1
|
Kang D, Zhang Y, Yu DG, Kim I, Song W. Integrating synthetic polypeptides with innovative material forming techniques for advanced biomedical applications. J Nanobiotechnology 2025; 23:101. [PMID: 39939886 PMCID: PMC11823111 DOI: 10.1186/s12951-025-03166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/25/2025] [Indexed: 02/14/2025] Open
Abstract
Polypeptides are highly valued in biomedical science for their biocompatibility and biodegradability, making them valuable in drug delivery, tissue engineering, and antibacterial dressing. The diverse design of polymer chains and self-assembly techniques allow different side chains and secondary structures, enhancing their biomedical potential. However, the traditional solid powder form of polypeptides presents challenges in skin applications, shipping, and recycling, limiting their practical utility. Recent advancements in material forming methods and polypeptide synthesis have produced biomaterials with uniform, distinct shapes, improving usability. This review outlines the progress in polypeptide synthesis and material-forming methods over the past decade. The main synthesis techniques include solid-phase synthesis and ring-opening polymerization of N-carboxyanhydrides while forming methods like electrospinning, 3D printing, and coating are explored. Integrating structural design with these methods is emphasized, leading to diverse polypeptide materials with unique shapes. The review also identifies research hotspots using VOSviewer software, which are visually presented in circular packing images. It further discusses emerging applications such as drug delivery, wound healing, and tissue engineering, emphasizing the crucial role of material shape in enhancing performance. The review concludes by exploring future trends in developing distinct polypeptide shapes for advanced biomedical applications, encouraging further research.
Collapse
Affiliation(s)
- Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
| |
Collapse
|
2
|
Ren L, Lu X, Yan J, Zhang A, Li W. Hierarchical assembly of thermoresponsive helical dendronized poly(phenylacetylene)s through photo-crosslinking of the thermal aggregates. J Colloid Interface Sci 2025; 677:928-940. [PMID: 39128287 DOI: 10.1016/j.jcis.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Supramolecular assembly of helical homopolymers to form stable chiral entities in water is highly valuable for creating chiral nanostructures and fabricating chiral biomaterials. Here we report on thermally induced supramolecular assembly of helical dendronized poly(phenylacetylene)s (PPAs) in aqueous solutions, and their in-situ photo-crosslinking at elevated temperatures to afford crosslinked nano-assemblies with hierarchical structures and stabilized helicities. These helical dendronized homopolymers carry cinnamate-cored dendritic oligoethylene glycol (OEG) pendants, which exhibit characteristic thermoresponsive behavior. Their thermal aggregation confers hexagonal packing of the polymer chains, and simultaneously resulting in enhancement of their chiralities. Assisted by radial amphiphilicity and worm-like molecular geometry, these dendronized PPAs form supramolecular twisted fibers, spheroid particles or toroids via thermal aggregation. Through UV photoirradiation above their cloud points (Tcps), cycloaddition of cinnamate moieties from the dendritic pendants promotes intermolecular crosslinking of dendronized PPA chains within the thermal aggregates, and simultaneously, the dynamic morphologies and supramolecular chirality from the dendronized PPAs through thermally induced aggregation can be fixed. In addition, photo-crosslinking can be occurred solely within individual aggregates due to the protection of densely packed dendritic OEGs. Therefore, various crosslinked assemblies from the dendronized homopolymers with tailorable morphologies and stabilized chirality are fabricated by tuning their thermally induced dynamic aggregations followed by in-situ photo-crosslinking. We believe that this work paves a convenient route to fabricate chiral assemblies with stabilized morphologies and fixed chiralities from dynamic helical homopolymers through intermolecular crosslinking, which can be promising for various chiral applications.
Collapse
Affiliation(s)
- Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
3
|
Kawasaki R, Miura Y, Kono N, Fujita S, Yamana K, Ikeda A. Boron Agent Delivery Platforms Based on Natural Products for Boron Neutron Capture Therapy. ChemMedChem 2024; 19:e202400323. [PMID: 38830821 DOI: 10.1002/cmdc.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Boron neutron capture therapy (BNCT) is one of the most promising modalities for cancer treatment due to its minimal invasiveness. Although two types of boron agents are clinically used, several issues persist in their delivery, including poor water solubility, instability in aqueous media, selectivity toward cancer cells, accumulation in cancer cells, retention time in tumor tissue, and efficiency in achieving the boron neutron capture reaction. Addressing these challenges, numerous groups have explored various boron agents to enhance the therapeutic benefits of BNCT. This review summarizes delivery platforms based on natural products for BNCT.
Collapse
Affiliation(s)
- Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Yamato Miura
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Nanami Kono
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Seiya Fujita
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Keita Yamana
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| |
Collapse
|
4
|
Boase NRB, Gillies ER, Goh R, Kieltyka RE, Matson JB, Meng F, Sanyal A, Sedláček O. Stimuli-Responsive Polymers at the Interface with Biology. Biomacromolecules 2024; 25:5417-5436. [PMID: 39197109 DOI: 10.1021/acs.biomac.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
There has been growing interest in polymeric systems that break down or undergo property changes in response to stimuli. Such polymers can play important roles in biological systems, where they can be used to control the release of therapeutics, modulate imaging signals, actuate movement, or direct the growth of cells. In this Perspective, after discussing the most important stimuli relevant to biological applications, we will present a selection of recent exciting developments. The growing importance of stimuli-responsive polysaccharides will be discussed, followed by a variety of stimuli-responsive polymeric systems for the delivery of small molecule drugs and nucleic acids. Switchable polymers for the emerging area of therapeutic response measurement in theranostics will be described. Then, the diverse functions that can be achieved using hydrogels cross-linked covalently, as well as by various dynamic approaches will be presented. Finally, we will discuss some of the challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Nathan R B Boase
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Elizabeth R Gillies
- Department of Chemistry; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Rubayn Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Roxanne E Kieltyka
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Amitav Sanyal
- Department of Chemistry and Center for Life Sciences and Technologies, Bogazici University, Bebek, 34342 Istanbul, Türkiye
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| |
Collapse
|
5
|
Terracciano R, Liu Y, Varanaraja Z, Godzina M, Yilmaz G, van Hest JCM, Becer CR. Poly(2-oxazoline)-Based Thermoresponsive Stomatocytes. Biomacromolecules 2024; 25:6050-6059. [PMID: 39146037 PMCID: PMC11388456 DOI: 10.1021/acs.biomac.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The design of biocompatible and biodegradable nanostructures with controlled morphological features remains a predominant challenge in medical research. Stimuli-responsive vesicles offer significant advantages in drug delivery, biomedical applications, and diagnostic techniques. The combination of poly(2-oxazoline)s with biodegradable polymers could provide exceptional biocompatibility properties and be proposed as a versatile platform for the development of new medicines. Therefore, poly(2-ethyl-2-oxazoline) (PEtOx) and poly(2-isopropyl-2-oxazoline) (PiPrOx) possessing a hydroxy terminal group that acts as an initiator for the ring-opening polymerization of d,l-lactide (DLLA) have been utilized in this study. The resulting amphiphilic block polymers were used to create polymersomes, which undergo solvent-dependent reorganization into bowl-shaped vesicles or stomatocytes. By blending PEtOx-b-PDLLA and PiPrOx-b-PDLLA copolymers, a thermoresponsive stomatocyte was generated, where the opening narrowed and irreversibly closed with a slight increase in the temperature. Detailed transmission electron microscopy analysis reveals the formation of both closed and fused stomatocytes upon heating the sample above the critical solution temperature of PiPrOx.
Collapse
Affiliation(s)
| | - Yuechi Liu
- Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Zivani Varanaraja
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Magdalena Godzina
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Gokhan Yilmaz
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jan C. M. van Hest
- Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
6
|
Pan H, Zhang C, Jiang W, Zhou Y. Living Self-Assembly of Monodisperse Micron-Sized Polymer Vesicles. Angew Chem Int Ed Engl 2024; 63:e202404589. [PMID: 38654509 DOI: 10.1002/anie.202404589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Artificial vesicles are recognized as powerful platforms for a large body of research across the disciplines of chemistry, physics and biology. Despite the great progress, control of the size distribution to make uniform vesicles remains fundamentally difficult due to the highly uncontrollable growth kinetics, especially for micron-sized vesicles. Here we report a template-free living self-assembly method to prepare monodisperse vesicles around 1 μm from an alternating copolymer. The polymer forms nanodisks (ca. 9 nm) in N,N-dimethylformamide (DMF), acting as seeds for subsequent growth. By adding water, the nanodisks gradually grow into larger circular bilayer nanosheets, which bend to crowns and continue to grow into uniform micron-sized vesicles. The first-order growth kinetics as well as the small size polydispersity index (<0.1) suggests the living self-assembly characteristics. This work paves a new way in both living self-assembly and monodisperse polymer vesicles.
Collapse
Affiliation(s)
- Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Changxu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| |
Collapse
|
7
|
Qi C, Zhu YL, Zhao H, Lu ZY. Ultrasmall Single-Chain Nanoparticles Derived from Amphiphilic Alternating Copolymers. Macromol Rapid Commun 2024; 45:e2400087. [PMID: 38688322 DOI: 10.1002/marc.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The collapse or folding of an individual polymer chain into a nanoscale particle gives rise to single-chain nanoparticles (SCNPs), which share a soft nature with biological protein particles. The precise control of their properties, including morphology, internal structure, size, and deformability, are a long-standing and challenging pursuit. Herein, a new strategy based on amphiphilic alternating copolymers for producing SCNPs with ultrasmall size and uniform structure is presented. SCNPs are obtained by folding the designed alternating copolymer in N,N-dimethylformamide (DMF) and fixing it through a photocatalyzed cycloaddition reaction of anthracene units. Molecular dynamics simulation confirms the solvophilic outer corona and solvophobic inner core structure of SCNPs. Furthermore, by adjusting the length of PEG units, precise control over the mean size of SCNPs is achieved within the range of 2.8 to 3.9 nm. These findings highlight a new synthetic strategy that enables enhanced control over morphology and internal structure while achieving ultrasmall and uniform size for SCNPs.
Collapse
Affiliation(s)
- Chufeng Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Jiefang Road, Changchun, 130012, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Jiefang Road, Changchun, 130012, China
| | - Huanyu Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Jiefang Road, Changchun, 130012, China
| |
Collapse
|
8
|
Liao Q, Ren H, Xu J, Wang P, Yuan B, Zhang H. Combined experiments and molecular simulations for understanding the thermo-responsive behavior and gelation of methylated glucans with different glycosidic linkages. J Colloid Interface Sci 2024; 674:315-325. [PMID: 38936088 DOI: 10.1016/j.jcis.2024.06.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
HYPOTHESIS Elucidation of the micro-mechanisms of sol-gel transition of gelling glucans with different glycosidic linkages is crucial for understanding their structure-property relationship and for various applications. Glucans with distinct molecular chain structures exhibit unique gelation behaviors. The disparate gelation phenomena observed in two methylated glucans, methylated (1,3)-β-d-glucan of curdlan (MECD) and methylated (1,4)-β-d-glucan of cellulose (MC), notwithstanding their equivalent degrees of substitution, are intricately linked to their unique molecular architectures and interactions between glucan and water. EXPERIMENTS Density functional theory and molecular dynamics simulations focused on the electronic property distinctions between MECD and MC, alongside conformational variations during thermal gelation. Inline attenuated total reflection Fourier transform infrared spectroscopy tracked secondary structure alterations in MECD and MC. To corroborate the simulation results, additional analyses including circular dichroism, rheology, and micro-differential scanning calorimetry were performed. FINDINGS Despite having similar thermally induced gel networks, MECD and MC display distinct physical gelation patterns and molecular-level conformational changes during gelation. The network of MC gel was formed via a "coil-to-ring" transition, followed by ring stacking. In contrast, the MECD gel comprised compact irregular helices accompanied by notable volume shrinkage. These variations in gelation behavior are ascribed to heightened hydrophobic interactions and diminished hydrogen bonding in both systems upon heating, resulting in gelation. These findings provide valuable insights into the microstructural changes during gelation and the thermo-gelation mechanisms of structurally similar polysaccharides.
Collapse
Affiliation(s)
- Qingyu Liao
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huimin Ren
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiatong Xu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengguang Wang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baihua Yuan
- Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Okamoto Y, Higuchi M, Matsubara S. Vesicle-like Nanocapsules Formed by Self-Assembly of Peptides with Oligoproline and -Leucine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12802-12809. [PMID: 38850260 DOI: 10.1021/acs.langmuir.4c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Since drug carriers are envisaged to be used in a wide variety of situations and environments, nanocarriers with diverse properties, such as biocompatibility, biodegradability, nonimmunogenicity, adequate particle size, robustness, and cell permeability, are required. Here, we report the construction of novel nanocapsules with the above-mentioned features by the self-assembly of peptides composed of oligoproline and oligoleucine (i.e., H-Pro10Leu4-NH2 and H-Pro10Leu6-NH2). The peptides self-organized via hydrogen bonds and hydrophobic interactions between oligoleucine moieties to form vesicle-like nanocapsules with cationic oligoproline exposed on the surface. The guest encapsulation experiments revealed that the nanocapsules were capable of uptake of both water-soluble and insoluble compounds. Furthermore, positively charged and/or oligoproline-based peptides are known to improve cell permeability and cellular uptake, suggesting that the peptide nanocapsules are good candidates for nanocarriers to complement liposomes and polymer micelles.
Collapse
Affiliation(s)
- Yui Okamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Masahiro Higuchi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Shogo Matsubara
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Kareemi AF, Likhitkar S. Applications and advancements of polysaccharide-based nanostructures for enhanced drug delivery. Colloids Surf B Biointerfaces 2024; 238:113883. [PMID: 38615389 DOI: 10.1016/j.colsurfb.2024.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Growing demand for highly effective, site-specific delivery of pharmaceuticals and nutraceuticals using nano-sized carriers has prompted increased scrutiny of carrier biocompatibility and biodegradability. To address these concerns, biodegradable natural polymers have emerged as a transformative domain, offering non-toxic, precisely targetable carriers capable of finely modulating cargo pharmacokinetics while generating innocuous decomposition by-products. This comprehensive review illuminates the emergence of polysaccharide-based nanoparticulate drug delivery systems. These systems establish an interactive interface between drug and targeted organs, guided by strategic modifications to polysaccharide backbones, which facilitate the creation of morphologically, constitutionally, and characteristically vibrant nanostructures through various fabrication routes, underpinning their pivotal role in biomedical applications. Advancements crucial to enhancing polysaccharide-based drug delivery, such as surface modifications and bioinspired modifications for enhanced targeting, and stimuli-responsive release, strategies to overcome biological barriers, enhance tumor penetration, and optimize therapeutic outcomes are highlighted. This review also examines some potent challenges, and the contemporary way out of them, and discusses future perspectives in the field.
Collapse
Affiliation(s)
- Asra Fatimah Kareemi
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India
| | - Sweta Likhitkar
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India.
| |
Collapse
|
11
|
Sakamoto Y, Fujii S, Takano S, Fukushima J, Ando M, Kodera N, Nishimura T. Manipulation of Macrophage Uptake by Controlling the Aspect Ratio of Graft Copolymer Micelles. NANO LETTERS 2024; 24:5838-5846. [PMID: 38661003 DOI: 10.1021/acs.nanolett.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanostructures of drug carriers play a crucial role in nanomedicine due to their ability to influence drug delivery. There is yet no clear consensus regarding the optimal size and shape (e.g., aspect ratio) of nanoparticles for minimizing macrophage uptake, given the difficulties in controlling the shape and size of nanoparticles while maintaining identical surface properties. Here, we employed graft copolymer self-assembly to prepare polymer micelles with aspect ratios ranging from 1.0 (spherical) to 10.8 (cylindrical) and closely matched interfacial properties. Notably, our findings emphasize that cylindrical micelles with an aspect ratio of 2.4 are the least susceptible to macrophage uptake compared with both their longer counterparts and spherical micelles. This reduced uptake of the short cylindrical micelles results in a 3.3-fold increase in blood circulation time compared with their spherical counterparts. Controlling the aspect ratio of nanoparticles is crucial for improving drug delivery efficacy through better nanoparticle design.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Department of Chemistry and Materials Science, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shin Takano
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Jokichi Fukushima
- Department of Chemistry and Materials Science, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Mitsuru Ando
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Ishikawa 920-1192, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials Science, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
12
|
Bejenaru C, Radu A, Segneanu AE, Biţă A, Ciocîlteu MV, Mogoşanu GD, Bradu IA, Vlase T, Vlase G, Bejenaru LE. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers (Basel) 2024; 16:1182. [PMID: 38732651 PMCID: PMC11085205 DOI: 10.3390/polym16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.
Collapse
Affiliation(s)
- Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| |
Collapse
|
13
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
14
|
Pan X, Kochovski Z, Wang YL, Sarhan RM, Härk E, Gupta S, Stojkovikj S, El-Nagar GA, Mayer MT, Schürmann R, Deumer J, Gollwitzer C, Yuan J, Lu Y. Poly(ionic liquid) nanovesicles via polymerization induced self-assembly and their stabilization of Cu nanoparticles for tailored CO 2 electroreduction. J Colloid Interface Sci 2023; 637:408-420. [PMID: 36716665 DOI: 10.1016/j.jcis.2023.01.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs' internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 ∼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Yong-Lei Wang
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Radwan M Sarhan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Chemistry Department, Faculty of Science, Cairo University, Egypt
| | - Eneli Härk
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Siddharth Gupta
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| | - Sasho Stojkovikj
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| | - Gumaa A El-Nagar
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Chemistry Department, Faculty of Science, Cairo University, Egypt.
| | - Matthew T Mayer
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Robin Schürmann
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Jérôme Deumer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Christian Gollwitzer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden.
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
15
|
Singh B, Kumari A, Sharma D, Dhiman A, Kumar S. Fabricating gum polysaccharides based nano-composites for drug delivery uses via sustainable green approach. Int J Biol Macromol 2023; 235:123856. [PMID: 36870665 DOI: 10.1016/j.ijbiomac.2023.123856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Recent advancements in development of natural polymer nono-composites led to exploration of potential of gum acacia (GA) and tragacanth gum (TG) for design of silver nanoparticles (AgNPs) impregnated grafted copolymers via green approach for use in drug delivery (DD). The formation of copolymers was confirmed by UV-Vis spectroscopy, TEM, SEM, AFM, XPS, XRD, FTIR,TGA and DSC. UV-Vis spectra indicated the formation of AgNPs using GA as reducing agent. TEM, SEM, XPS and XRD revealed impregnation of AgNPs inside the copolymeric network hydrogels. TGA inferred thermal stability of polymer enhanced by grafting and incorporation of AgNPs. The non-Fickian diffusion of antibiotic drug meropenem was revealed from drug encapsulated GA-TG-(AgNPs)-cl-poly(AAm) network which were also pH responsive and release profile was fitted in Korsmeyer-Peppas kinetic model. Sustained release was due to polymer-drug interaction. The polymer-blood interaction demonstrated biocompatible characteristics of polymer. Mucoadhesive property exhibited by copolymers because of supra-molecular interactions. Antimicrobial characteristics were shown by copolymers against bacteria S. flexneri, P. auroginosa, and B. cereus.
Collapse
Affiliation(s)
- Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| | - Ankita Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Diwanshi Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Abhishek Dhiman
- Mahatma Gandhi Government Engineering College Kotla, Jeori, Rampur, Himachal Pradesh 172101, India
| | - Sushil Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
16
|
Kumar S, Karmacharya M, Cho YK. Bridging the Gap between Nonliving Matter and Cellular Life. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202962. [PMID: 35988151 DOI: 10.1002/smll.202202962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A cell, the fundamental unit of life, contains the requisite blueprint information necessary to survive and to build tissues, organs, and systems, eventually forming a fully functional living creature. A slight structural alteration can result in data misprinting, throwing the entire life process off balance. Advances in synthetic biology and cell engineering enable the predictable redesign of biological systems to perform novel functions. Individual functions and fundamental processes at the core of the biology of cells can be investigated by employing a synthetically constrained micro or nanoreactor. However, constructing a life-like structure from nonliving building blocks remains a considerable challenge. Chemical compartments, cascade signaling, energy generation, growth, replication, and adaptation within micro or nanoreactors must be comparable with their biological counterparts. Although these reactors currently lack the power and behavioral sophistication of their biological equivalents, their interface with biological systems enables the development of hybrid solutions for real-world applications, such as therapeutic agents, biosensors, innovative materials, and biochemical microreactors. This review discusses the latest advances in cell membrane-engineered micro or nanoreactors, as well as the limitations associated with high-throughput preparation methods and biological applications for the real-time modulation of complex pathological states.
Collapse
Affiliation(s)
- Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
17
|
Chen S, Zheng H, Gao J, Song H, Bai W. High-level production of pullulan and its biosynthesis regulation in Aureobasidium pullulans BL06. Front Bioeng Biotechnol 2023; 11:1131875. [PMID: 36777253 PMCID: PMC9909216 DOI: 10.3389/fbioe.2023.1131875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pullulan has many potential applications in the food, pharmaceutical, cosmetic and environmental industries. However, the yield and molecular properties of pullulan produced by various strains still need to be promoted to fit the application needs. A novel yeast-like strain Aureobasidium pullulans BL06 producing high molecular weight (Mw) pullulan (3.3 × 106 Da) was isolated and identified in this study. The remarkable Mw of pullulan produced by A. pullulans BL06 was the highest level ever reported thus far. To further regulate the biosynthesis of pullulan in A. pullulans BL06, three gene knockout strains A. pullulans BL06 ΔPMAs, A. pullulans BL06 Δmel, and A. pullulans BL06 ΔPMAsΔmel, were constructed. The results showed that A. pullulans BL06 ΔPMAs could produce 140.2 g/L of moderate Mw (1.3 × 105 Da) pullulan after 120 h of fermentation. The highest yield level of pullulan to date could vastly reduce its production cost and expand its application scope and potential. The application experiments in food preservation showed that the moderate-Mw pullulan obtained in this work could reduce the weight loss of celery cabbages and mangos by 12.5% and 22%, respectively. Thus, the novel strains A. pullulans BL06 and A. pullulans BL06 ΔPMAs possessed unlimited development prospects in pullulan production at various Mw ranges and pullulan applications in multiple fields.
Collapse
Affiliation(s)
- Shuyu Chen
- Colleg of Biotechnology, Tianjin University of Science Technology, Tianjin, China
| | - Hongchen Zheng
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China,Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiaqi Gao
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China,Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hui Song
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China,Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wenqin Bai
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China,Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,*Correspondence: Wenqin Bai,
| |
Collapse
|
18
|
Hao X, Lv Z, Wang H, Rao J, Liu Q, Lü B, Peng F. Top-Down Production of Sustainable and Scalable Hemicellulose Nanocrystals. Biomacromolecules 2022; 23:4607-4616. [DOI: 10.1021/acs.biomac.2c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Ziwen Lv
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Hairong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Jun Rao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Qiaoling Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Baozhong Lü
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| |
Collapse
|
19
|
Ultra-high molecular weight pullulan-based material with high deformability and shape-memory properties. Carbohydr Polym 2022; 295:119836. [DOI: 10.1016/j.carbpol.2022.119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
|
20
|
Nishimura T, Hatatani Y, Ando M, Sasaki Y, Akiyoshi K. Single-component nanodiscs via the thermal folding of amphiphilic graft copolymers with the adjusted flexibility of the main chain. Chem Sci 2022; 13:5243-5251. [PMID: 35655565 PMCID: PMC9093194 DOI: 10.1039/d2sc01674e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nanodiscs have attracted considerable attention as structural scaffolds for membrane-protein research and as biomaterials in e.g. drug-delivery systems. However, conventional disc-fabrication methods are usually laborious, and disc fabrication via the self-assembly of amphiphiles is difficult. Herein, we report the formation of polymer nanodiscs based on the self-assembly of amphiphilic graft copolymers by adjusting the persistence length of the main chain. Amphiphilic graft copolymers with a series of different main-chain persistence lengths were prepared and these formed, depending on the persistence length, either rods, discs, or vesicles. Notably, polymer nanodiscs were formed upon heating a chilled polymer solution without the need for any additives, and the thus obtained nanodiscs were used to solubilize a membrane protein during cell-free protein synthesis. Given the simplicity of this disc-fabrication method and the ability of these discs to solubilize membrane proteins, this study considerably expands the fundamental and practical scope of graft-copolymer nanodiscs and demonstrates their utility as tools for studying the structure and function of membrane proteins.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University 3-15-1, Tokida Ueda Nagano 386-8567 Japan
| | - Yusuke Hatatani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Mitsuru Ando
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University Shogoin Kawahara-cho, Sakyo-ku Kyoto 606-8507 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
21
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
22
|
Review on design strategies and considerations of polysaccharide-based smart drug delivery systems for cancer therapy. Carbohydr Polym 2022; 279:119013. [PMID: 34980356 DOI: 10.1016/j.carbpol.2021.119013] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
The unique natural advantages of polysaccharide materials have attracted attention in biomedical applications. The abundant modifiable functional groups on the polysaccharide materials surface can facilitate the synthesis of various multifunctional drug delivery carriers. Especially in tumor therapy, the designs of polysaccharide-based drug delivery carriers are diverse. Therefore, this review summarized several latest types of polysaccharide-based drug carriers designs, and focused on the latest design strategies and considerations of drug carriers with polysaccharides as the main structure. It is expected to provide some design ideas and inspiration for subsequent polysaccharide-based drug delivery systems.
Collapse
|
23
|
Zhang Y, Yan S, Chen Z, Jiang X, Rao S, Jiang Z, Qin S, Zhou X, Du Y. Visually Intracellular Detection of Telomerase Activity Based on
DNA
Strand Displacement Reaction and Gold Nanoparticle Labeling. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yajun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education Wuhan University Wuhan Hubei 430072 China
| | - Shen Yan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education Wuhan University Wuhan Hubei 430072 China
| | - Zhaoxin Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education Wuhan University Wuhan Hubei 430072 China
| | - Xin Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education Wuhan University Wuhan Hubei 430072 China
| | - Shuang Rao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education Wuhan University Wuhan Hubei 430072 China
| | - Zhuoran Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education Wuhan University Wuhan Hubei 430072 China
| | - Shanshan Qin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education Wuhan University Wuhan Hubei 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education Wuhan University Wuhan Hubei 430072 China
| | - Yuhao Du
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
24
|
Sakamoto Y, Nishimura T. Recent advances in the self-assembly of sparsely grafted amphiphilic copolymers in aqueous solution. Polym Chem 2022. [DOI: 10.1039/d2py01018f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review describes the self-assembly of sparsely grafted amphiphilic copolymers and highlights the effects of structural factors and solvents on their self-assembly behaviour.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
25
|
Hibino M, Tanaka K, Ouchi M, Terashima T. Amphiphilic Random-Block Copolymer Micelles in Water: Precise and Dynamic Self-Assembly Controlled by Random Copolymer Association. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masayuki Hibino
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kei Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
26
|
Ye Z, Wu Z, Jayaraman A. Computational Reverse Engineering Analysis for Scattering Experiments (CREASE) on Vesicles Assembled from Amphiphilic Macromolecular Solutions. JACS AU 2021; 1:1925-1936. [PMID: 34841410 PMCID: PMC8611670 DOI: 10.1021/jacsau.1c00305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 05/25/2023]
Abstract
In this paper we present the development and validation of the "Computational Reverse-Engineering Analysis for Scattering Experiments" (CREASE) method for analyzing scattering results from vesicle structures that are commonly found upon assembly of synthetic, biomimetic, or bioderived amphiphilic copolymers in solution. The two-step CREASE method takes the amphiphilic polymer chemistry and small-angle scattering intensity profile, I exp(q), as input and determines the vesicles' structural features on multiple length scales ranging from assembled vesicle wall's individual layer thicknesses to the monomer-level packing and distribution of polymer conformations. In the first step of CREASE, a genetic algorithm (GA) is used to determine the relevant vesicle dimensions from the input macromolecular solution information and I exp(q) by identifying the structure whose computed scattering profile best matches the input I exp(q). Then in the second step, the GA-determined dimensions are used for molecular reconstruction of the vesicle structure. To validate CREASE for vesicles, we test CREASE on input scattering intensity profiles generated mathematically (termed as in silico I exp(q) vs q) from a variety of vesicle sizes with known dimensions. We also test CREASE on in silico I exp(q) vs q generated from vesicles with dispersity in all relevant dimensions, resembling real experiments. After successful validation of CREASE, we compare the CREASE-determined dimensions against those obtained from the traditional approach of fitting the scattering intensity profile to relevant analytical model in SASVIEW package. We show that CREASE performs better than or as well as the core-multishell analytical model's fitting in SASVIEW in determining vesicle dimensions with dispersity. We also show that CREASE provides structural information beyond those possible from traditional scattering analysis using the core-multishell model, such as the distribution of solvophilic monomers between the vesicle wall's inner and outer layers in the vesicle wall and the chain-level packing within each vesicle layer.
Collapse
Affiliation(s)
- Ziyu Ye
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Zijie Wu
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
27
|
Nishimura T, Sasaki Y, Akiyoshi K. Thermoresponsive glycopolymer vesicles: in situ observation of morphological changes and triggered cargo release. Polym J 2021. [DOI: 10.1038/s41428-021-00488-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
‘Sweet as a Nut’: Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Sun H, Wang Y, Song J. Polymer Vesicles for Antimicrobial Applications. Polymers (Basel) 2021; 13:2903. [PMID: 34502943 PMCID: PMC8434374 DOI: 10.3390/polym13172903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Polymer vesicles, hollow nanostructures with hydrophilic cavity and hydrophobic membrane, have shown significant potentials in biomedical applications including drug delivery, gene therapy, cancer theranostics, and so forth, due to their unique cell membrane-like structure. Incorporation with antibacterial active components like antimicrobial peptides, etc., polymer vesicles exhibited enhanced antimicrobial activity, extended circulation time, and reduced cell toxicity. Furthermore, antibacterial, and anticancer can be achieved simultaneously, opening a new avenue of the antimicrobial applications of polymer vesicles. This review seeks to highlight the state-of-the-art of antimicrobial polymer vesicles, including the design strategies and potential applications in the field of antibacterial. The structural features of polymer vesicles, preparation methods, and the combination principles with antimicrobial active components, as well as the advantages of antimicrobial polymer vesicles, will be discussed. Then, the diverse applications of antimicrobial polymer vesicles such as wide spectrum antibacterial, anti-biofilm, wound healing, and tissue engineering associated with their structure features are presented. Finally, future perspectives of polymer vesicles in the field of antibacterial is also proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China;
| | - Jiahui Song
- Center of Scientific Technology, Ningxia Medical University, Yinchuan 750004, China;
| |
Collapse
|
30
|
Nishimura T, Fujii S, Sakurai K, Sasaki Y, Akiyoshi K. Manipulating the Morphology of Amphiphilic Graft-Copolymer Assemblies by Adjusting the Flexibility of the Main Chain. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
31
|
Ikkene D, Arteni AA, Ouldali M, Francius G, Brûlet A, Six JL, Ferji K. Direct Access to Polysaccharide-Based Vesicles with a Tunable Membrane Thickness in a Large Concentration Window via Polymerization-Induced Self-Assembly. Biomacromolecules 2021; 22:3128-3137. [PMID: 34137600 DOI: 10.1021/acs.biomac.1c00569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymersomes are multicompartmental vesicular nano-objects obtained by self-assembly of amphiphilic copolymers. When prepared in the aqueous phase, they are composed of a hydrophobic bilayer enclosing water. Although such fascinating polymeric nano-objects have been widely reported with synthetic block copolymers, their formation from polysaccharide-based copolymers remains a significant challenge. In the present study, the powerful platform technology known as polymerization-induced self-assembly was used to prepare in situ pure vesicles from a polysaccharide-grafted copolymer: dextran-g-poly(2-hydroxypropyl methacrylate) (Dex-g-PHPMA). The growth of the PHPMA grafts was performed with a dextran-based macromolecular chain transfer agent in water at 20 °C using photomediated reversible addition fragmentation chain transfer polymerization at 405 nm. Transmission electron microscopy, cryogenic electron microscopy, small-angle X-ray scattering, atomic force microscopy, and dynamic light scattering revealed that amphiphilic Dex-g-PHPMAX = 100-300 (X is the targeted average degree of polymerization, Xn̅, of each graft at full conversion) exhibit remarkable self-assembly behavior. On the one hand, vesicles were obtained over a wide range of solid concentrations (from 2.5% to 13.5% w/w), which can facilitate posterior targeting of such rare morphology. On the other hand, the extension of Xn̅ induces an increase in the vesicle membrane thickness, rather than a morphological evolution (spherical micelles to cylinders to vesicles).
Collapse
Affiliation(s)
- Djallal Ikkene
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Ana Andreea Arteni
- Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, Université Paris-Saclay, CEA, CNRS, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Malika Ouldali
- Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, Université Paris-Saclay, CEA, CNRS, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Gregory Francius
- Université de Lorraine, CNRS, LCPME, F-54600 Villers-lès-Nancy, France
| | - Annie Brûlet
- Laboratoire Léon Brillouin (UMR12 CEA, CNRS), Université Paris-Saclay, CEA Saclay Bât., 563 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| |
Collapse
|
32
|
Yu Z, Jiang F, Hu C, Tang B. Functionalized nanoprobes for in situ detection of telomerase. Chem Commun (Camb) 2021; 57:3736-3748. [PMID: 33876119 DOI: 10.1039/d0cc08412c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Telomerase, a special ribonucleoprotein reverse transcriptase, can maintain the length and stability of telomeres and plays an important role in cell proliferation and differentiation. Due to the distinguishable expression level in normal cells and cancer cells, telomerase has become an important biomarker for cancer diagnosis and prognosis evaluation. Despite major breakthroughs in the field of telomerase detection, the extracts in the cell lysate are still the first choice as the analyte nevertheless, which will bring serious inaccuracies compared with the real intracellular activity. With the development of nanotechnology and nanomaterials, extraordinary progress has been made in telomerase detection by employing different versatile nanoprobes. In this review, we list the superiority of nanoprobes and systematically summarize the applications of nanoprobes in telomerase detection from the aspects of various nanomaterials and discuss the current challenges and potential trends in the future design of nanoprobes.
Collapse
Affiliation(s)
- Zhengze Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | | | | | | |
Collapse
|
33
|
Jin X, Wu F, Lin J, Cai C, Wang L, Chen J, Gao L. Programmable Morphology Evolution of Rod-Coil-Rod Block Copolymer Assemblies Induced by Variation of Chain Ordering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3148-3157. [PMID: 33661006 DOI: 10.1021/acs.langmuir.0c03644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Morphology transition of block copolymer assemblies in response to external stimuli has attracted considerable attention. However, our knowledge about the mechanism of such a transition is still limited, especially for rod-coil block copolymers. Here, we report a programmable morphology evolution of assemblies induced by variation of chain ordering for rod-coil-rod triblock copolymers. A sequence of morphology transition from ellipsoids to disks, bowls, and vesicles is observed by increasing the solution temperature. At high temperatures, the mobility of the rod chain increases and the rigidity of the rod chain decreases. This gives rise to an ellipsoid-to-vesicle morphology transition. Dissipative particle dynamics theoretical simulations were performed to reveal the mechanism of this morphology transition process. It was found that the increase of rod chain mobility and the decrease of rod chain rigidity induce a decrease of chain ordering of rod blocks as temperature increases, which results in an ellipsoid-to-vesicle morphology transition. The gained information can guide the construction of nanoassemblies based on the rod-coil block copolymers.
Collapse
Affiliation(s)
- Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fangsheng Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
34
|
Gao M, Du N, Yao Z, Li Y, Chen N, Hou W. Vesicle formation of single-chain amphiphilic 4-dodecylbenzene sulfonic acid in water and micelle-to-vesicle transition induced by wet-dry cycles. SOFT MATTER 2021; 17:2490-2499. [PMID: 33503106 DOI: 10.1039/d0sm02229b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Simple single-chain amphiphiles (SCAs) can form vesicular structures in their single-component aqueous solutions, which has attracted great attention, but the understanding of their aggregation behavior is still limited. In this work, the aggregation behavior of 4-dodecylbenzene sulfonic acid (DBSA), a typical simple SCA, in water was investigated. The structure and properties of the aggregates formed were determined. In particular, the effect of wet-dry cycles on the structures of aggregates was examined. The mechanisms of aggregate formation and structural transition were discussed. It was found that the increase of DBSA concentration can drive the occurrence of a micelle-to-vesicle transition, showing a critical micelle concentration and critical vesicle concentration of ∼0.53 and 2.14 mM, respectively. The vesicles formed coexist with micelles in solution, with a unilamellar structure and ∼80 nm size, and exhibit size-selective permeability. In addition, the vesicles show remarkable stability upon long-term storage, exposure to high temperature, and freeze-thaw cycles. The H-bonding interaction between DBSA species and the interdigitated structure of alkyl chains in bilayers play a key role in the formation and stability of DBSA vesicles. Interestingly, it was found that the wet-dry cycle can induce a micelle-to-vesicle transition and an obvious increase in the size of the original vesicles, accompanied by the formation of some multilamellar vesicles. This work provides a better understanding of the aggregation behavior of simple SCAs in their single-component aqueous solutions.
Collapse
Affiliation(s)
- Meihua Gao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Na Du
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Zhiyin Yao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Ying Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Nan Chen
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China. and National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
35
|
Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B 2021; 9:7030-7062. [DOI: 10.1039/d1tb00628b] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present review highlights the developments in polysaccharide nanoparticles with a particular focus on applications in biomedicine, cosmetics and food.
Collapse
Affiliation(s)
| | - Zan Lyu
- School of Chemistry, University of Glasgow, G12 8QQ Glasgow, UK
| | | |
Collapse
|