorporation of eosin Y into MOF leads to great enhancement of their chemical durability. More importantly, by the introduction of the second auxiliary ligand, the carbonyl groups of xanthene on the eosin Y dyes were perfectly retained and periodically aligned within the confined channels of this rigid framework, which could effectively form excited state radicals to prompt inert C-H bond activation, promoting reaction efficiency by the host-guest supramolecular interaction. New eosin Y-based MOFs were recyclable for six times without reducing photocatalytic activity. This eosin Y functionalized MOF-based heterogeneous photocatalytic system provides an availably catalytic avenue to develop a scalable and sustainable synthetic strategy for the practical application of organic dyes.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yefei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
37
|
Feng J, Zhang F, Shu C, Zhu G. Copper‐Catalyzed
1,2,
5‐Trifunctionalization
of Terminal Alkynes Using
SR
as a Transient Directing Group for Radical Translocation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Chenyun Shu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| |
Collapse
|
38
|
Abstract
The carbonyl group stands as a fundamental scaffold and plays a ubiquitous role in synthetically important chemical reactions in both academic and industrial contexts. Venerable transformations, including the aldol reaction, Grignard reaction, Wittig reaction, and Nozaki-Hiyama-Kishi reaction, constitute a vast and empowering synthetic arsenal. Notwithstanding, two-electron mechanisms inherently confine the breadth of accessible reactivity and topological patterns.Fostered by the rapid development of photoredox catalysis, combing well-entrenched carbonyl addition and radicals can harness several unique and increasingly sustainable transformations. In particular, unusual carbon-carbon and carbon-heteroatom disconnections, which are out of reach of two-electron carbonyl chemistry, can be conceived. To meet this end, a novel strategy toward the utilization of simple carbonyl compounds as intermolecular radical acceptors was developed. The reaction is enabled by visible-light photoredox-initiated hole catalysis. In situ Brønsted acid activation of the carbonyl moiety prevents β-scission from occurring. Furthermore, this regioselective alkyl radical addition reaction obviates the use of metals, ligands, or additives, thus offering a high degree of atom economy under mild conditions. On the basis of the same concept and the work of Schindler and co-workers, carbonyl-olefin cross-metathesis, induced by visible light, has also been achieved, leveraging a radical Prins-elimination sequence.Recently, dual chromium and photoredox catalysis has been developed by us and Kanai, offering a complementary approach to the revered Nozaki-Hiyama-Kishi reaction. Leveraging the intertwined synergy between light and metal, several radical-to-polar crossover transformations toward eminent molecular motifs have been developed. Reactions such as the redox-neutral allylation of aldehydes and radical carbonyl alkylation can harvest the power of light and enable the use of catalytic chromium metal. Overall, exquisite levels of diastereoselectivity can be enforced via highly compact transition states. Other examples, such as the dialkylation of 1,3-dienes and radical carbonyl propargylation portray the versatile combination of radicals and carbonyl addition in multicomponent coupling endeavors. Highly valuable motifs, which commonly occur in complex drug and natural product architectures, can now be accessed in a single operational step. Going beyond carbonyl addition, seminal contributions from Fagnoni and MacMillan preconized photocatalytic HAT-based acyl radical formation as a key aldehyde valorization strategy. Our group articulated this concept, leveraging carboxy radicals as hydrogen atom abstractors in high regio- and chemoselective carbonyl alkynylation and aldehyde trifluoromethylthiolation.This Account, in addition to the narrative of our group and others' contributions at the interface between carbonyl addition and radical-based photochemistry, aims to provide core guiding foundations toward novel disruptive synthetic developments. We envisage that extending radical-to-polar crossovers beyond Nozaki-Hiyama-Kishi manifolds, taming less-activated carbonyls, leveraging multicomponent processes, and merging single electron steps with energy-transfer events will propel eminent breakthroughs in the near future.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
39
|
He C, Zhang K, Wang DN, Wang M, Niu Y, Duan XH, Liu L. Visible-Light-Induced Alkylarylation of Unactivated Alkenes via Radical Addition/Truce-Smiles Rearrangement Cascade. Org Lett 2022; 24:2767-2771. [PMID: 35377660 DOI: 10.1021/acs.orglett.2c00875] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We disclosed a visible-light-induced alkylarylation reaction of unactivated alkenes via a metal-free radical addition/aryl translocation cascade sequence. Distal olefinic sulfonate was designed as a unique molecular scaffold allowing for a domino process to synthesize valuable alkylarylated alcohols in good yields with excellent diastereoselectivity, featuring mild reaction conditions, broad substrate scope, and excellent functional group tolerance. The mechanism investigation suggests that a visible-light-induced radical chain process dominates the cascade transformation.
Collapse
Affiliation(s)
- Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dan-Ning Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuejie Niu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
40
|
Greaney MF, Whalley DM. Recent Advances in the Smiles Rearrangement: New Opportunities for Arylation. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1710-6289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThe Smiles rearrangement has undergone a renaissance in recent years providing new avenues for non-canonical arylation techniques in both the radical and polar regimes. This short review will discuss recent applications of the reaction (from 2017 to late 2021), including its relevance to areas such as heterocycle synthesis and the functionalization of alkenes and alkynes as well as glimpses at new directions for the field.1 Introduction2 Polar Smiles Rearrangements3 Radical Smiles: Alkene and Alkyne Functionalization4 Radical Smiles: Rearrangements via C–X Bond Cleavage5 Radical Smiles: Miscellaneous Rearrangements6 Conclusions
Collapse
|
41
|
Visible-light induced transition-metal and photosensitizer-free conversion of aldehydes to acyl fluorides under mild conditions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
42
|
Tan Y, Yin Y, Cao S, Zhao X, Qu G, Jiang Z. Conjugate addition-enantioselective protonation to forge tertiary stereocentres α to azaarenes via cooperative hydrogen atom transfer and chiral hydrogen-bonding catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63887-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Sephton T, Large JM, Butterworth S, Greaney MF. Diarylamine Synthesis via Desulfinylative Smiles Rearrangement. Org Lett 2022; 24:1132-1135. [PMID: 35094513 PMCID: PMC8893360 DOI: 10.1021/acs.orglett.1c04122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Diarylamines are
obtained directly from sulfinamides through a
novel rearrangement sequence. The transformation is transition metal-free
and proceeds under mild conditions, providing facile access to highly
sterically hindered diarylamines that are otherwise inaccessible by
traditional SNAr chemistry. The reaction highlights the
distinct reactivity of the sulfinamide group in Smiles rearrangements
versus that of the more common sulfonamides.
Collapse
Affiliation(s)
- Thomas Sephton
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jonathan M. Large
- Accelerator Building, LifeArc, Open Innovation Campus, Stevenage SG1 2FX, U.K
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, U.K
| | - Michael F. Greaney
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
44
|
Abstract
Radical aryl migrations are powerful techniques to forge new bonds in aromatic compounds. The growing popularity of photoredox catalysis has led to an influx of novel strategies to initiate and control aryl migration starting from widely available radical precursors. This review encapsulates progress in radical aryl migration enabled by photochemical methods─particularly photoredox catalysis─since 2015. Special attention is paid to descriptions of scope, mechanism, and synthetic applications of each method.
Collapse
Affiliation(s)
- Anthony R. Allen
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Efrey A. Noten
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
45
|
Wang Y, Zhao L, Ji G, He C, Liu S, Duan C. Vanadium(V IV)-Porphyrin-Based Metal-Organic Frameworks for Synergistic Bimetallic Activation of Inert C(sp 3)-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2794-2804. [PMID: 34989552 DOI: 10.1021/acsami.1c20420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Activation and selective functionalization of inert C(sp3)-H bonds remain one of the most challenging tasks in current synthetic chemistry. Herein, by decorating vanadium(VIV)-porphyrin into metal-organic frameworks (MOFs) to stabilize the active tertbutyl peroxide radical, we reported a new approach to accomplish inert C(sp3)-H bond activation by a synergistic bimetallic strategy via a hydrogen atom transfer process under mild conditions. The stabilized peroxide radical by VIV-porphyrin-based MOFs abstracted a hydrogen atom from the inert C(sp3)-H bonds for direct oxidization transformation utilizing environmentally friendly oxygen. Taking advantage of the high stability of Zr6 clusters, the new Zr-MOF was recyclable six times without a conversion efficiency decrease. From this foundation, {Mn3(μ3-O)} cluster nodes with potential unsaturated coordinated sites were introduced into MOFs to replace Zr6 clusters, realizing the pre-activation of substrates through the interaction between Mn nodes and substrates. The synergistic bimetallic activation effect of VIV-porphyrin and Mn nodes dramatically promoted the conversion efficiency and product selectivity for inert C(sp3)-H bond functionalization.
Collapse
Affiliation(s)
- Yefei Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
46
|
Li Q, Dai P, Tang H, Zhang M, Wu J. Photomediated reductive coupling of nitroarenes with aldehydes for amide synthesis. Chem Sci 2022; 13:9361-9365. [PMID: 36093005 PMCID: PMC9384791 DOI: 10.1039/d2sc03047k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 12/31/2022] Open
Abstract
In view of the widespread significance of amide functional groups in organic synthesis and pharmaceutical studies, an efficient and practical synthetic protocol that avoids the use of stoichiometric activating reagents or metallic reductants is highly desirable.
Collapse
Affiliation(s)
- Qingyao Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Peng Dai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Haidi Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
47
|
Wei B, Qin JH, Yang YZ, Xie YX, Ouyang XH, Song RJ. Electrochemical radical C(sp3)–H arylation of xanthenes with electron-rich arenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01714d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient electrochemical C(sp3)–H arylation of xanthenes using a carbon anode and platinum cathode as the electrodes is disclosed.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yong-Zheng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ye-Xiang Xie
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
48
|
Chang C, Zhang H, Wu X, Zhu C. Radical trifunctionalization of hexenenitrile via remote cyano migration. Chem Commun (Camb) 2021; 58:1005-1008. [PMID: 34940775 DOI: 10.1039/d1cc06687k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel radical-mediated trifunctionalization of hexenenitriles via the strategy of remote functional group migration is disclosed. A portfolio of functionalized hexenenitriles are employed as substrates. After difunctionalization of the unactivated alkenyl part via remote cyano migration, the in situ formed radical intermediate is captured by an azido radical, thus enabling the trifunctionalization. The reaction features mild conditions and broad functional group compatibility, leading to valuable products bearing multiple useful groups. This protocol further extends the scope of remote functional group migration.
Collapse
Affiliation(s)
- Chenyang Chang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
49
|
Wang JL, Liu ML, Zou JY, Sun WH, Liu XY. Copper-Catalyzed Aminoarylation of Alkenes via Aminyl Radical Addition and Aryl Migration. Org Lett 2021; 24:309-313. [PMID: 34931822 DOI: 10.1021/acs.orglett.1c03973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a new strategy for aminoarylation of alkenes by copper-catalyzed smiles rearrangement using O-benzoylhydroxylamines as the amine reagent. This method affords various β-amino amide derivatives possessing a quaternary carbon center with wide functional group tolerance and high regioselectivity. The mechanistic studies indicate that the transformation can involve aminyl radical intermediates under acid-free condition.
Collapse
Affiliation(s)
- Jin-Lin Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Mei-Ling Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jian-Yu Zou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wen-Hui Sun
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
50
|
Yan J, Tang H, Kuek EJR, Shi X, Liu C, Zhang M, Piper JL, Duan S, Wu J. Divergent functionalization of aldehydes photocatalyzed by neutral eosin Y with sulfone reagents. Nat Commun 2021; 12:7214. [PMID: 34893628 PMCID: PMC8664905 DOI: 10.1038/s41467-021-27550-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
While aldehydes represent a classic class of electrophilic synthons, the corresponding acyl radicals are inherently nucleophilic, which exhibits umpolung reactivity. Generation of acyl radicals typically requires noble metal catalysts or excess oxidants to be added. Herein, we report a convenient and green approach to access acyl radicals, capitalizing on neutral eosin Y-enabled hydrogen atom transfer (HAT) photocatalysis with aldehydes. The generated acyl radicals underwent SOMOphilic substitutions with various functionalized sulfones (X-SO2R') to deliver value-added acyl products. The merger of eosin Y photocatalysis and sulfone-based SOMOphiles provides a versatile platform for a wide array of aldehydic C-H functionalizations, including fluoromethylthiolation, arylthiolation, alkynylation, alkenylation and azidation. The present protocol features green characteristics, such as being free of metals, harmful oxidants and additives; step-economic; redox-neutral; and amenable to scale-up assisted by continuous-flow technology.
Collapse
Affiliation(s)
- Jianming Yan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Haidi Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Eugene Jun Rong Kuek
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Xiangcheng Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Chenguang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.
| | - Jared L Piper
- Pfizer Worldwide Research and Development, Eastern Point Rd, Groton, CT, 06340, USA
| | - Shengquan Duan
- Pfizer Worldwide Research and Development, Eastern Point Rd, Groton, CT, 06340, USA.
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|