1
|
Osman MK, Robert J, Broich L, Frank D, Grosse R, Schwemmle M, Wrobel AG, Ciminski K, Sieben C, Reuther P. The bat influenza A virus subtype H18N11 induces nanoscale MHCII clustering upon host cell attachment. Nat Commun 2025; 16:3847. [PMID: 40280957 PMCID: PMC12032283 DOI: 10.1038/s41467-025-58834-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Prior to the discovery of bat influenza A virus (IAV) subtypes H17N10 and H18N11, all IAVs were thought to bind sialic acid residues via hemagglutinin (HA) to mediate attachment and subsequent viral entry. However, H17 and H18 engage a proteinaceous receptor: the major histocompatibility complex class II (MHCII). The mechanistic details of this hitherto unknown protein-mediated entry are not understood. Given that conventional IAVs rely on multivalent binding to sialylated glycans, we hypothesized that bat HA similarly interacts with multiple MHCII molecules. Using photoactivated localization microscopy (PALM) on fixed and live cells, we demonstrate that bat IAV particles attach to pre-existing MHCII clusters and induce a further increase in cluster size upon binding. To measure the impact of viral attachment on the dynamics of MHCII, we employ an "inverse attachment" approach, immobilizing viral particles on coverslips before seeding live MHCII-expressing cells on top. Single-molecule tracking reveals that the mobility of MHCII is indeed slowed down in viral proximity leading to a local enrichment of MHCII molecules beneath the viral particle. These findings suggest that viral attachment induces MHCII clustering, a process similar to the MHCII dynamics observed during the formation of an immunological synapse.
Collapse
Affiliation(s)
- Maria Kaukab Osman
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jonathan Robert
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lukas Broich
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dennis Frank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signaling Studies-CIBSS, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Kevin Ciminski
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Peter Reuther
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Cai M, Zhang Y, Zhen J, Yang F, Ou X, Zhang J, Yu F. Trivalent oleanolic acid-glucose conjugates: Synthesis and efficacy against Influenza A virus. Eur J Med Chem 2024; 280:116977. [PMID: 39454223 DOI: 10.1016/j.ejmech.2024.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Influenza A virus (IAV) leads to significant morbidity and mortality due to the seasonal epidemics and spread. We have demonstrated that oleanolic acid (OA) C28 glucose conjugates and OA trimers are capable of effectively blocking the recognition and interaction between the influenza virus and host cells. In this study, a series of OA-glucose trimers were designed and synthesized through the CuAAC reaction. All trimers underwent screening for anti-IAV activities in vitro. Among these, compounds 13a and 13b showed inhibitory activity against the influenza virus, with IC50 values of 0.68 μM and 0.47 μM, respectively, demonstrating greater potency than oseltamivir (IC50 = 1.36 μM). Results from the time-of-addition experiment and hemagglutination inhibition assay suggest that these OA-glucose trimers may disrupt the recognition between the HA protein of IAV and sialic acid receptors on host cells, thus blocking viral entry. Furthermore, it was found that compound 13b effectively inhibits IAV infection in BALB/c mice. This study has elucidated the structure-activity relationships of OA trimers against the influenza virus and highlighted the utility of multivalent OA conjugates for enhancing ligand-target interactions in anti-influenza virus drug design, laying a groundwork for future research into the antiviral applications of these natural products.
Collapse
Affiliation(s)
- Ming Cai
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Yuan Zhang
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Jie Zhen
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Fan Yang
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Xia Ou
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Jihong Zhang
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Fei Yu
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China.
| |
Collapse
|
3
|
Agarwal S, Veytsman B, Fletcher DA, Huber G. Kinetics and Optimality of Influenza A Virus Locomotion. PHYSICAL REVIEW LETTERS 2024; 133:248402. [PMID: 39750332 DOI: 10.1103/physrevlett.133.248402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 01/04/2025]
Abstract
Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces. This Letter demonstrates through stochastic simulations and mean-field theory, how IAVs harness a "burnt-bridge" Brownian ratchet mechanism for directed persistent translational motion. Importantly, our analysis reveals that equilibrium features of the system primarily control the dynamics, even out of equilibrium, and that asymmetric distribution of ligands on the virus allows for more robust directed transport. We show viruses occupy the optimal parameter range ("Goldilocks zone") for efficient mucous transport, possibly due to the evolutionary adaptation of enzyme kinetics. Our findings suggest novel therapeutic targets and provide insight into possible mechanisms of zoonotic transmission.
Collapse
|
4
|
Li S, Yang H, Tian F, Li W, Wang H, Shi X, Cui Z, Shan Y. Unveiling the Dynamic Mechanism of SARS-CoV-2 Entry Host Cells at the Single-Particle Level. ACS NANO 2024; 18:27891-27904. [PMID: 39353173 DOI: 10.1021/acsnano.4c04212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Understanding the dynamic features of severe acute respiratory coronavirus 2 (SARS-CoV-2) binding to the cell membrane and entry cells is crucial for comprehending viral pathogenesis and transmission and facilitating the development of effective drugs against COVID-19. Herein, we employed atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) to study the binding dynamics between the virus and cell membrane. Our findings revealed that the Omicron variant of SARS-CoV-2 virus-like particles (VLPs) exhibited a slightly stronger affinity for the angiotensin-converting enzyme-2 (ACE2) receptor compared with the Delta variant and was significantly higher than the wild-type (WT). Using a real-time force-tracing technique, we quantified the dynamic parameters for a single SARS-CoV-2 VLP entry into cells, showing that approximately 200 ms and 60 pN are required. The parameters aligned with the analysis obtained from coarse-grained molecular dynamics (CGMD) simulations. Additionally, the Omicron variant invades cells at a higher entry cell speed, smaller force, and higher probability. Furthermore, single-particle fluorescence tracking visually demonstrated clathrin-dependent endocytosis for SARS-CoV-2 entry into A549 cells. The dynamic features of endocytosis provide valuable insights into the SARS-CoV-2 entry mechanism and possible intervention strategies targeting the viral infection process.
Collapse
Affiliation(s)
- Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hui Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falin Tian
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
5
|
Ma H, Wang Y, Li YX, Xie BK, Hu ZL, Yu RJ, Long YT, Ying YL. Label-Free Mapping of Multivalent Binding Pathways with Ligand-Receptor-Anchored Nanopores. J Am Chem Soc 2024. [PMID: 39180483 DOI: 10.1021/jacs.4c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Understanding single-molecule multivalent ligand-receptor interactions is crucial for comprehending molecular recognition at biological interfaces. However, label-free identifications of these transient interactions during multistep binding processes remains challenging. Herein, we introduce a ligand-receptor-anchored nanopore that allows the protein to maintain structural flexibility and favorable orientations in native states, mapping dynamic multivalent interactions. Using a four-state Markov chain model, we clarify two concentration-dependent binding pathways for the Omicron spike protein (Omicron S) and soluble angiotensin-converting enzyme 2 (sACE2): sequential and concurrent. Real-time kinetic analysis at the single-monomeric subunit level reveals that three S1 monomers of Omicron S exhibit a consistent and robust binding affinity toward sACE2 (-13.1 ± 0.2 kcal/mol). These results highlight the enhanced infectivity of Omicron S compared to other homologous spike proteins (WT S and Delta S). Notably, the preceding binding of sACE2 to Omicron S facilitates the subsequent binding steps, which was previously obscured in bulk measurements. Our single-molecule studies resolve the controversy over the disparity between the measured spike protein binding affinity with sACE2 and the viral infectivity, offering valuable insights for drug design and therapies.
Collapse
Affiliation(s)
- Hui Ma
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yongyong Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ya-Xue Li
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zheng-Li Hu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ru-Jia Yu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Zhang Z, Li S, Wang H, Shan Y. The Effects of the Carrier and Ligand Spatial Conformation on RNA Nanodrug Cell Delivery. Anal Chem 2024; 96:13226-13233. [PMID: 39096242 DOI: 10.1021/acs.analchem.4c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Small interfering RNA (siRNA) highlights the immense therapeutic potential for cancer treatment. The major challenge in siRNA therapy is the effective RNA nanodrug delivery system, which is facilitated by the ligand and the carrier. In this study, we analyzed the binding specificity of linear RGD and circular RGD to αVβ3 integrins by mapping the morphology using super-resolution direct stochastic optical reconstruction microscopy. Meanwhile, the binding dynamics was investigated using single-molecule force spectroscopy. Then, the effects of the ligand and carrier on RNA nanodrug cell entry dynamic parameters were evaluated at the single particle level by the force tracing technique. Furthermore, the delivery efficiency of RNA nanodrugs was assessed using AFM-based nanoindentation at the single cell level. This report will provide valuable insights for rational design strategies aiming to achieve improved efficiency for nanodrug delivery systems.
Collapse
Affiliation(s)
- Zhuang Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
7
|
Zou Q, Zhang Q, Du B, Wang H, Yang X, Wang Q, Wang K. Atomic Force Microscopy Lifetime Analysis: An Intuitive Method for Evaluating Receptor Tyrosine Kinase Dimer-Targeting Inhibitors. Anal Chem 2024; 96:10962-10968. [PMID: 38925633 DOI: 10.1021/acs.analchem.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Overexpression of receptor tyrosine kinases (RTKs) or binding to ligands can lead to the formation of specific unliganded and liganded RTK dimers, and these two RTK dimers are potential targets for preventing tumor metastasis. Traditional RTK dimer inhibitor analysis was mostly based on end point assays, which required cumbersome cell handling and behavior monitoring. There are still challenges in developing intuitive process-based analytical methods to study RTK dimer inhibitors, especially those used to visually distinguish between unliganded and liganded RTK dimer inhibitors. Herein, taking the mesenchymal-epithelial transition factor (MET) receptor, an intuitive method for evaluating MET inhibitors has been developed based on atomic force microscopy (AFM) lifetime analysis. The time interval between the start of the force and the bond break point was regarded as the bond lifetime, which could reflect the stability of the MET dimer. The results showed that there was a significant difference in the lifetime (τ) of unliganded MET dimers (τ1 = 207.87 ± 4.69 ms) and liganded MET dimers (τ2 = 330.58 ± 15.60 ms) induced by the hepatocyte growth factor, and aptamer SL1 could decrease τ1 and τ2, suggesting that SL1 could inhibit both unliganded and liganded MET dimers. However, heparin only decreased τ2, suggesting that it could inhibit only the liganded MET dimer. AFM-based lifetime analysis methods could monitor RTK dimer status rather than provide overall average results, allowing for intuitive process-based analysis and evaluation of RTK dimers and related inhibitors at the single-molecule level. This study provides a novel complementary strategy for simple and intuitive RTK inhibitor research.
Collapse
Affiliation(s)
- Qingqing Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qianqian Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Bin Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
8
|
Zimmer O, Goepferich A. On the uncertainty of the correlation between nanoparticle avidity and biodistribution. Eur J Pharm Biopharm 2024; 198:114240. [PMID: 38437906 DOI: 10.1016/j.ejpb.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
The specific delivery of a drug to its site of action also known as targeted drug delivery is a topic in the field of pharmaceutics studied for decades. One approach extensively investigated in this context is the use ligand functionalized nanoparticles. These particles are modified to carry receptor specific ligands, enabling them to accumulate at a desired target site. However, while this concept initially appears straightforward to implement, in-depth research has revealed several challenges hindering target site specific particle accumulation - some of which remain unresolved to this day. One of these challenges consists in the still incomplete understanding of how nanoparticles interact with biological systems. This knowledge gap significantly compromises the predictability of particle distribution in biological systems, which is critical for therapeutic efficacy. One of the most crucial steps in delivery is the attachment of nanoparticles to cells at the target site. This attachment occurs via the formation of multiple ligand receptor bonds. A process also referred to as multivalent interaction. While multivalency has been described extensively for individual molecules and macromolecules respectively, little is known on the multivalent binding of nanoparticles to cells. Here, we will specifically introduce the concept of avidity as a measure for favorable particle membrane interactions. Also, an overview about nanoparticle and membrane properties affecting avidity will be given. Thereafter, we provide a thorough review on literature investigating the correlation between nanoparticle avidity and success in targeted particle delivery. In particular, we want to analyze the currently uncertain data on the existence and nature of the correlation between particle avidity and biodistribution.
Collapse
Affiliation(s)
- Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany.
| |
Collapse
|
9
|
Li Z, Zhang L, Wang Z, Kang X, Jin H, Zhao W, Zhang J, Su H. Quantification of Phosphatidylserine Molecules on the Surface of Individual Cells Using Single-Molecule Force Spectroscopy. Anal Chem 2024; 96:676-684. [PMID: 38173079 DOI: 10.1021/acs.analchem.3c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Identification of the phosphatidylserine (PS) discrepancies occurring on the cellular membrane during apoptotic processes is of the utmost importance. However, monitoring the quantity of PS molecules in real-time at a single-cell level currently remains a challenging task. Here, we demonstrate this objective by leveraging the specific binding and reversible interaction exhibited by the zinc(II) dipyridinamine complex (ZnDPA) with PS. Lipoic acid-functionalized ZnDPA (LP-ZnDPA) was subsequently immobilized onto the surface of an atomic force microscopy cantilever to form a force probe, ALP-ZnDPA, enabling a PS-specific dynamic imaging and detection mode. By utilizing this technique, we can not only create a heat map of the expression level of PS with submicron resolution but also quantify the number of molecules present on a single cell's surface with a detection limit of 1.86 × 104 molecules. The feasibility of the proposed method is demonstrated through the analysis of PS expression levels in different cancer cell lines and at various stages of paclitaxel-induced apoptosis. This study represents the first application of a force probe to quantify PS molecules on the surface of individual cells, providing insight into dynamic changes in PS content during apoptosis at the molecular level and introducing a novel dimension to current detection methodologies.
Collapse
Affiliation(s)
- Zhirong Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Lulu Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zhanzhong Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Xiongli Kang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Huiying Jin
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Wenjie Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Jun Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Haiquan Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
10
|
Sun H, Tian Y, Fu Y, Lei Y, Wang Y, Yan X, Wang J. Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds. Phys Chem Chem Phys 2023; 25:31791-31803. [PMID: 37966041 DOI: 10.1039/d3cp04351g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and in silico approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yani Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Xinrui Yan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
11
|
Zuo J, Chen H, Li H. Two molecule force spectroscopy on ligand-receptor interactions. NANOSCALE 2023; 15:16581-16589. [PMID: 37740375 DOI: 10.1039/d3nr03428c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Many biological processes involve the rupture of multiple ligand-receptors or multivalent ligand-receptors. It is challenging to study the rupture of such parallelly arranged multiple ligand-receptors due to the difficulties in engineering such systems in a well-controlled fashion. Here we report the use of two-molecule force spectroscopy to investigate the rupture of two parallelly arranged monomeric streptavidin (mSA)-biotin complexes. By using SpyCatcher-SpyTag chemistry, we successfully engineered a molecular twin of biotin, in which two biotins are arranged in parallel. By reacting mSA with twin biotin, we constructed parallelly arranged two mSA-biotin complexes for force spectroscopy experiments. The incorporation of single molecule fingerprint domains into our mSA-biotin dimers allowed us to identify and assign the rupture events of the parallelly arranged mSA-biotin complexes without any ambiguity in the two-molecule force spectroscopy experiments. Our results revealed that the rupture force of the parallel dimer mSA-biotin is 172 pN at a pulling speed of 400 nm s-1, which is about 1.6 times of that of single mSA-biotin (105 pN). Furthermore, our findings indicate that the two mSA-biotin behave as non-interacting, independent ligand-receptors. The strategy we demonstrated here can be extended to other ligand-receptors and may open up an avenue toward rigorously testing the theoretic predictions proposed in various models regarding the rupture of multiple parallel ligand-receptors.
Collapse
Affiliation(s)
- Jiacheng Zuo
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - Hui Chen
- Department of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, P. R. China
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
12
|
Xiao Y, Zheng B, Ding X, Zheng P. Probing nanomechanical interactions of SARS-CoV-2 variants Omicron and XBB with common surfaces. Chem Commun (Camb) 2023; 59:11268-11271. [PMID: 37664897 DOI: 10.1039/d3cc02721j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The emergence of SARS-CoV-2 variants has further raised concerns about viral transmission. A fundamental understanding of the intermolecular interactions between the coronavirus and different surfaces is needed to address the transmission of SARS-CoV-2 through respiratory droplet-contaminated surfaces or fomites. The receptor-binding domain (RBD) of the spike protein is a key target for the adhesion of SARS-CoV-2 on the surface. To understand the effect of mutations on adhesion, atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) was used to quantify the interactions between wild-type, Omicron, and XBB with several surfaces. The measurement revealed that RBD exhibits relatively higher forces on paper and gold surfaces, with the average force being 1.5 times greater compared to that on plastic surface. In addition, the force elevation on paper and gold surfaces for the variants can reach ∼28% relative to the wild type. These findings enhance our understanding of the nanomechanical interactions of the virus on common surfaces.
Collapse
Affiliation(s)
- Yuelong Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Xuan Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Chen X, Li X, He W, Wang M, Gao A, Tong L, Guo S, Wang H, Pan G. Rational multivalency construction enables bactericidal effect amplification and dynamic biomaterial design. Innovation (N Y) 2023; 4:100483. [PMID: 37560332 PMCID: PMC10407542 DOI: 10.1016/j.xinn.2023.100483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
The multivalency of bioligands in living systems brings inspiration for not only the discovery of biological mechanisms but also the design of extracellular matrix (ECM)-mimicking biomaterials. However, designing controllable multivalency construction strategies is still challenging. Herein, we synthesized a series of well-defined multivalent antimicrobial peptide polymers (mAMPs) by clicking ligand molecules onto polymers prepared by reversible addition-fragmentation chain transfer polymerization. The multiple cationic ligands in the mAMPs could enhance the local disturbance of the anionic phospholipid layer of the bacterial membrane through multivalent binding, leading to amplification of the bactericidal effect. In addition to multivalency-enhanced antibacterial activity, mAMPs also enable multivalency-assisted hydrogel fabrication with an ECM-like dynamic structure. The resultant hydrogel with self-healing and injectable properties could be successfully employed as an antibacterial biomaterial scaffold to treat infected skin wounds. The multivalency construction strategy presented in this work provides new ideas for the biomimetic design of highly active and dynamic biomaterials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinrui Li
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenbo He
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shun Guo
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Zheng B, Xiao Y, Tong B, Mao Y, Ge R, Tian F, Dong X, Zheng P. S373P Mutation Stabilizes the Receptor-Binding Domain of the Spike Protein in Omicron and Promotes Binding. JACS AU 2023; 3:1902-1910. [PMID: 37502147 PMCID: PMC10369413 DOI: 10.1021/jacsau.3c00142] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023]
Abstract
A cluster of several newly occurring mutations on Omicron is found at the β-core region of the spike protein's receptor-binding domain (RBD), where mutation rarely happened before. Notably, the binding of SARS-CoV-2 to human receptor ACE2 via RBD happens in a dynamic airway environment, where mechanical force caused by coughing or sneezing occurs. Thus, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of RBDs and found that the mechanical stability of Omicron RBD increased by ∼20% compared with the wild type. Molecular dynamics (MD) simulations revealed that Omicron RBD showed more hydrogen bonds in the β-core region due to the closing of the α-helical motif caused primarily by the S373P mutation. In addition to a higher unfolding force, we showed a higher dissociation force between Omicron RBD and ACE2. This work reveals the mechanically stabilizing effect of the conserved mutation S373P for Omicron and the possible evolution trend of the β-core region of RBD.
Collapse
Affiliation(s)
- Bin Zheng
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuelong Xiao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bei Tong
- Institute
of Botany, Jiangsu Province and Chinese
Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Yutong Mao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Rui Ge
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fang Tian
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xianchi Dong
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Engineering
Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu 210023, China
| | - Peng Zheng
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
15
|
Park H, Sut TN, Ferhan AR, Yoon BK, Zhdanov VP, Cho NJ, Jackman JA. pH-Modulated Nanoarchitectonics for Enhancement of Multivalency-Induced Vesicle Shape Deformation at Receptor-Presenting Lipid Membrane Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37267480 DOI: 10.1021/acs.langmuir.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multivalent ligand-receptor interactions between receptor-presenting lipid membranes and ligand-modified biological and biomimetic nanoparticles influence cellular entry and fusion processes. Environmental pH changes can drive these membrane-related interactions by affecting membrane nanomechanical properties. Quantitatively, however, the corresponding effects on high-curvature, sub-100 nm lipid vesicles are scarcely understood, especially in the multivalent binding context. Herein, we employed the label-free localized surface plasmon resonance (LSPR) sensing technique to track the multivalent attachment kinetics, shape deformation, and surface coverage of biotin ligand-functionalized, zwitterionic lipid vesicles with different ligand densities on a streptavidin receptor-coated supported lipid bilayer under varying pH conditions (4.5, 6, 7.5). Our results demonstrate that more extensive multivalent interactions caused greater vesicle shape deformation across the tested pH conditions, which affected vesicle surface packing as well. Notably, there were also pH-specific differences, i.e., a higher degree of vesicle shape deformation was triggered at a lower multivalent binding energy in pH 4.5 than in pH 6 and 7.5 conditions. These findings support that the nanomechanical properties of high-curvature lipid membranes, especially the membrane bending energy and the corresponding responsiveness to multivalent binding interactions, are sensitive to solution pH, and indicate that multivalency-induced vesicle shape deformation occurs slightly more readily in acidic pH conditions relevant to biological environments.
Collapse
Affiliation(s)
- Hyeonjin Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | - Tun Naw Sut
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Vladimir P Zhdanov
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Hamming PHE, Overeem NJ, Diestelhorst K, Fiers T, Tieke M, Vos GM, Boons GJPH, van der Vries E, Block S, Huskens J. Receptor Density-Dependent Motility of Influenza Virus Particles on Surface Gradients. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25066-25076. [PMID: 37167605 DOI: 10.1021/acsami.3c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Influenza viruses can move across the surface of host cells while interacting with their glycocalyx. This motility may assist in finding or forming locations for cell entry and thereby promote cellular uptake. Because the binding to and cleavage of cell surface receptors forms the driving force for the process, the surface-bound motility of influenza is expected to be dependent on the receptor density. Surface gradients with gradually varying receptor densities are thus a valuable tool to study binding and motility processes of influenza and can function as a mimic for local receptor density variations at the glycocalyx that may steer the directionality of a virus particle in finding the proper site of uptake. We have tracked individual influenza virus particles moving over surfaces with receptor density gradients. We analyzed the extracted virus tracks first at a general level to verify neuraminidase activity and subsequently with increasing detail to quantify the receptor density-dependent behavior on the level of individual virus particles. While a directional bias was not observed, most likely due to limitations of the steepness of the surface gradient, the surface mobility and the probability of sticking were found to be significantly dependent on receptor density. A combination of high surface mobility and high dissociation probability of influenza was observed at low receptor densities, while the opposite occurred at higher receptor densities. These properties result in an effective mechanism for finding high-receptor density patches, which are believed to be a key feature of potential locations for cell entry.
Collapse
Affiliation(s)
- P H Erik Hamming
- Molecular Nanofabrication Group, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Nico J Overeem
- Molecular Nanofabrication Group, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Kevin Diestelhorst
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tren Fiers
- Molecular Nanofabrication Group, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Malte Tieke
- Division of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Gaël M Vos
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan P H Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Erhard van der Vries
- Division of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Royal GD, Arnsbergstraat 7, 7418 EZ Deventer, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
17
|
Zou Q, Du B, Zhang Q, Wang H, Zhang M, Yang X, Wang Q, Wang K. Investigation on protein dimerization and evaluation of medicine effects by single molecule force spectroscopy. Anal Chim Acta 2023; 1252:341043. [PMID: 36935149 DOI: 10.1016/j.aca.2023.341043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Monitoring the dimerization state of the mesenchymal-epithelial transition factor (Met) was essential for in-depth understanding of the tumor signal transduction network. At present, the dimerization activation pathway of Met protein was mainly studied at the macro level, while the research at the single molecule level was far from comprehensive. Herein, the dimerization activation of Met protein's extracellular domain induced by ligand hepatocyte growth factor (HGF) was dynamically studied by single-molecule force spectroscopy. Met protein was immobilized on a biomimetic lipid membrane for ensuring its physiological environment, and then the Met dimers were recognized by bivalent probe which was formed by two Met-binding aptamers. Then the dimeric state of Met protein could be distinguished from monomeric state of Met protein through some parameters, (such as unimodal ratio, bimodal ratio and separation work). The unimodal indicates the occurrence of single molecule binding event, and the bimodal represents the occurrence of double binding event (also represents the presence of Met dimer). Before HGF treatment, most of the Met protein on the lipid membrane was still in the form of monomer, so the unimodal ratio in the force curve was larger (78.8 ± 5.2%), and the bimodal ratio was smaller (17.0 ± 4.1%). After HGF treatment, the unimodal ratio decreased to 54.0 ± 7.4%, and the bimodal ratio increased to 43.2 ± 7.3%. It was due to the formation of dimers after the binding of Met protein on the fluidity lipid membrane with HGF. In addition, the average separation work increased to about 2 times after HGF treatment. Given that studies of Met protein dimerization inhibitors have contributed to the development of more potent and safe inhibitors to significantly inhibit tumor metastasis, the effects of different medicines (including anticoagulant medicines, different antibiotics and anti-cancer medicines) on the dimerization activation of Met protein were then explored by the platform described above. The results showed that anticoagulant medicines heparin and its analogs can significantly inhibit HGF-mediated Met protein activation, while different antibiotics and anticancer medicines had no significant effect on the dimerization of Met protein. This work provided a platform for studying protein dimerization as well as for screening Met protein dimerization inhibitors at the single-molecule level.
Collapse
Affiliation(s)
- Qingqing Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Bin Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Qianqian Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Hongqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Mingwan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
18
|
Morzy D, Tekin C, Caroprese V, Rubio-Sánchez R, Di Michele L, Bastings MMC. Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes. NANOSCALE 2023; 15:2849-2859. [PMID: 36688792 PMCID: PMC9909679 DOI: 10.1039/d2nr05368c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications. As both molecules carry a rich charge profile, and frequently coexist in complex ionic solutions, the electrostatics surely play a pivotal role in interactions between them. Here we discuss how each component of a DNA/ion/lipid system determines its electrostatic attachment. We examine membrane binding of a library of DNA molecules varying from nanoengineered DNA origami through plasmids to short DNA domains, demonstrating the interplay between the molecular structure of the nucleic acid and the phase of lipid bilayers. Furthermore, the magnitude of DNA/lipid interactions is tuned by varying the concentration of magnesium ions in the physiologically relevant range. Notably, we observe that the structural and mechanical properties of DNA are critical in determining its attachment to lipid bilayers and demonstrate that binding is correlated positively with the size, and negatively with the flexibility of the nucleic acid. The findings are utilized in a proof-of-concept comparison of membrane interactions of two DNA origami designs - potential nanotherapeutic platforms - showing how the results can have a direct impact on the choice of DNA geometry for biotechnological applications.
Collapse
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
| | - Cem Tekin
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
| | - Roger Rubio-Sánchez
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Lorenzo Di Michele
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Maartje M C Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
- Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
19
|
Sun H, Wang J. Novel perspective for protein-drug interaction analysis: atomic force microscope. Analyst 2023; 148:454-474. [PMID: 36398684 DOI: 10.1039/d2an01591a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteins are major drug targets, and drug-target interaction identification and analysis are important factors for drug discovery. Atomic force microscopy (AFM) is a powerful tool making it possible to image proteins with nanometric resolution and probe intermolecular forces under physiological conditions. We review recent studies conducted in the field of target protein drug discovery using AFM-based analysis technology, including drug-driven changes in nanomechanical properties of protein morphology and interactions. Underlying mechanisms (including thermodynamic and kinetic parameters) of the drug-target interaction and drug-modulating protein-protein interaction (PPI) on the surfaces of models or living cells are discussed. Furthermore, challenges and the outlook for the field are likewise discussed. Overall, this insight into the mechanical properties of protein-drug interactions provides an unprecedented information framework for rational drug discovery in the pharmaceutical field.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
20
|
Cao Y, Song W, Chen X. Multivalent sialic acid materials for biomedical applications. Biomater Sci 2023; 11:2620-2638. [PMID: 36661319 DOI: 10.1039/d2bm01595a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sialic acid is a kind of monosaccharide expressed on the non-reducing end of glycoproteins or glycolipids. It acts as a signal molecule combining with its natural receptors such as selectins and siglecs (sialic acid-binding immunoglobulin-like lectins) in intercellular interactions like immunological surveillance and leukocyte infiltration. The last few decades have witnessed the exploration of the roles that sialic acid plays in different physiological and pathological processes and the use of sialic acid-modified materials as therapeutics for related diseases like immune dysregulation and virus infection. In this review, we will briefly introduce the biomedical function of sialic acids in organisms and the utilization of multivalent sialic acid materials for targeted drug delivery as well as therapeutic applications including anti-inflammation and anti-virus.
Collapse
Affiliation(s)
- Yusong Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
21
|
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and Tilting: Mesoscale Simulations Illuminate Influenza Glycoprotein Vulnerabilities. ACS CENTRAL SCIENCE 2022; 8:1646-1663. [PMID: 36589893 PMCID: PMC9801513 DOI: 10.1021/acscentsci.2c00981] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 05/28/2023]
Abstract
Influenza virus has resurfaced recently from inactivity during the early stages of the COVID-19 pandemic, raising serious concerns about the nature and magnitude of future epidemics. The main antigenic targets of influenza virus are two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Whereas the structural and dynamical properties of both glycoproteins have been studied previously, the understanding of their plasticity in the whole-virion context is fragmented. Here, we investigate the dynamics of influenza glycoproteins in a crowded protein environment through mesoscale all-atom molecular dynamics simulations of two evolutionary-linked glycosylated influenza A whole-virion models. Our simulations reveal and kinetically characterize three main molecular motions of influenza glycoproteins: NA head tilting, HA ectodomain tilting, and HA head breathing. The flexibility of HA and NA highlights antigenically relevant conformational states, as well as facilitates the characterization of a novel monoclonal antibody, derived from convalescent human donor, that binds to the underside of the NA head. Our work provides previously unappreciated views on the dynamics of HA and NA, advancing the understanding of their interplay and suggesting possible strategies for the design of future vaccines and antivirals against influenza.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| | - Christian Seitz
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| | - Julia Lederhofer
- Vaccine
Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Yaroslav Tsybovsky
- Electron
Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research
Sponsored by the National Cancer Institute, Frederick, Maryland21702, United States
| | - Ian A. Wilson
- Department
of Integrative Structural and Computational Biology and the Skaggs
Institute for Chemical Biology, The Scripps
Research Institute, La Jolla, California92037, United States
| | - Masaru Kanekiyo
- Vaccine
Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Rommie E. Amaro
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
22
|
Liang X, Shiomi K, Nakajima K. Study of the Dynamic Viscoelasticity of Single Poly( N-isopropylacrylamide) Chains Using Atomic Force Microscopy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaobin Liang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo152-8552, Japan
| | - Kohei Shiomi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo152-8552, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo152-8552, Japan
| |
Collapse
|
23
|
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and tilting: mesoscale simulations illuminate influenza glycoprotein vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.02.502576. [PMID: 35982676 PMCID: PMC9387122 DOI: 10.1101/2022.08.02.502576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Influenza virus has resurfaced recently from inactivity during the early stages of the COVID-19 pandemic, raising serious concerns about the nature and magnitude of future epidemics. The main antigenic targets of influenza virus are two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Whereas the structural and dynamical properties of both glycoproteins have been studied previously, the understanding of their plasticity in the whole-virion context is fragmented. Here, we investigate the dynamics of influenza glycoproteins in a crowded protein environment through mesoscale all-atom molecular dynamics simulations of two evolutionary-linked glycosylated influenza A whole-virion models. Our simulations reveal and kinetically characterize three main molecular motions of influenza glycoproteins: NA head tilting, HA ectodomain tilting, and HA head breathing. The flexibility of HA and NA highlights antigenically relevant conformational states, as well as facilitates the characterization of a novel monoclonal antibody, derived from human convalescent plasma, that binds to the underside of the NA head. Our work provides previously unappreciated views on the dynamics of HA and NA, advancing the understanding of their interplay and suggesting possible strategies for the design of future vaccines and antivirals against influenza.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
24
|
Wang Z, Zhao Z, Li G, Zheng P. Single-Molecule Force Spectroscopy Reveals the Dynamic HgS Coordination Site in the De Novo-Designed Metalloprotein α 3DIV. J Phys Chem Lett 2022; 13:5372-5378. [PMID: 35678420 DOI: 10.1021/acs.jpclett.2c01316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The de novo-designed metalloprotein α3DIV binds to mercury via three cysteine residues under dynamic conditions. An unusual trigonal three-coordinate HgS3 site is formed in the protein in basic solution, whereas a linear two-coordinate HgS2 site is formed in acidic solution. Furthermore, it is unknown whether the two coordinated cysteines in the HgS2 site are fixed or not, which may lead to more dynamics. However, the signal for HgS2 sites with different cysteines may be similar or may be averaged and indistinguishable. To circumvent this problem, we adopt a single-molecule approach to study one mercury site at a time. Using atomic force microscopy-based single-molecule force spectroscopy, the protein is unfolded, and the HgS site is ruptured. The results confirm the formation of HgS3 and HgS2 sites at different pH values. Moreover, it is found that any two of the three cysteines in the protein bind to mercury in the HgS2 site.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Zhongxing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
25
|
Mostofian B, McFarland R, Estelle A, Howe J, Barbar E, Reichow SL, Zuckerman DM. Continuum dynamics and statistical correction of compositional heterogeneity in multivalent IDP oligomers resolved by single-particle EM. J Mol Biol 2022; 434:167520. [PMID: 35245498 PMCID: PMC9050902 DOI: 10.1016/j.jmb.2022.167520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/17/2022] [Accepted: 02/27/2022] [Indexed: 12/29/2022]
Abstract
Multivalent intrinsically disordered protein (IDP) complexes are prevalent in biology and act in regulation of diverse processes, including transcription, signaling events, and the assembly and disassembly of complex macromolecular architectures. These systems pose significant challenges to structural investigation, due to continuum dynamics imparted by the IDP and compositional heterogeneity resulting from characteristic low-affinity interactions. Here, we developed a modular pipeline for automated single-particle electron microscopy (EM) distribution analysis of common but relatively understudied semi-ordered systems: 'beads-on-a-string' assemblies, composed of IDPs bound at multivalent sites to the ubiquitous ∼20 kDa cross-linking hub protein LC8. This approach quantifies conformational geometries and compositional heterogeneity on a single-particle basis, and statistically corrects spurious observations arising from random proximity of bound and unbound LC8. The statistical correction is generically applicable to oligomer characterization and not specific to our pipeline. Following validation, the approach was applied to the nuclear pore IDP Nup159 and the transcription factor ASCIZ. This analysis unveiled significant compositional and conformational diversity in both systems that could not be obtained from ensemble single particle EM class-averaging strategies, and new insights for exploring how these architectural properties might contribute to their physiological roles in supramolecular assembly and transcriptional regulation. We expect that this approach may be adopted to many other intrinsically disordered systems that have evaded traditional methods of structural characterization.
Collapse
Affiliation(s)
- Barmak Mostofian
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Russell McFarland
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Aidan Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Jesse Howe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| | - Steve L Reichow
- Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
26
|
Ruiz PAS, Ziebert F, Kulić IM. Physics of self-rolling viruses. Phys Rev E 2022; 105:054411. [PMID: 35706307 DOI: 10.1103/physreve.105.054411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Viruses are right at the interface of inanimate matter and life. However, recent experiments [Sakai et al., J. Virol. 92, e01522-17 (2018)0022-538X10.1128/JVI.01522-17] have shown that some influenza strains can actively roll on glycan-covered surfaces. In a previous letter [Ziebert and Kulić, Phys. Rev. Lett. 126, 218101 (2021)0031-900710.1103/PhysRevLett.126.218101] we suggested this to be a form of viral surface metabolism: a collection of spike proteins that attach to and cut the glycans act as a self-organized mechano-chemical motor. Here we study in more depth the physics of the emergent self-rolling states. We give scaling arguments how the motion arises, substantiated by a detailed analytical theory that yields the full torque-angular velocity relation of the self-organized motor. Stochastic Gillespie simulations are used to validate the theory and to quantify stochastic effects like virus detachment and reversals of its direction. Finally, we also cross-check several approximations made previously and show that the proposed mechanism is very robust. All these results point together to the statistical inevitability of viral rolling in the presence of enzymatic activity.
Collapse
Affiliation(s)
- Pedro A Soria Ruiz
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
- BioQuant, Heidelberg University, D-69120 Heidelberg, Germany
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, F-67034 Strasbourg, France
- Institute Theory of Polymers, Leibniz-Institute of Polymer Research, D-01069 Dresden, Germany
| |
Collapse
|
27
|
Abstract
In the dynamic environment of the airways, where SARS-CoV-2 infections are initiated by binding to human host receptor ACE2, mechanical stability of the viral attachment is a crucial fitness advantage. Using single-molecule force spectroscopy techniques, we mimic the effect of coughing and sneezing, thereby testing the force stability of SARS-CoV-2 RBD:ACE2 interaction under physiological conditions. Our results reveal a higher force stability of SARS-CoV-2 binding to ACE2 compared to SARS-CoV-1, causing a possible fitness advantage. Our assay is sensitive to blocking agents preventing RBD:ACE2 bond formation. It will thus provide a powerful approach to investigate the modes of action of neutralizing antibodies and other agents designed to block RBD binding to ACE2 that are currently developed as potential COVID-19 therapeutics. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are initiated by attachment of the receptor-binding domain (RBD) on the viral Spike protein to angiotensin-converting enzyme-2 (ACE2) on human host cells. This critical first step occurs in dynamic environments, where external forces act on the binding partners and avidity effects play an important role, creating an urgent need for assays that can quantitate SARS-CoV-2 interactions with ACE2 under mechanical load. Here, we introduce a tethered ligand assay that comprises the RBD and the ACE2 ectodomain joined by a flexible peptide linker. Using magnetic tweezers and atomic force spectroscopy as highly complementary single-molecule force spectroscopy techniques, we investigate the RBD:ACE2 interaction over the whole physiologically relevant force range. We combine the experimental results with steered molecular dynamics simulations and observe and assign fully consistent unbinding and unfolding events across the three techniques, enabling us to establish ACE2 unfolding as a molecular fingerprint. Measuring at forces of 2 to 5 pN, we quantify the force dependence and kinetics of the RBD:ACE2 bond in equilibrium. We show that the SARS-CoV-2 RBD:ACE2 interaction has higher mechanical stability, larger binding free energy, and a lower dissociation rate compared to SARS-CoV-1, which helps to rationalize the different infection patterns of the two viruses. By studying how free ACE2 outcompetes tethered ACE2, we show that our assay is sensitive to prevention of bond formation by external binders. We expect our results to provide a way to investigate the roles of viral mutations and blocking agents for targeted pharmaceutical intervention.
Collapse
|
28
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022; 61:e202114167. [PMID: 34982497 PMCID: PMC9303963 DOI: 10.1002/anie.202114167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Indexed: 01/16/2023]
Abstract
Numerous key biological processes rely on the concept of multivalency, where ligands achieve stable binding only upon engaging multiple receptors. These processes, like viral entry or immune synapse formation, occur on the diffusive cellular membrane. One crucial, yet underexplored aspect of multivalent binding is the mobility of coupled receptors. Here, we discuss the consequences of mobility in multivalent processes from four perspectives: (I) The facilitation of receptor recruitment by the multivalent ligand due to their diffusivity prior to binding. (II) The effects of receptor preassembly, which allows their local accumulation. (III) The consequences of changes in mobility upon the formation of receptor/ligand complex. (IV) The changes in the diffusivity of lipid environment surrounding engaged receptors. We demonstrate how understanding mobility is essential for fully unravelling the principles of multivalent membrane processes, leading to further development in studies on receptor interactions, and guide the design of new generations of multivalent ligands.
Collapse
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| |
Collapse
|
29
|
Lallemang M, Yu L, Cai W, Rischka K, Hartwig A, Haag R, Hugel T, Balzer BN. Multivalent non-covalent interactions lead to strongest polymer adhesion. NANOSCALE 2022; 14:3768-3776. [PMID: 35171194 DOI: 10.1039/d1nr08338d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multivalent interactions play a leading role in biological processes such as the inhibition of inflammation or virus internalization. The multivalent interactions show enhanced strength and better selectivity compared to monovalent interactions, but they are much less understood due to their complexity. Here, we detect molecular interactions in the range of a few piconewtons to several nanonewtons and correlate them with the formation and subsequent breaking of one or several bonds and assign these bonds. This becomes possible by performing atomic force microcopy (AFM)-based single molecule force spectroscopy of a multifunctional polymer covalently attached to an AFM cantilever tip on a substrate bound polymer layer of the multifunctional polymer. Varying the pH value and the crosslinking state of the polymer layer, we find that bonds of intermediate strength (non-covalent), like coordination bonds, give the highest multivalent bond strength, even outperforming strong (covalent) bonds. At the same time, covalent bonds enhance the polymer layer density, increasing in particular the number of non-covalent bonds. In summary, we can show that the key for the design of stable and durable polymer coatings is to provide a variety of multivalent interactions and to keep the number of non-covalent interactions at a high level.
Collapse
Affiliation(s)
- Max Lallemang
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takusstraße 3, 14195 Berlin, Germany
| | - Wanhao Cai
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| | - Klaus Rischka
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, Germany
| | - Andreas Hartwig
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, Germany
- University of Bremen, Department 2 Biology/Chemistry, Leobener Straße 3, 28359 Bremen, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takusstraße 3, 14195 Berlin, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bizan N Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
30
|
Facial Synthesis and Bioevaluation of Well-Defined OEGylated Betulinic Acid-Cyclodextrin Conjugates for Inhibition of Influenza Infection. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041163. [PMID: 35208962 PMCID: PMC8880671 DOI: 10.3390/molecules27041163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/11/2023]
Abstract
Betulinic acid (BA) and its derivatives exhibit a variety of biological activities, especially their anti-HIV-1 activity, but generally have only modest inhibitory potency against influenza virus. The entry of influenza virus into host cells can be competitively inhibited by multivalent derivatives targeting hemagglutinin. In this study, a series of hexa-, hepta- and octavalent BA derivatives based on α-, β- and γ-cyclodextrin scaffolds, respectively, with varying lengths of flexible oligo(ethylene glycol) linkers was designed and synthesized using a microwave-assisted copper-catalyzed 1,3-dipolar cycloaddition reaction. The generated BA-cyclodextrin conjugates were tested for their in vitro activity against influenza A/WSN/33 (H1N1) virus and cytotoxicity. Among the tested compounds, 58, 80 and 82 showed slight cytotoxicity to Madin-Darby canine kidney cells with viabilities ranging from 64 to 68% at a high concentration of 100 μM. Four conjugates 51 and 69–71 showed significant inhibitory effects on influenza infection with half maximal inhibitory concentration values of 5.20, 9.82, 7.48 and 7.59 μM, respectively. The structure-activity relationships of multivalent BA-cyclodextrin conjugates were discussed, highlighting that multivalent BA derivatives may be potential antiviral agents against influenza infection.
Collapse
|
31
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| |
Collapse
|
32
|
Li S, Pang X, Zhao J, Zhang Q, Shan Y. Evaluating the single-molecule interactions between targeted peptides and the receptors on living cell membrane. NANOSCALE 2021; 13:17318-17324. [PMID: 34642724 DOI: 10.1039/d1nr05547j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As potential ligands, targeted peptides have become an important part in the construction of intelligent drug delivery systems (DDSs). The targeting interaction of peptides with receptors is a key point affecting the efficacy of targeted nano-drugs. Herein, three common peptides (HAIYPRH (T7), YHWYGYTPQNVI (GE11), and RGD) that have been widely used in cancer targeted therapy and tumor diagnostics, targeting the corresponding receptors (transferrin receptor (TfR), epidermal growth factor receptor (EGFR), and ανβ3 integrin receptor), were selected as examples to study the targeting interacton on living cell surface at the single-molecule level by using single-molecule force spectroscopy (SMFS) based on atomic force microscopy (AFM). The dissociation activation energy in the absence of an external force (ΔGβ,0) of T7-TfR, GE11-EGFR, and RGD-ανβ3 integrin is evaluated at single-molecule level. Among these three peptide-receptor pairs, the T7-TfR bond is the most stable with a smaller dissociation kinetic rate constant at zero force (Koff), larger kinetic on-rate constant (Kon), and shorter interaction time (τ). Furthermore, T7 can target TfR even more effectively on A549 cell membrane after treatment with drugs. Our methodology can also be applicable to the study of other ligand targeted DDSs.
Collapse
Affiliation(s)
- Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Xuelei Pang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jing Zhao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qingrong Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
33
|
Stadtmueller MN, Bhatia S, Kiran P, Hilsch M, Reiter-Scherer V, Adam L, Parshad B, Budt M, Klenk S, Sellrie K, Lauster D, Seeberger PH, Hackenberger CPR, Herrmann A, Haag R, Wolff T. Evaluation of Multivalent Sialylated Polyglycerols for Resistance Induction in and Broad Antiviral Activity against Influenza A Viruses. J Med Chem 2021; 64:12774-12789. [PMID: 34432457 DOI: 10.1021/acs.jmedchem.1c00794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of multivalent sialic acid-based inhibitors active against a variety of influenza A virus (IAV) strains has been hampered by high genetic and structural variability of the targeted viral hemagglutinin (HA). Here, we addressed this challenge by employing sialylated polyglycerols (PGs). Efficacy of prototypic PGs was restricted to a narrow spectrum of IAV strains. To understand this restriction, we selected IAV mutants resistant to a prototypic multivalent sialylated PG by serial passaging. Resistance mutations mapped to the receptor binding site of HA, which was accompanied by altered receptor binding profiles of mutant viruses as detected by glycan array analysis. Specifying the inhibitor functionalization to 2,6-α-sialyllactose (SL) and adjusting the linker yielded a rationally designed inhibitor covering an extended spectrum of inhibited IAV strains. These results highlight the importance of integrating virological data with chemical synthesis and structural data for the development of sialylated PGs toward broad anti-influenza compounds.
Collapse
Affiliation(s)
- Marlena N Stadtmueller
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Pallavi Kiran
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Malte Hilsch
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Valentin Reiter-Scherer
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Lutz Adam
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Strasse 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Badri Parshad
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Matthias Budt
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Simon Klenk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Strasse 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Katrin Sellrie
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Daniel Lauster
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Peter H Seeberger
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andreas Herrmann
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| |
Collapse
|
34
|
Bally M, Block S, Höök F, Larson G, Parveen N, Rydell GE. Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context. Anal Bioanal Chem 2021; 413:7157-7178. [PMID: 34490501 PMCID: PMC8421089 DOI: 10.1007/s00216-021-03510-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.
Collapse
Affiliation(s)
- Marta Bally
- Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45, Gothenburg, Sweden.
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Gustaf E Rydell
- Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
35
|
Nie J, Tian F, Zheng B, Wang Z, Zheng P. Exploration of Metal-Ligand Coordination Bonds in Proteins by Single-molecule Force Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
36
|
Cheng H, Yu J, Wang Z, Ma P, Guo C, Wang B, Zhong W, Xu B. Details of Single-Molecule Force Spectroscopy Data Decoded by a Network-Based Automatic Clustering Algorithm. J Phys Chem B 2021; 125:9660-9667. [PMID: 34425052 DOI: 10.1021/acs.jpcb.1c03552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomic force microscopy-single-molecule force spectroscopy (AFM-SMFS) is a powerful methodology to probe intermolecular and intramolecular interactions in biological systems because of its operability in physiological conditions, facile and rapid sample preparation, versatile molecular manipulation, and combined functionality with high-resolution imaging. Since a huge number of AFM-SMFS force-distance curves are collected to avoid human bias and errors and to save time, numerous algorithms have been developed to analyze the AFM-SMFS curves. Nevertheless, there is still a need to develop new algorithms for the analysis of AFM-SMFS data since the current algorithms cannot specify an unbinding force to a corresponding/each binding site due to the lack of networking functionality to model the relationship between the unbinding forces. To address this challenge, herein, we develop an unsupervised method, i.e., a network-based automatic clustering algorithm (NASA), to decode the details of specific molecules, e.g., the unbinding force of each binding site, given the input of AFM-SMFS curves. Using the interaction of heparan sulfate (HS)-antithrombin (AT) on different endothelial cell surfaces as a model system, we demonstrate that NASA is able to automatically detect the peak and calculate the unbinding force. More importantly, NASA successfully identifies three unbinding force clusters, which could belong to three different binding sites, for both Ext1f/f and Ndst1f/f cell lines. NASA has great potential to be applied either readily or slightly modified to other AFM-based SMFS measurements that result in "saw-tooth"-shaped force-distance curves showing jumps related to the force unbinding, such as antibody-antigen interaction and DNA-protein interaction.
Collapse
Affiliation(s)
- Huimin Cheng
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Jun Yu
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhen Wang
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Ping Ma
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Single Molecule Study Laboratory, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Bin Wang
- Single Molecule Study Laboratory, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Wenxuan Zhong
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
37
|
Tian F, Tong B, Sun L, Shi S, Zheng B, Wang Z, Dong X, Zheng P. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 2021; 10:e69091. [PMID: 34414884 PMCID: PMC8455130 DOI: 10.7554/elife.69091] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 has been spreading around the world for the past year. Recently, several variants such as B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma), which share a key mutation N501Y on the receptor-binding domain (RBD), appear to be more infectious to humans. To understand the underlying mechanism, we used a cell surface-binding assay, a kinetics study, a single-molecule technique, and a computational method to investigate the interaction between these RBD (mutations) and ACE2. Remarkably, RBD with the N501Y mutation exhibited a considerably stronger interaction, with a faster association rate and a slower dissociation rate. Atomic force microscopy (AFM)-based single-molecule force microscopy (SMFS) consistently quantified the interaction strength of RBD with the mutation as having increased binding probability and requiring increased unbinding force. Molecular dynamics simulations of RBD-ACE2 complexes indicated that the N501Y mutation introduced additional π-π and π-cation interactions that could explain the changes observed by force microscopy. Taken together, these results suggest that the reinforced RBD-ACE2 interaction that results from the N501Y mutation in the RBD should play an essential role in the higher rate of transmission of SARS-CoV-2 variants, and that future mutations in the RBD of the virus should be under surveillance.
Collapse
Affiliation(s)
- Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing UniversityNanjingChina
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Liang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing UniversityNanjingChina
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing UniversityNanjingChina
| | - Zibin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Xianchi Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjingChina
- Engineering Research Center of Protein and Peptide Medicine, Ministry of EducationNanjingChina
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing UniversityNanjingChina
| |
Collapse
|
38
|
Mahato RR, Shandilya E, Dasgupta B, Maiti S. Dictating Catalytic Preference and Activity of a Nanoparticle by Modulating Its Multivalent Engagement. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Basundhara Dasgupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
39
|
Overeem NJ, Hamming PH(E, Tieke M, van der Vries E, Huskens J. Multivalent Affinity Profiling: Direct Visualization of the Superselective Binding of Influenza Viruses. ACS NANO 2021; 15:8525-8536. [PMID: 33978406 PMCID: PMC8158855 DOI: 10.1021/acsnano.1c00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/05/2021] [Indexed: 05/23/2023]
Abstract
The influenza A virus (IAV) interacts with the glycocalyx of host cells through its surface proteins hemagglutinin (HA) and neuraminidase (NA). Quantitative biophysical measurements of these interactions may help to understand these interactions at the molecular level with the long-term aim to predict influenza infectivity and answer other biological questions. We developed a method, called multivalent affinity profiling (MAP), to measure virus binding profiles on receptor density gradients to determine the threshold receptor density, which is a quantitative measure of virus avidity toward a receptor. Here, we show that imaging of IAVs on receptor density gradients allows the direct visualization and efficient assessment of their superselective binding. We show how the multivalent binding of IAVs can be quantitatively assessed using MAP if the receptor density gradients are prepared around the threshold receptor density without crowding at the higher densities. The threshold receptor density increases strongly with increasing flow rate, showing that the superselective binding of IAV is influenced by shear force. This method of visualization and quantitative assessment of superselective binding allows not only comparative studies of IAV-receptor interactions, but also more fundamental studies of how superselectivity arises and is influenced by experimental conditions.
Collapse
Affiliation(s)
- Nico J. Overeem
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - P. H. (Erik) Hamming
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Malte Tieke
- Division
of Virology, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Erhard van der Vries
- Division
of Virology, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Royal
GD, Arnsbergstraat 7, 7418 EZ, Deventer, The Netherlands
- Department
of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jurriaan Huskens
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
40
|
Overeem NJ, van der Vries E, Huskens J. A Dynamic, Supramolecular View on the Multivalent Interaction between Influenza Virus and Host Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007214. [PMID: 33682339 DOI: 10.1002/smll.202007214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Understanding how influenza viruses traverse the mucus and recognize host cells is critical for evaluating their zoonotic potential, and for prevention and treatment of the disease. The surface of the influenza A virus is covered with the receptor-binding protein hemagglutinin and the receptor-cleaving enzyme neuraminidase, which jointly control the interactions between the virus and the host cell. These proteins are organized in closely spaced trimers and tetramers to facilitate multivalent interactions with sialic acid-terminated glycans. This review shows that the individually weak multivalent interactions of influenza viruses allow superselective binding, virus-induced recruitment of receptors, and the formation of dynamic complexes that facilitate molecular walking. Techniques to measure the avidity and receptor specificity of influenza viruses are reviewed, and the pivotal role of multivalent interactions with their emergent properties in crossing the mucus and entering host cells is discussed. A model is proposed for the initiation of cell entry through virus-induced receptor clustering. The multivalent interactions of influenza viruses are maintained in a dynamic regime by a functional balance between binding and cleaving.
Collapse
Affiliation(s)
- Nico J Overeem
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Erhard van der Vries
- Royal GD, Arnsbergstraat 7, Deventer, 7418 EZ, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Jurriaan Huskens
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
41
|
Trexler M, Brusatori M, Auner G. Avidin-biotin complex-based capture coating platform for universal Influenza virus immobilization and characterization. PLoS One 2021; 16:e0247429. [PMID: 33635877 PMCID: PMC7909696 DOI: 10.1371/journal.pone.0247429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza virus mutates quickly and unpredictably creating emerging pathogenic strains that are difficult to detect, diagnose, and characterize. Conventional tools to study and characterize virus, such as next generation sequencing, genome amplification (RT-PCR), and serological antibody testing, are not adequately suited to rapidly mutating pathogens like Influenza virus where the success of infection heavily depends on the phenotypic expression of surface glycoproteins. Bridging the gap between genome and pathogenic expression remains a challenge. Using sialic acid as a universal Influenza virus binding receptor, a novel virus avidin-biotin complex-based capture coating was developed and characterized that may be used to create future diagnostic and interrogation platforms for viable whole Influenza virus. First, fluorescent FITC probe studies were used to optimize coating component concentrations. Then atomic force microscopy (AFM) was used to profile the surface characteristics of the novel capture coating, acquire topographical imaging of Influenza particles immobilized by the coating, and calculate the capture efficiency of the coating (over 90%) for all four representative human Influenza virus strains tested.
Collapse
Affiliation(s)
- Micaela Trexler
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- * E-mail:
| | - Michelle Brusatori
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Michael and Marian Illitch Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Gregory Auner
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Michael and Marian Illitch Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
42
|
Nie C, Stadtmüller M, Parshad B, Wallert M, Ahmadi V, Kerkhoff Y, Bhatia S, Block S, Cheng C, Wolff T, Haag R. Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors. SCIENCE ADVANCES 2021; 7:7/1/eabd3803. [PMID: 33523846 PMCID: PMC7775783 DOI: 10.1126/sciadv.abd3803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 05/28/2023]
Abstract
Here, we report the topology-matched design of heteromultivalent nanostructures as potent and broad-spectrum virus entry inhibitors based on the host cell membrane. Initially, we investigate the virus binding dynamics to validate the better binding performance of the heteromultivalent moieties as compared to homomultivalent ones. The heteromultivalent binding moieties are transferred to nanostructures with a bowl-like shape matching the viral spherical surface. Unlike the conventional homomultivalent inhibitors, the heteromultivalent ones exhibit a half maximal inhibitory concentration of 32.4 ± 13.7 μg/ml due to the synergistic multivalent effects and the topology-matched shape. At a dose without causing cellular toxicity, >99.99% reduction of virus propagation has been achieved. Since multiple binding sites have also been identified on the S protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), we envision that the use of heteromultivalent nanostructures may also be applied to develop a potent inhibitor to prevent coronavirus infection.
Collapse
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany
| | - Marlena Stadtmüller
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany
| | - Badri Parshad
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Matthias Wallert
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Vahid Ahmadi
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Yannic Kerkhoff
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Stephan Block
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|