1
|
Yang H, Feng HX, Chen J, Zhou L. Strategies for the Synthesis of Mechanically Planar Chiral Rotaxanes. Chemistry 2025:e202500898. [PMID: 40217105 DOI: 10.1002/chem.202500898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/27/2025]
Abstract
Rotaxanes, belonging to the class of classical mechanically interlocked molecules (MIMs), exhibit chiral properties that diverge from those of traditional chiral elements, particularly displaying mechanically planar chirality. Their distinctive spatial structure further augments their chiral significance, thereby imparting them with vast potential for applications in the realm of chiral materials and asymmetric catalysis. In recent years, mechanically planar chiral rotaxanes have garnered increasing attention from researchers. In this review, we summarize the recent advancements in obtaining enantiopure mechanically planar chiral rotaxanes. In this regard, chiral separation techniques, the use of chiral auxiliaries, and asymmetric catalytic synthesis have emerged as potent methodologies for constructing chiral rotaxanes, thereby enabling the synthesis of diverse types of mechanically planar chiral rotaxanes. Additionally, we analyze the current challenges faced in this field and look forward to the future development opportunities that lie ahead.
Collapse
Affiliation(s)
- Hui Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Hong-Xia Feng
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, 710125, China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
2
|
Yasuzawa K, Wada K, Fa S, Nagata Y, Kato K, Ohtani S, Mizuno M, Ogoshi T. Diastereoselective Polypseudorotaxane Formation with Planar Chiral Pillar[5]arenes via Co-crystallization Processes. Angew Chem Int Ed Engl 2025; 64:e202420115. [PMID: 39653659 DOI: 10.1002/anie.202420115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Indexed: 01/03/2025]
Abstract
As the number of chiral ring molecules in chiral polyrotaxane increases, the number of possible stereoisomers exponentially increases. Consequently, the selective synthesis of a specific stereoisomer becomes much more challenging. To address this problem, we co-crystallized poly(ethylene glycol) and a diastereomeric ring molecule, pillar[5]arene, in the solid state. The co-crystallization formed polypseudorotaxanes with a high diastereomeric excess (ca. 88 % de), meaning that polypseudorotaxanes containing (S, pS) stereoisomer pillar[5]arene rings were synthesized selectively. By contrast, in solution and evaporation systems, the selectivity remained low (ca. 10 % de). The results suggested that the packing effect by the co-crystallization contributed to the denser assembly of ring molecules on the polymeric chain, resulting in the diastereoselective formation. High diastereoselectivity was also observed even in higher-molecular-weight poly(ethylene glycol)s. These selectivities arose from the cooperative effects of the ring molecules on the polymeric chain, which were supported by calculating the stabilization energy.
Collapse
Affiliation(s)
- Kiichi Yasuzawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P.R. China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 060-0810, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Motohiro Mizuno
- NanoMaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
3
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Yang X, Wang K. Mechanisms for translating chiral enantiomers separation research into macroscopic visualization. Adv Colloid Interface Sci 2025; 335:103342. [PMID: 39561657 DOI: 10.1016/j.cis.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Chirality is a common phenomenon in nature, including the dominance preference of small biomolecules, the special spatial conformation of biomolecules, and the biological and physiological processes triggered by chirality. The selective chiral recognition of molecules in nature from up-bottom or bottom-up is of great significance for living organisms. Such as the transcription of DNA, the recognition of membrane proteins, and the catalysis of enzymes all involve chiral recognition processes. The selective recognition between these macromolecules is mainly achieved through non covalent interactions such as hydrophobic interactions, ammonia bonding, electrostatic interactions, metal coordination, van der Waals forces, and π-π stacking. Researchers have been committed to studying how to convert this weak non covalent interaction into macroscopic visualization, which has further understood of the interactions between chiral molecules and is of great significance for simulating the interactions between molecules in living organisms. This article reviews several models of chiral recognition mechanisms, the interaction forces involved in the chiral recognition process, and the research progress of chiral recognition mechanisms. The outlook in this review points out that studying chiral recognition interactions provides an important bridge between chiral materials and the life sciences, providing an ideal platform for studying chiral phenomena in biological systems.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| |
Collapse
|
4
|
Gauthier M, Whittingham JBM, Hasija A, Tetlow DJ, Leigh DA. Skeletal Editing of Mechanically Interlocked Molecules: Nitrogen Atom Deletion from Crown Ether-Dibenzylammonium Rotaxanes. J Am Chem Soc 2024; 146:29496-29502. [PMID: 39431981 PMCID: PMC11528408 DOI: 10.1021/jacs.4c09066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Removing the nitrogen atom from secondary amines while simultaneously linking the remaining fragments is a powerful form of late-stage skeletal editing. Here, we report its use for the deletion of the nitrogen atom of the dibenzylammonium template used to assemble crown ether rotaxanes. The reaction uses an anomeric amide that activates secondary amines to generate a carbon-carbon bond that replaces the amine nitrogen. Despite the potential for dethreading of the intermediate diradical pair, the nitrogen atom was successfully deleted from a series of rotaxane axles as long as the macrocycle could access coconformations that did not inhibit the reaction of the amine group. The skeletally edited interlocked molecules were obtained directly from the parent crown ether-dibenzylammonium rotaxanes in modest yields (23-36%) and characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. One skeletally edited rotaxane shows a network of weak CH···O hydrogen bonds between the crown ether and benzylic methylene groups of the axle in the solid state, in place of the crown ether-ammonium binding motif used to assemble the parent, unedited, rotaxane.
Collapse
Affiliation(s)
- Maxime Gauthier
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Avantika Hasija
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Daniel J. Tetlow
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Jamagne R, Power MJ, Zhang ZH, Zango G, Gibber B, Leigh DA. Active template synthesis. Chem Soc Rev 2024; 53:10216-10252. [PMID: 39235620 PMCID: PMC11376342 DOI: 10.1039/d4cs00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 09/06/2024]
Abstract
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not 'live on' in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal-ion-mediated versions of the strategy, the copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
Collapse
Affiliation(s)
- Romain Jamagne
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Martin J Power
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Germán Zango
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Benjamin Gibber
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
6
|
Barlow SR, Evans NH. Synthesis of a [2]catenane by ring closing metathesis of a [2]rotaxane prepared by crown ether active templation. Org Biomol Chem 2024; 22:7632-7636. [PMID: 39230441 DOI: 10.1039/d4ob01028k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The high yielding synthesis and spectral characterization of a [2]catenane prepared by Grubbs catalyzed ring closing metathesis of a [2]rotaxane prepared by crown ether active template synthesis is described.
Collapse
Affiliation(s)
- Sean R Barlow
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
7
|
Goldup SM. The End of the Beginning of Mechanical Stereochemistry. Acc Chem Res 2024; 57:1696-1708. [PMID: 38830116 PMCID: PMC11191403 DOI: 10.1021/acs.accounts.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
ConspectusStereochemistry has played a key role in the development of synthetic chemistry for the simple reason that the function and properties of most molecules, from medicine to materials science, depend on their shape and thus the stereoisomer used. However, despite the potential for rotaxanes and catenanes to display unusual forms of stereochemistry being identified as early as 1961, this aspect of the mechanical bond remained underexplored and underexploited; until 2014 it was only possible to access chiral rotaxanes and catenanes whose stereoisomerism is solely attributable to the mechanical bond using chiral stationary phase high performance liquid chromatography, which limited their production on scale and thus inhibited the investigation of their properties and applications. Furthermore, the stereogenic units of such molecules and analogues were often poorly described, which made it hard to fully articulate both what had been achieved in the field and what problems were left to solve. Relatively recently, methods to access rotaxanes and catenanes that display mechanical stereochemistry selectively have been developed, making these intriguing structures available for study in a range of prototypical applications including catalysis, sensing, and as chiral luminophores.In this Account, we briefly discuss the history of mechanical stereochemistry, beginning in 1961 when the potential for mechanical stereoisomerism was first identified, before defining how mechanical stereochemistry arises from a structural point of view. Building on this, using simple stereochemical arguments, we confirm that the complete set of unique stereogenic units of two-component rotaxanes and catenanes have finally been identified and categorized unambiguously, with the last being identified only in 2024. After pausing to discuss some of the stereochemical curiosities that arise when molecules contain both covalent and mechanical stereogenic units, and the potential for stereoisomerism to arise due to co-conformational movement, we use our stereochemical framework to summarize our efforts to develop conceptually general approaches to [2]catenanes and [2]rotaxanes containing all of the possible mechanical stereogenic units. In particular, we highlight how the nature of a mechanical stereogenic unit affects the available strategies for their stereoselective synthesis. We finish by highlighting recent prototypical chemical applications of interlocked molecules that rely on their mechanical stereochemistry, before discussing future directions and challenges.Taken together, we propose that the transition of such molecules from being hard to make and poorly described, to being available in high stereopurity using clearly articulated methodological and stereochemical concepts suggests that the field is finally maturing. Thus, we are now coming to the end of the beginning of mechanical stereochemistry. The stage is now set for such molecules to play a functional role in a range of areas, indeed in any chemical or physical application where control over molecular shape is required.
Collapse
Affiliation(s)
- Stephen M. Goldup
- School of Chemistry, University
of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
8
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
9
|
Long G, Deng Y, Zhao W, Zhou G, Broer DJ, Feringa BL, Chen J. Photoresponsive Biomimetic Functions by Light-Driven Molecular Motors in Three Dimensionally Printed Liquid Crystal Elastomers. J Am Chem Soc 2024; 146:13894-13902. [PMID: 38728606 PMCID: PMC11117400 DOI: 10.1021/jacs.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Despite the fascinating developments in design and synthesis of artificial molecular machines operating at the nanoscales, translating molecular motion along multiple length scales and inducing mechanical motion of a three-dimensional macroscopic entity remains an important challenge. The key to addressing this amplification of motion relies on the effective organization of molecular machines in a well-defined environment. By taking advantage of long-range orientational order and hierarchical structures of liquid crystals and unidirectional rotation of light-driven molecular motors, we report here photoresponsive biomimetic functions of liquid crystal elastomers (LCEs) by the repetitive unidirectional rotation of molecular motors using 3D printing. Molecular motors were built in the main chain of liquid crystals oligomers to serve as photoactuators. The oligomers were then used as the ink, and liquid crystal elastomers with different morphologies were printed. The obtained LCEs are able to conduct multiple types of motions including bending, helical coiling, closing of petals, and flipping of wings of a butterfly upon UV illumination, which paves the way for future design of responsive materials with enhanced complex actuating functions.
Collapse
Affiliation(s)
- Guiying Long
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Yanping Deng
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wei Zhao
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
| | - Dirk J. Broer
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ben L. Feringa
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Jiawen Chen
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
10
|
Saady A, Malcolm GK, Fitzpatrick MP, Pairault N, Tizzard GJ, Mohammed S, Tavassoli A, Goldup SM. A Platform Approach to Cleavable Macrocycles for the Controlled Disassembly of Mechanically Caged Molecules. Angew Chem Int Ed Engl 2024; 63:e202400344. [PMID: 38276911 DOI: 10.1002/anie.202400344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inspired by interlocked oligonucleotides, peptides and knotted proteins, synthetic systems where a macrocycle cages a bioactive species that is "switched on" by breaking the mechanical bond have been reported. However, to date, each example uses a bespoke chemical design. Here we present a platform approach to mechanically caged structures wherein a single macrocycle precursor is diversified at a late stage to include a range of trigger units that control ring opening in response to enzymatic, chemical, or photochemical stimuli. We also demonstrate that our approach is applicable to other classes of macrocycles suitable for rotaxane and catenane formation.
Collapse
Affiliation(s)
- Abed Saady
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia K Malcolm
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Fitzpatrick
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Noel Pairault
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Graham J Tizzard
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Soran Mohammed
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Stephen M Goldup
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
11
|
Gallagher P, Savoini A, Saady A, Maynard JRJ, Butler PWV, Tizzard GJ, Goldup SM. Facial Selectivity in Mechanical Bond Formation: Axially Chiral Enantiomers and Geometric Isomers from a Simple Prochiral Macrocycle. J Am Chem Soc 2024; 146:9134-9141. [PMID: 38507717 PMCID: PMC10996000 DOI: 10.1021/jacs.3c14329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
In 1971, Schill recognized that a prochiral macrocycle encircling an oriented axle led to geometric isomerism in rotaxanes. More recently, we identified an overlooked chiral stereogenic unit in rotaxanes that arises when a prochiral macrocycle encircles a prochiral axle. Here, we show that both stereogenic units can be accessed using equivalent strategies, with a single weak stereodifferentiating interaction sufficient for moderate to excellent stereoselectivity. Using this understanding, we demonstrated the first direct enantioselective (70% ee) synthesis of a mechanically axially chiral rotaxane.
Collapse
Affiliation(s)
- Peter
R. Gallagher
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Andrea Savoini
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Abed Saady
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - John R. J. Maynard
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
| | - Patrick W. V. Butler
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
| | - Graham J. Tizzard
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
| | - Stephen M. Goldup
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
12
|
Saura-Sanmartin A. Synthesis of 'Impossible' Rotaxanes. Chemistry 2024; 30:e202304025. [PMID: 38168751 DOI: 10.1002/chem.202304025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
'Impossible' rotaxanes, which are constituted by interlocked components without obvious binding motifs, have attracted the interest of the mechanically interlocked molecules (MIMs) community. Within the synthetic efforts reported in the last decades towards the preparation of MIMs, some innovative protocols for accessing 'impossible' rotaxanes have been developed. This short review highlights different selected synthetic examples of 'impossible' rotaxanes, as well as suggests some future directions of this research area.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
13
|
Savoini A, Gallagher PR, Saady A, Goldup SM. The Final Stereogenic Unit of [2]Rotaxanes: Type 2 Geometric Isomers. J Am Chem Soc 2024; 146:8472-8479. [PMID: 38499387 PMCID: PMC10979452 DOI: 10.1021/jacs.3c14594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Mechanical stereochemistry arises when the interlocking of stereochemically trivial covalent subcomponents results in a stereochemically complex object. Although this general concept was identified in 1961, the stereochemical description of these molecules is still under development to the extent that new forms of mechanical stereochemistry are still being identified. Here, we present a simple analysis of rotaxane and catenane stereochemistry that allowed us to identify the final missing simple mechanical stereogenic unit, an overlooked form of rotaxane geometric isomerism, and demonstrate its stereoselective synthesis.
Collapse
Affiliation(s)
- Andrea Savoini
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Peter R. Gallagher
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Abed Saady
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Stephen M. Goldup
- School
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
14
|
Prakashni M, Dasgupta S. BP23C7: high-yield synthesis and application in constructing [3]rotaxanes and responsive pseudo[2]rotaxanes. Org Biomol Chem 2024; 22:1871-1884. [PMID: 38349013 DOI: 10.1039/d3ob02094k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A biphenyl-23-crown-7 ether (BP23C7) is synthesized in 86% yield from commercially available starting materials. BP23C7 forms pseudo[2]rotaxane with a dibenzylammonium ion (DBA+), exhibiting a good association constant value (ka = 1 × 103 M-1). Subsequently, fluorophoric properties of BP23C7 and anthracene terminated axles are blended to create responsive pseudo[2]rotaxanes. The "turn-on" fluorescence response of BP23C7 due to the addition of fluoride and chloride anions to pseudo[2]rotaxane systems has been investigated. Concomitant fluorescence quenching of the anthracene moiety of corresponding axles due to ion-pair formation has been addressed. Furthermore, two variants of [23]crown ethers, i.e. BP23C7 and o-xylene-23-crown-7 ether (X23C7), are applied for constructing homo[3]rotaxane architectures. A half-axle comprising of DBA+ moiety and a terminal olefin is mixed separately with two [23]crown ethers and subjected to self-metathesis using Grubbs' first-generation catalyst.
Collapse
Affiliation(s)
- Manisha Prakashni
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India.
| | - Suvankar Dasgupta
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India.
| |
Collapse
|
15
|
Puigcerver J, Marin-Luna M, Iglesias-Sigüenza J, Alajarin M, Martinez-Cuezva A, Berna J. Mechanically Planar-to-Point Chirality Transmission in [2]Rotaxanes. J Am Chem Soc 2024; 146:2882-2887. [PMID: 38266249 PMCID: PMC10859924 DOI: 10.1021/jacs.3c11611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Herein we describe an effective transmission of chirality, from mechanically planar chirality to point chirality, in hydrogen-bonded [2]rotaxanes. A highly selective mono-N-methylation of one (out of four) amide N atom at the macrocyclic counterpart of starting achiral rotaxanes generates mechanically planar chirality. Followed by chiral resolution, both enantiomers were subjected to a base-promoted intramolecular cyclization, where their interlocked threads were transformed into new lactam moieties. As a matter of fact, the mechanically planar chiral information was effectively transferred to the resulting stereocenters (covalent chirality) of the newly formed heterocycles. Upon removing the entwined macrocycle, the final lactams were obtained with high enantiopurity.
Collapse
Affiliation(s)
- Julio Puigcerver
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Marta Marin-Luna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Javier Iglesias-Sigüenza
- Departamento
de Quimica Organica and Centro de Innovacion en Quimica Avanzada (ORFEO-CINQA), Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Mateo Alajarin
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
16
|
Song X, Zhu X, Wu S, Chen W, Tian W, Liu M. Chiroptical switching in the azobenzene-based self-locked [1]rotaxane by solvent and photoirradiation. Chirality 2023; 35:692-699. [PMID: 37013339 DOI: 10.1002/chir.23567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Because of its dynamic reversible nature and simple regulation properties, rotaxane systems provided a good route for the construction of responsive supramolecular chiral materials. Here, we covalently encapsulate the photo-responsive guest molecule azobenzene (Azo) in a chiral macrocycle β-cyclodextrin (β-CD) to prepare self-locked chiral [1]rotaxane [Azo-CD]. On this basis, the self-adaptive conformation of [Azo-CD] was manipulated by solvent and photoirradiation; meanwhile, dual orthogonal regulation of the [1]rotaxane chiroptical switching could also be realized.
Collapse
Affiliation(s)
- Xin Song
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi, China
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Shengfu Wu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Wenzhuo Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Wada K, Yasuzawa K, Fa S, Nagata Y, Kato K, Ohtani S, Ogoshi T. Diastereoselective Rotaxane Synthesis with Pillar[5]arenes via Co-crystallization and Solid-State Mechanochemical Processes. J Am Chem Soc 2023. [PMID: 37411034 DOI: 10.1021/jacs.3c02919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Chiral rotaxanes have attracted much attention in recent decades for their unique chirality based on their interlocked structures. Thus, selective synthesis methods of chiral rotaxanes have been developed. The introduction of substituents with chiral centers to produce diastereomers is a powerful strategy for the construction of chiral rotaxanes. However, in case of a small energy difference between the diastereomers, diastereoselective synthesis is extremely difficult. Herein, we report a new diastereoselective rotaxane synthesis method using solid-phase diastereoselective [3]pseudorotaxane formation and mechanochemical solid-phase end-capping reactions of the [3]pseudorotaxanes. By co-crystallization of stereodynamic planar chiral pillar[5]arene with stereogenic carbons at both rims and axles with suitable end groups and lengths, the [3]pseudorotaxane with a high diastereomeric excess (ca. 92% de) was generated in the solid state because of higher effective molarity with aid by packing effects and significant energy differences between [3]pseudorotaxane diastereomers. In contrast, the de of the pillar[5]arene was low in solution (ca. 10% de) because of a small energy difference between diastereomers. Subsequent end-capping reactions of the polycrystalline [3]pseudorotaxane with high de in solvent-free conditions successfully yielded rotaxanes while maintaining the high de generated by the co-crystallization.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kiichi Yasuzawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
18
|
A chiral macrocycle for the stereoselective synthesis of mechanically planar chiral rotaxanes and catenanes. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
19
|
Wagay SA, Khan L, Ali R. Recent Advancements in Ion-Pair Receptors. Chem Asian J 2023; 18:e202201080. [PMID: 36412231 DOI: 10.1002/asia.202201080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Over the past two decades, non-covalent chemistry has introduced various promising artificial receptors and revolutionized the host-guest chemistry. These versatile receptors have particularly been entertained in sensing and recognizing of diverse neutral molecules and/or ionic entities (e. g. anions, cations and ion-pair) of particular interest. Notably, supramolecular chemistry had given birth to a plethora of important molecules, explored in the chemical, biological, environmental, and pharmacological world to resolve the critical issues related to the human health while keeping environmental concerns in mind. Amongst the various types of supramolecular monotopic receptors (anions, cations, and neutral molecules), heteroditopic receptors (ion-pair receptors) consisting of distinct binding sites in one system for both cation and anion, have gained much interest from the scientific community in recent past because of their unique binding abilities. Interestingly, these promising artificial receptors have shown potential applications in sensing, recognition, transport and extraction processes besides their uses in salt/waste purification. Bearing the importance of these systems in mind, we intended to report the recent developments in ion-pair chemistry. Herein, we divided the whole document into three main sections; first one describes the introduction and history of the ion-pairs receptors. The second portion highlights the synthesis and applications of ion-pair receptors in sensing, recognition, molecular machines, photoswitching behaviour, extraction and transport properties, whereas the last part of this manuscript provides concluding remarks as well as future prospects of ion-pair receptors. We hope that this manuscript will be helpful to stimulating researchers around the globe to find out the hidden opportunities in this and related areas.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| | - Lubna Khan
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| |
Collapse
|
20
|
Saura‐Sanmartin A. Post‐Mechanical Bond Formation Desymmetrization Approach to Obtain Mechanically Planar Chiral Rotaxanes. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Adrian Saura‐Sanmartin
- Departamento de Química Orgánica Facultad de Química Universidad de Murcia Campus de Espinardo E-30100 Murcia Spain
| |
Collapse
|
21
|
Lopez-Leonardo C, Saura-Sanmartin A, Marin-Luna M, Alajarin M, Martinez-Cuezva A, Berna J. Ring-to-Thread Chirality Transfer in [2]Rotaxanes for the Synthesis of Enantioenriched Lactams. Angew Chem Int Ed Engl 2022; 61:e202209904. [PMID: 35916122 DOI: 10.1002/anie.202209904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 01/07/2023]
Abstract
The synthesis of chiral mechanically interlocked molecules has attracted a lot of attention in the last few years, with applications in different fields, such as asymmetric catalysis or sensing. Herein we describe the synthesis of orientational mechanostereoisomers, which include a benzylic amide macrocycle with a stereogenic center, and nonsymmetric N-(arylmethyl)fumaramides as the axis. The base-promoted cyclization of the initial fumaramide thread allows enantioenriched value-added compounds, such as lactams of different ring sizes and amino acids, to be obtained. The chiral information is effectively transmitted across the mechanical bond from the encircling ring to the interlocked lactam. High levels of enantioselectivity and full control of the regioselectivity of the final cyclic compounds are attained.
Collapse
Affiliation(s)
- Carmen Lopez-Leonardo
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
22
|
Feng QY, Mao YQ, Wang MX, Tong S. Chiral Crown Ethers Accessed from Catalytic Enantioselective Desymmetrization Reactions. Org Lett 2022; 24:7107-7112. [PMID: 36148969 DOI: 10.1021/acs.orglett.2c02688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A diversity of unprecedented chiral aza-crown ethers were synthesized straightforwardly from readily available and inexpensive aza-crown ethers. Catalyzed by a chiral phosphoric acid, desymmetrization of an array of symmetric N-arylated aza-crown ethers through tert-amino reaction proceeded efficiently under mild conditions to produce novel tetrahydroquinoline-fused aza-crown ethers in good to excellent yields with up to 96% ee. Our strategy opens a new route to functionalized chiral crown ethers.
Collapse
Affiliation(s)
- Qi-Yun Feng
- MOE Key Laboratory of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Qi Mao
- MOE Key Laboratory of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuo Tong
- MOE Key Laboratory of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Maynard JR, Gallagher P, Lozano D, Butler P, Goldup SM. Mechanically axially chiral catenanes and noncanonical mechanically axially chiral rotaxanes. Nat Chem 2022; 14:1038-1044. [PMID: 35760959 PMCID: PMC7613450 DOI: 10.1038/s41557-022-00973-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Chirality typically arises in molecules because of a rigidly chiral arrangement of covalently bonded atoms. Less generally appreciated is that chirality can arise when molecules are threaded through one another to create a mechanical bond. For example, when two macrocycles with chemically distinct faces are joined to form a catenane, the structure is chiral, although the rings themselves are not. However, enantiopure mechanically axially chiral catenanes in which the mechanical bond provides the sole source of stereochemistry have not been reported. Here we re-examine the symmetry properties of these molecules and in doing so identify a straightforward route to access them from simple chiral building blocks. Our analysis also led us to identify an analogous but previously unremarked upon rotaxane stereogenic unit, which also yielded to our co-conformational auxiliary approach. With methods to access mechanically axially chiral molecules in hand, their properties and applications can now be explored.
Collapse
|
24
|
Li M, Chia XL, Tian C, Zhu Y. Mechanically planar chiral rotaxanes through catalytic desymmetrization. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Binks L, Tian C, Fielden SDP, Vitorica-Yrezabal IJ, Leigh DA. Transamidation-Driven Molecular Pumps. J Am Chem Soc 2022; 144:15838-15844. [PMID: 35979923 PMCID: PMC9446885 DOI: 10.1021/jacs.2c06807] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a new class of synthetic molecular pumps that use a stepwise information ratchet mechanism to achieve the kinetic gating required to sequester their macrocyclic substrates from bulk solution. Threading occurs as a result of active template reactions between the pump terminus amine and an acyl electrophile, whereby the bond-forming reaction is accelerated through the cavity of a crown ether. Carboxylation of the resulting amide results in displacement of the ring to the collection region of the thread. Conversion of the carbamate to a phenolic ester provides an intermediate rotaxane suitable for further pumping cycles. In this way rings can be ratcheted onto a thread from one or both ends of appropriately designed molecular pumps. Each pumping cycle results in one additional ring being added to the thread per terminus acyl group. The absence of pseudorotaxane states ensures that no dethreading of intermediates occurs during the pump operation. This facilitates the loading of different macrocycles in any chosen sequence, illustrated by the pump-mediated synthesis of a [4]rotaxane containing three different macrocycles as a single sequence isomer. A [5]rotaxane synthesized using a dual-opening transamidation pump was structurally characterized by single-crystal X-ray diffraction, revealing a series of stabilizing CH···O interactions between the crown ethers and the polyethylene glycol catchment region of the thread.
Collapse
Affiliation(s)
- Lorna Binks
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Chong Tian
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stephen D P Fielden
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
26
|
Lopez-Leonardo C, Saura-Sanmartin A, Marin-Luna M, Alajarin M, Martinez-Cuezva A, Berna J. Ring‐to‐Thread Chirality Transfer in [2]Rotaxanes for the Synthesis of Enantioenriched Lactams. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Marta Marin-Luna
- Universidad de Murcia Química Orgánica Campus de Espinardo 30100 Murcia SPAIN
| | - Mateo Alajarin
- Universidad de Murcia Química Orgánica Campus de Espinardo 30100 Murcia SPAIN
| | | | - Jose Berna
- Universidad de Murcia Quimica Organica Campus de Espinardo 30100 Murcia SPAIN
| |
Collapse
|
27
|
Rodríguez-Rubio A, Savoini A, Modicom F, Butler P, Goldup SM. A Co-conformationally "Topologically" Chiral Catenane. J Am Chem Soc 2022; 144:11927-11932. [PMID: 35763555 PMCID: PMC9348828 DOI: 10.1021/jacs.2c02029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catenanes composed of two achiral rings that are oriented (Cnh symmetry) because of the sequence of atoms they contain are referred to as topologically chiral. Here, we present the synthesis of a highly enantioenriched catenane containing a related but overlooked "co-conformationally 'topologically' chiral" stereogenic unit, which arises when a bilaterally symmetric Cnv ring is desymmetrized by the position of an oriented macrocycle.
Collapse
Affiliation(s)
- Arnau Rodríguez-Rubio
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Andrea Savoini
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Florian Modicom
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Patrick Butler
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| | - Stephen M. Goldup
- Chemistry, University
of Southampton, Highfield,
Southampton SO17 1BJ, United
Kingdom
| |
Collapse
|
28
|
Hou J, Long G, Zhao W, Zhou G, Liu D, Broer DJ, Feringa BL, Chen J. Phototriggered Complex Motion by Programmable Construction of Light-Driven Molecular Motors in Liquid Crystal Networks. J Am Chem Soc 2022; 144:6851-6860. [PMID: 35380815 PMCID: PMC9026258 DOI: 10.1021/jacs.2c01060] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Recent developments
in artificial molecular machines have enabled
precisely controlled molecular motion, which allows several distinct
mechanical operations at the nanoscale. However, harnessing and amplifying
molecular motion along multiple length scales to induce macroscopic
motion are still major challenges and comprise an important next step
toward future actuators and soft robotics. The key to addressing this
challenge relies on effective integration of synthetic molecular machines
in a hierarchically aligned structure so numerous individual molecular
motions can be collected in a cooperative way and amplified to higher
length scales and eventually lead to macroscopic motion. Here, we
report the complex motion of liquid crystal networks embedded with
molecular motors triggered by single-wavelength illumination. By design,
both racemic and enantiomerically pure molecular motors are programmably
integrated into liquid crystal networks with a defined orientation.
The motors have multiple functions acting as cross-linkers, actuators,
and chiral dopants inside the network. The collective rotary motion
of motors resulted in multiple types of motion of the polymeric film,
including bending, wavy motion, fast unidirectional movement on surfaces,
and synchronized helical motion with different handedness, paving
the way for the future design of responsive materials with enhanced
complex functions.
Collapse
Affiliation(s)
- Jiaxin Hou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wei Zhao
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.,SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Danqing Liu
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Dirk J Broer
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Ben L Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
29
|
|
30
|
López R, Palomo C. Planar Chirality: A Mine for Catalysis and Structure Discovery. Angew Chem Int Ed Engl 2022; 61:e202113504. [PMID: 34717037 PMCID: PMC9304569 DOI: 10.1002/anie.202113504] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/29/2021] [Indexed: 11/06/2022]
Abstract
Planar chirality is one of the most fascinating expressions of chirality, which is exploited by nature to lock three-dimensional chiral conformations and, more recently, by chemists to create new chiral reagents, catalysts, and functional organic materials. Nevertheless, the shortage of procedures able to induce and secure asymmetry during the generation of these unique chiral entities has dissuaded chemists from exploiting their structural properties. This Minireview intends to illustrate the limited but remarkable catalytic methods that have been reported for the production of planar chirality in strained molecules and serve as a source of inspiration for the development of new unconventional procedures, which are expected to appear in the near future.
Collapse
Affiliation(s)
- Rosa López
- Department of Organic Chemistry IFaculty of ChemistryUniversity of the Basque Country (UPV/EHU)Manuel de Lardizabal 320018San SebastiánSpain
| | - Claudio Palomo
- Department of Organic Chemistry IFaculty of ChemistryUniversity of the Basque Country (UPV/EHU)Manuel de Lardizabal 320018San SebastiánSpain
| |
Collapse
|
31
|
Cho HL, Lai CC, Liu YH, Hsu HF, Peng SM, Chiu SH. Metal-Ion-Induced Mechanical Chirality: Achiral Rotaxane as the Only Ligand in Chiral Palladium(II)–N-Heterocyclic Carbene Complexes. Org Lett 2022; 24:1996-2001. [DOI: 10.1021/acs.orglett.2c00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hsien-Liang Cho
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, 145 Xingda Road, South District, Taichung 402, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsiu-Fu Hsu
- Department of Chemistry, Tamkang University, No.151, Yingzhuan Road, Tamsui District, New Taipei City 251301, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
32
|
López R, Palomo C. Planar Chirality: A Mine for Catalysis and Structure Discovery. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rosa López
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country (UPV/EHU) Manuel de Lardizabal 3 20018 San Sebastián Spain
| | - Claudio Palomo
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country (UPV/EHU) Manuel de Lardizabal 3 20018 San Sebastián Spain
| |
Collapse
|
33
|
A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes. Nat Chem 2021; 14:179-187. [PMID: 34845345 PMCID: PMC7612332 DOI: 10.1038/s41557-021-00825-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022]
Abstract
Rotaxanes can display molecular chirality solely due to the mechanical bond between the axle and encircling macrocycle without the presence of covalent stereogenic units. However, the synthesis of such molecules remains challenging. We have discovered a combination of reaction partners that function as a chiral interlocking auxiliary to both orientate a macrocycle and, effectively, load it onto a new axle. Here we use these substrates to demonstrate the potential of a chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes by producing a range of examples in high enantiopurity (93–99% e.e.), including so-called ‘impossible’ rotaxanes whose axles lack any functional groups that would allow their direct synthesis by other means. Intriguingly, by varying the order of bond-forming steps, we can effectively choose which end of an axle the macrocycle is loaded onto, enabling the synthesis of both hands of a single target using the same reactions and building blocks.
Collapse
|
34
|
Tajima S, Muranaka A, Naito M, Taniguch N, Harada M, Miyagawa S, Ueda M, Takaya H, Kobayashi N, Uchiyama M, Tokunaga Y. Synthesis of a Mechanically Planar Chiral and Axially Chiral [2]Rotaxane. Org Lett 2021; 23:8678-8682. [PMID: 34730985 DOI: 10.1021/acs.orglett.1c02983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we synthesized a [2]rotaxane that was both mechanically planar chiral and axially chiral, comprising a symmetrical bis-crown ether featuring a biphenyl moiety (as the macrocyclic component) and a symmetrical bis-ammonium salt (as the dumbbell-shaped component).
Collapse
Affiliation(s)
- Shinya Tajima
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Noriho Taniguch
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Masahiro Ueda
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Hikaru Takaya
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan.,Institute for Molecular Science, National Institute of Natural Science, Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Tokida, Ueda, Nagano 386-8567, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
35
|
Gao X, Cui Z, Shen YR, Liu D, Lin YJ, Jin GX. Synthesis and Near-Infrared Photothermal Conversion of Discrete Supramolecular Topologies Featuring Half-Sandwich [Cp*Rh] Units. J Am Chem Soc 2021; 143:17833-17842. [PMID: 34641681 DOI: 10.1021/jacs.1c09333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although a large number of novel supramolecular topologies featuring half-sandwich [Cp*Rh] units have been reported, investigations into the properties of these architectures are astoundingly rare. In addition, the bidentate ligands employed to prepare these species have remained relatively homogeneous (i.e., symmetrical bis(pyri-4-dyl) ligands). To address these paucities in the field, the novel unsymmetrical ligand L2 and the rarely reported pyri-3-dyl ligand L3, all bearing aromatic phenazine groups (an N-heterocyclic analog of anthracene), were synthesized in addition to the common symmetrical pyri-4-dyl L1. [3]Catenane, [2]catenane, and Borromean rings assemblies were constructed successfully by the self-assembly of L1 with different building blocks. Afterward, ligand L2 was applied to prepare two novel molecular-tweezer-like compounds. Lastly, a twisted [2]catenane (relative to the [2]catenane constructed using L1) and a sandwiched metallarectangle were obtained using L3. π-π stacking interactions were observed to play a significant role in stabilizing these topologies, which also promoted nonradiative migration and triggered photothermal conversion in both the solution and the solid state. In the solution state, a clear rule of thumb was derived whereby the NIR photothermal conversion efficiency increased as the π-π stacking increased, and a very high photothermal conversion efficiency (35.5-62.4%) was observed. In addition, this family of half-sandwich-based assemblies also exhibited good photothermal conversion properties in the crystalline and noncrystal powder states. This research provides a novel method to synthesize excellent NIR photothermal conversion materials featuring half-sandwich [Cp*Rh] units and points to potential applications in the near future.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Zheng Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yue-Rong Shen
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Dong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
36
|
Shen Y, Gao X, Cui Z, Jin G. Rational Design and Synthesis of Interlocked [2]Catenanes Featuring
Half‐Sandwich
Cp*Rh/Ir Units and
Pyrene‐Based
Ligands
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yue‐Rong Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| | - Xiang Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| | - Zheng Cui
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| | - Guo‐Xin Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 China
| |
Collapse
|
37
|
Puente AR, Bessaguet A, Pairault N, Pieters G, Crassous J, Polavarapu PL, Opalinski I, Papot S. Absolute configuration of a [1]rotaxane determined from vibrational and electronic circular dichroism spectra. Chirality 2021; 33:773-782. [PMID: 34590354 DOI: 10.1002/chir.23365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/07/2022]
Abstract
The experimental vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectra were measured for the enantiomers of [1]rotaxane 1. These experimental spectra have been analyzed using predicted VCD and ECD spectra for (S, Rmp ) or (S, Smp ) diastereomers using density functional theory. This comparison allowed for a definitive assignment of the absolute configuration of 1.
Collapse
Affiliation(s)
- Andrew R Puente
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Adrien Bessaguet
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Système Moléculaires Programmés", UMR CNRS 7285, Université de Poitiers, Poitiers Cedex 9, France
| | - Noël Pairault
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Système Moléculaires Programmés", UMR CNRS 7285, Université de Poitiers, Poitiers Cedex 9, France
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France, Gif-sur-Yvette, France
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Campus de Beaulieu, Univ Rennes, Rennes Cedex, France
| | | | - Isabelle Opalinski
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Système Moléculaires Programmés", UMR CNRS 7285, Université de Poitiers, Poitiers Cedex 9, France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Système Moléculaires Programmés", UMR CNRS 7285, Université de Poitiers, Poitiers Cedex 9, France
| |
Collapse
|
38
|
Nicoli F, Baroncini M, Silvi S, Groppi J, Credi A. Direct synthetic routes to functionalised crown ethers. Org Chem Front 2021; 8:5531-5549. [PMID: 34603737 PMCID: PMC8477657 DOI: 10.1039/d1qo00699a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.
Collapse
Affiliation(s)
- Federico Nicoli
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
39
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
40
|
McCarney EP, Lovitt JI, Gunnlaugsson T. Mechanically Interlocked Chiral Self-Templated [2]Catenanes from 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Ligands. Chemistry 2021; 27:12052-12057. [PMID: 34106499 PMCID: PMC8457180 DOI: 10.1002/chem.202101773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/24/2022]
Abstract
We report the efficient self-templated formation of optically active 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) derived homocircuit [2]catenane enantiomers. This represents the first example of the enantiopure formation of chiral btp homocircuit [2]catenanes from starting materials consisting of a classical chiral element; X-ray diffraction crystallography enabled the structural characterization of the [2]catenane. The self-assembly reaction was monitored closely in solution facilitating the characterization of the pseudo-rotaxane reaction intermediate prior to mechanically interlocking the pre-organised system via ring-closing metathesis.
Collapse
Affiliation(s)
- Eoin P. McCarney
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - June I. Lovitt
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistryand SFI Synthesis and Solid State Pharmaceutical Centre (SSPC)Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin 2Ireland
| |
Collapse
|
41
|
Stereodynamics of E/ Z isomerization in rotaxanes through mechanical shuttling and covalent bond rotation. Chem 2021; 7:2137-2150. [PMID: 34435161 PMCID: PMC8367298 DOI: 10.1016/j.chempr.2021.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
The mechanical bond has opened a new world for structural and dynamic stereochemistry, which is still largely underexplored and whose significance for various applications is becoming increasingly evident. We demonstrate that designed rearrangements involving both covalent and mechanical bonds can be integrated in [2]rotaxanes, leading to interesting consequences in terms of E/Z isomerization mechanisms. Two entirely distinct and concomitant stereomutations, pertaining to the same stereogenic element but involving different kinds of linkages within the molecule, are observed and are thoroughly characterized. The rate of the two processes is affected in opposite ways upon changing solvent polarity; such a phenomenon can be used to selectively modify the rate of each motion and adjust the relative contribution of the two mechanisms to the isomerization. Although the movements are not synchronized, an analysis of the intriguing fundamental implications for transition state theory, reaction pathway bifurcation, and microscopic reversibility was triggered by our experimental observations. Rotaxanes that display E/Z stereoisomerism depending on the ring position Co-existence of two different stereomutations that yield the same product Mutual influence and opposite solvent dependence of the two dynamic processes Fundamental implications for microscopic reversibility and chemical equilibrium
The concurrence and interplay of different movements of molecular components within the same structure play a key role in providing function to naturally occurring molecular machines. Despite the progress made on artificial counterparts, the construction of molecular systems, where two (or more) motions are integrated together to produce an outcome, is still in its infancy. Molecules called rotaxanes, obtained by interlocking a ring with a dumbbell-shaped axle, are an appealing yet underexplored platform for this purpose. Here, we describe rotaxanes where two coexisting and radically different processes—rotation about a covalent bond and translation of the ring along the axle—lead to the same change in the overall molecular shape. These results are significant not only to improve our fundamental understanding of the way molecular components move but also to develop sophisticated artificial nanomachines capable of transforming or transmitting motion.
Collapse
|
42
|
Caprice K, Pál D, Besnard C, Galmés B, Frontera A, Cougnon FBL. Diastereoselective Amplification of a Mechanically Chiral [2]Catenane. J Am Chem Soc 2021; 143:11957-11962. [PMID: 34323081 PMCID: PMC8397304 DOI: 10.1021/jacs.1c06557] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Achiral [2]catenanes composed of rings with inequivalent sides may adopt chiral co-conformations. Their stereochemistry depends on the relative orientation of the interlocked rings and can be controlled by sterics or an external stimulus (e.g., a chemical stimulus). Herein, we have exploited this stereodynamic property to amplify a mechanically chiral (P)-catenane upon binding to (R)-1,1'-binaphthyl 2,2'-disulfonate, with a diastereomeric excess of 85%. The chirality of the [2]catenane was ascertained in the solid state by single crystal X-ray diffraction and in solution by NMR and CD spectroscopies. This study establishes a robust basis for the development of a new synthetic approach to access enantioenriched mechanically chiral [2]catenanes.
Collapse
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Dávid Pál
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Bartomeu Galmés
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Fabien B L Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
43
|
Abstract
All biological pumps are autonomous catalysts; they maintain the out-of-equilibrium conditions of the cell by harnessing the energy released from their catalytic decomposition of a chemical fuel1-3. A number of artificial molecular pumps have been reported to date4, but they are all either fuelled by light5-10 or require repetitive sequential additions of reagents or varying of an electric potential during each cycle to operate11-16. Here we describe an autonomous chemically fuelled information ratchet17-20 that in the presence of fuel continuously pumps crown ether macrocycles from bulk solution onto a molecular axle without the need for further intervention. The mechanism uses the position of a crown ether on an axle both to promote barrier attachment behind it upon threading and to suppress subsequent barrier removal until the ring has migrated to a catchment region. Tuning the dynamics of both processes20,21 enables the molecular machine22-25 to pump macrocycles continuously from their lowest energy state in bulk solution to a higher energy state on the axle. The ratchet action is experimentally demonstrated by the progressive pumping of up to three macrocycles onto the axle from bulk solution under conditions where barrier formation and removal occur continuously. The out-of-equilibrium [n]rotaxanes (characterized with n up to 4) are maintained for as long as unreacted fuel is present, after which the rings slowly de-thread. The use of catalysis to drive artificial molecular pumps opens up new opportunities, insights and research directions at the interface of catalysis and molecular machinery.
Collapse
|
44
|
Morise T, Muranaka A, Ban H, Harada M, Naito M, Yoshida K, Kobayashi N, Uchiyama M, Tokunaga Y. A Chiral [3]Rotaxane Comprising Achiral Bis-macrocyclic and Dumbbell-Shaped Components. Org Lett 2021; 23:2120-2124. [PMID: 33689384 DOI: 10.1021/acs.orglett.1c00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, we synthesized a molecularly chiral [3]rotaxane comprising a calix-bis-crown ether (as the macrocyclic component) and two unsymmetrical dialkylammonium salts (as dumbbell-shaped components) without any chirality in any of the individual components. Chiral high-performance liquid chromatography was used to separate the enantiomers, which were characterized by circular dichroism spectroscopy. Density functional theory calculations gave an insight into the absolute configuration of each [3]rotaxane.
Collapse
Affiliation(s)
- Takaaki Morise
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Atsuya Muranaka
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hayato Ban
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Kazuyuki Yoshida
- Forensic Science Laboratory, Fukui Prefectural Police Headquarters, Ohte, Fukui 910-8515, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Tokida, Ueda, Nagano 386-8567, Japan
| | - Masanobu Uchiyama
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
45
|
Li W, Gu Q, Wang X, Zhang D, Wang Y, He X, Wang W, Yang H. AIE‐Active Chiral [3]Rotaxanes with Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Qingyi Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yu‐Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
46
|
Li W, Gu Q, Wang X, Zhang D, Wang Y, He X, Wang W, Yang H. AIE‐Active Chiral [3]Rotaxanes with Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 60:9507-9515. [DOI: 10.1002/anie.202100934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Qingyi Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yu‐Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
47
|
Shen L, Yi M, Japip S, Han C, Tian L, Lau CH, Wang Y. Breaking through permeability–selectivity trade‐off of thin‐film composite membranes assisted with crown ethers. AIChE J 2021. [DOI: 10.1002/aic.17173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liang Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Susilo Japip
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore Singapore
| | - Chao Han
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Lian Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| | - Cher Hon Lau
- School of Engineering The University of Edinburgh Edinburgh UK
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan China
| |
Collapse
|
48
|
Enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy. Nat Commun 2021; 12:404. [PMID: 33452235 PMCID: PMC7811017 DOI: 10.1038/s41467-020-20372-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Asymmetric synthesis of mechanically planar chiral rotaxanes and topologically chiral catenanes has been a long-standing challenge in organic synthesis. Recently, an excellent strategy was developed based on diastereomeric synthesis of rotaxanes and catenanes with mechanical chirality followed by removal of the chiral auxiliary. On the other hand, its enantioselective approach has been quite limited. Here, we report enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution of the racemates via remote asymmetric acylation of a hydroxy group in the axis component, which provides an unreacted enantiomer in up to >99.9% ee in 29% yield (the theoretical maximum yield of kinetic resolution of racemate is 50%). While the rotaxane molecules are expected to have conformational complexity, our original catalysts enabled to discriminate the mechanical chirality of the rotaxanes efficiently with the selectivity factors in up to 16. Since the discovery of mechanically planar chiral rotaxanes and topologically chiral catenanes, their asymmetric synthesis has been a long-standing challenge. Here, the authors report enantioselective preparation of mechanically planar chiral rotaxanes with up to 99.9% ee in 29% yield.
Collapse
|
49
|
Bej S, Nandi M, Ghosh P. A Cd(ii) and Zn(ii) selective naphthyl based [2]rotaxane acts as an exclusive Zn(ii) sensor upon further functionalization with pyrene. Dalton Trans 2021; 50:294-303. [PMID: 33300925 DOI: 10.1039/d0dt03645e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new multi-functional [2]rotaxane, ROTX, has been synthesized via a Cu(i) catalysed azide-alkyne cycloaddition reaction between Ni(ii) templated azide terminated pseudorotaxane composed of a naphthalene based heteroditopic wheel, NaphMC, and an alkyne terminated stopper. Subsequently, ROTX has been functionalized with pyrene moieties to develop a bifluorophoric [2]rotaxane, PYROTX, having naphthalene and pyrene moieties. Detailed characterization of these two rotaxanes is performed by utilizing several techniques such as ESI-MS, (1D and 2D) NMR, UV/Vis and PL studies. Comparative metal ion sensing studies of NaphMC (a fluorophoric cyclic receptor), ROTX ([2]rotaxane with a naphthyl fluorophore) and PYROTX ([2]rotaxane having naphthyl and pyrene fluorophores) have been performed to determine the effect of dimensionality/functionalization on the metal ion selectivity. Although NaphMC fails to discriminate between metal ions, ROTX serves as a selective sensor for Zn(ii) and Cd(ii). Importantly, PYROTX shows exclusive selectivity towards Zn(ii) over various transition, alkali and alkaline earth metal ions including Cd(ii).
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
50
|
Gao X, Cui Z, Lin YJ, Jin GX. Construction of organometallic trefoil knots and one-dimensional chains featuring half-sandwich Cp*Rh corner units and an abnormal zwitterion ligand. Org Chem Front 2021. [DOI: 10.1039/d0qo01279c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An abnormal flexible O-coordinated zwitterion ligand L shows self-adaptive conformation behaviour in chemical self-assembly. Two trefoil knots were obtained with C-shaped ligand L and two novel 1D chains were obtained with Z-shaped ligand L.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Zheng Cui
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Yue-Jian Lin
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Guo-Xin Jin
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| |
Collapse
|