1
|
Satyanarayana ANV, Pattanayak P, Chatterjee T. HFIP-mediated, regio- and stereoselective hydrosulfenylation of ynamides: a versatile strategy for accessing ketene N, S-acetals. Org Biomol Chem 2025; 23:2235-2243. [PMID: 39885816 DOI: 10.1039/d4ob01984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Herein, we report an HFIP-mediated, versatile, sustainable, atom-economical, and regio- and stereoselective hydro-functionalization of ynamides with various S-nucleophiles (1 equiv.) such as thiols, thiocarboxylic acids, carbamates, xanthates, and O,O-diethyl S-hydrogen phosphorothioate to access a wide variety of stereodefined trisubstituted ketene N,S-acetals under mild conditions. This protocol requires only HFIP, which plays multiple roles, such as acting as a Brønsted acid to protonate the ynamide regioselectively at the beta carbon to generate the reactive keteniminium intermediate, stabilizing the intermediate as solvent through H-bonding. After the nucleophilic attack of the S-nucleophile on the keteniminium intermediate and deprotonation, HFIP is regenerated in most of the cases and can be easily recovered and recycled, revealing the high sustainability of the protocol. Remarkably, all the reactions are highly efficient and furnish ketene N,S-acetals in excellent yields and in many cases pure products were obtained just by washing the crude reaction mixture with pentane. Significantly, the green chemistry metrics of the protocol are found to be excellent.
Collapse
Affiliation(s)
- Appanapalli N V Satyanarayana
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad - 500078, India.
| | - Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad - 500078, India.
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad - 500078, India.
| |
Collapse
|
2
|
Lu XY, Qian YJ, Sun HL, Su MX, Wang ZZ, Jiang F, Zhou XY, Sun YX, Shi WL, Wan JR. Photoinduced decarboxylative germylation of α-fluoroacrylic acids: access to germylated monofluoroalkenes. Chem Commun (Camb) 2024; 60:6556-6559. [PMID: 38845407 DOI: 10.1039/d4cc02037e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Herein, a novel strategy is presented for the photoinduced decarboxylative and dehydrogenative cross-coupling of a wide range of α-fluoroacrylic acids with hydrogermanes. This methodology provides an efficient and robust approach for producing various germylated monofluoroalkenes with excellent stereoselectivity within a brief photoirradiation period. The feasibility of this reaction has been demonstrated through gram-scale reaction, conversion of germylated monofluoroalkenes, and modification of complex organic molecules.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Yu-Jun Qian
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Hai-Lun Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Meng-Xue Su
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Zi-Zhen Wang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Fan Jiang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Xin-Yue Zhou
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Yan-Xi Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Wan-Li Shi
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Ji-Ru Wan
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| |
Collapse
|
3
|
Wang J, Huang Z, Xu H, Nian Y, Wu B, He B, Schenk G. Discovery and Mechanistic Understanding of a Lipase from Rhizorhabdus dicambivorans for Efficient Ester Aminolysis in Aromatic Amines. CHEMSUSCHEM 2024; 17:e202301735. [PMID: 38183360 DOI: 10.1002/cssc.202301735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
The formation of amide bonds via aminolysis of esters by lipases generates a diverse range of amide frameworks in biosynthetic chemistry. Few lipases have satisfactory activity towards bulky aromatic amines despite numerous attempts to improve the efficiency of this transformation. Here, we report the discovery of a new intracellular lipase (Ndbn) with a broad substrate scope. Ndbn turns over a range of esters and aromatic amines in the presence of water (2 %; v/v), producing a high yield of multiple valuable amides. Remarkably, a higher conversion rate was observed for the synthesis of amides from substrates with aromatic amine rather than aliphatic amines. Molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) studies showcase the mechanism for the preference for aromatic amines, including a more suitable orientation, shorter catalytic distances in the active site pocket and a lower reaction barrier for aromatic than for aliphatic amines. This unique lipase is thus a promising biocatalyst for the efficient synthesis of aromatic amides.
Collapse
Affiliation(s)
- Jialing Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816, Jiangsu, China
| | - Zhuangzhuang Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816, Jiangsu, China
| | - Haodong Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin road, Nanjing, 210023, Jiangsu, China
| | - Yong Nian
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin road, Nanjing, 210023, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816, Jiangsu, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816, Jiangsu, China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Zhang M, Zheng Y, Jin Y, Jiang H, Wu W. Palladium-catalyzed ligand-regulated divergent synthesis of pyrrole[2,3- b]indoles and ureas from 2-ethynylanilines and isocyanides. Chem Commun (Camb) 2024; 60:2950-2953. [PMID: 38375635 DOI: 10.1039/d3cc05387c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Herein, a palladium-catalyzed and ligand-controlled protocol for the divergent synthesis of pyrrole[2,3-b]indole and urea derivatives has been described. Pyrrole[2,3-b]indoles ("cyclization on" products) via tandem cyclization of o-alkynylanilines with isocyanides in the absence of a ligand and ureas ("cyclization off" products) via oxidative amination of anilines with isocyanides in the presence of a ligand were obtained both in moderate to good yields with high selectivity. In this chemistry, cyclic and acyclic products were easily accessed with the same starting materials under the regulation of the ligand.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yongpeng Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yangbin Jin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Rogova T, Ahrweiler E, Schoetz MD, Schoenebeck F. Recent Developments with Organogermanes: their Preparation and Application in Synthesis and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314709. [PMID: 37899306 DOI: 10.1002/anie.202314709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
Within the sphere of traditional Pd0 /PdII cross coupling reactions, organogermanes have been historically outperformed both in terms of scope and reactivity by more conventional transmetalating reagents. Subsequently, this class of compounds has been largely underutilized as a coupling partner in bond-forming strategies. Most recent studies, however, have shown that alternative modes of activation of these notoriously robust building blocks transform organogermanes into the most reactive site of the molecule-capable of outcompeting other functional groups (such as boronic acids, esters and silanes) for both C-C and C-heteroatom bond formation. As a result, over the past few years, the literature has increasingly featured methodologies that explore the potential of organogermanes as chemoselective and orthogonal coupling partners. Herein we highlight some of these recent advances in the field of organogermane chemistry both with respect to their synthesis and applications in synthetic and catalytic transformations.
Collapse
Affiliation(s)
- Tatiana Rogova
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
6
|
Wang Y, Feng J, Li EQ, Jia Z, Loh TP. Recent advances in ligand-enabled palladium-catalyzed divergent synthesis. Org Biomol Chem 2023; 22:37-54. [PMID: 38050418 DOI: 10.1039/d3ob01679j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Developing efficient and straightforward strategies to rapidly construct structurally distinct and diverse organic molecules is one of the most fundamental tasks in organic synthesis, drug discovery and materials science. In recent years, divergent synthesis of organic functional molecules from the same starting materials has attracted significant attention and has been recognized as an efficient and powerful strategy. To achieve this objective, the proper adjustment of reaction conditions, such as catalysts, solvents, ligands, etc., is required. In this review, we summarized the recent efforts in chemo-, regio- and stereodivergent reactions involving acyclic and cyclic systems catalyzed by palladium complexes. Meanwhile, the reaction types, including carbonylative reactions, coupling reactions and cycloaddition reactions, as well as the probable mechanism have also been highlighted in detail.
Collapse
Affiliation(s)
- Yue Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Jinzan Feng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| |
Collapse
|
7
|
Xiong J, Yan M, Jin L, Song W, Xiao L, Xu D, Zhai C, Stephan DW, Guo J. B(C 6F 5) 3-catalyzed hydrogermylation of enones: a facile route to germacycles. Org Biomol Chem 2023; 21:8098-8101. [PMID: 37800180 DOI: 10.1039/d3ob01402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Organogermacycles are important skeletons for medicinal chemistry and materials. Herein, we reported a B(C6F5)3 mediated domino hydrogermylation reaction of enones with dihydrogermanes, affording 21 variants of organogermacycle compounds. These germacyclic compounds were obtained in good to excellent yields (up to 99% yield) under mild reaction conditions.
Collapse
Affiliation(s)
- Jiangkun Xiong
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Maying Yan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lvnan Jin
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Weihong Song
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lei Xiao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Dong Xu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| | - Jing Guo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| |
Collapse
|
8
|
Broniarz K, Hreczycho G. Access to Unsaturated Organogermanes via (De)Hydrosilylation Mediated by Cobalt Complexes. Org Lett 2023; 25:6528-6533. [PMID: 37646486 PMCID: PMC10496132 DOI: 10.1021/acs.orglett.3c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 09/01/2023]
Abstract
The functionalization of alkynylgermanes using hydrosilanes was accomplished by employing cobalt catalysis. Depending on the reactants used, the reaction can proceed via dehydrogenative coupling or hydrosilylation. Importantly, the presented method is characterized by mild reaction conditions, allowing rapid access to a wide range of organogermanes.
Collapse
Affiliation(s)
- Konstancja Broniarz
- Faculty of Chemistry, Adam
Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614 Poznan, Poland
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam
Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614 Poznan, Poland
| |
Collapse
|
9
|
Wang C, Wu J, Yan B, Ni C, Ma X, Yang Z. N
‐coordinated Aluminum Complexes Catalyze the Hydrostannation of Alkynes. ChemistrySelect 2023. [DOI: 10.1002/slct.202204405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chengzhi Wang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Jin Wu
- Xi'an Aerospace Propulsion Test Technique Institute Xi'an 710100 P. R. China
| | - Ben Yan
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Congjian Ni
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Zhi Yang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
10
|
Lin W, You L, Yuan W, He C. Cu-Catalyzed Enantioselective Hydrogermylation: Asymmetric Synthesis of Unnatural β-Germyl α-Amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Weidong Lin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Luo Y, Lv L, Li Z. Copper-Catalyzed Germyl-Azidation of Alkenes with Germanium Hydrides and Trimethylsilyl Azide. Org Lett 2022; 24:8052-8056. [DOI: 10.1021/acs.orglett.2c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yani Luo
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
12
|
Wang J, Liu D, Chang Z, Li Z, Fu Y, Lu X. Nickel‐Catalyzed Switchable Site‐Selective Alkene Hydroalkylation by Temperature Regulation**. Angew Chem Int Ed Engl 2022; 61:e202205537. [DOI: 10.1002/anie.202205537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jia‐Wang Wang
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| | - De‐Guang Liu
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| | - Zhe Chang
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| | - Zhen Li
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| | - Yao Fu
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| | - Xi Lu
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
13
|
Ligand‐Controlled Palladium‐Catalyzed Regiodivergent Defluorinative Allylation of
gem
‐Difluorocyclopropanes
via
σ‐Bond Activation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Charge-regulated regioselective mechanism of bicobalt-catalyzed hydrogermylation of alkynes: DFT investigation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wang JW, Liu DG, Chang Z, Li Z, Fu Y, Lu X. Nickel‐Catalyzed Switchable Site‐Selective Alkene Hydroalkylation by Temperature Regulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia-Wang Wang
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - De-Guang Liu
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Zhe Chang
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Zhen Li
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Yao Fu
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Xi Lu
- University of Science and Technology of China Chemistry Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
16
|
Wu FP, Wu XF. Catalyst-controlled selective borocarbonylation of benzylidenecyclopropanes: regiodivergent synthesis of γ-vinylboryl ketones and β-cyclopropylboryl ketones. Chem Sci 2022; 13:4321-4326. [PMID: 35509466 PMCID: PMC9006926 DOI: 10.1039/d2sc00840h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Regioselective catalytic multi-functionalization reactions enable the rapid synthesis of complexed products from the same precursors. In this communication, we present a method for the regiodivergent borocarbonylation of benzylidenecyclopropanes with aryl iodides. Various γ-vinylboryl ketones and β-cyclopropylboryl ketones were produced in moderate to good yields with excellent regioselectivity from the same substrates. The choice of the catalyst is key for the regioselectivity control: γ-vinylboryl ketones were produced selectively with IPrCuCl and Pd(dppp)Cl2 as the catalytic system, while the corresponding β-cyclopropylboryl ketones were obtained in high regioselectivity with Cu(dppp)Cl, [Pd(η3-cinnamyl)Cl]2 and xantphos as the catalytic system. Moreover, γ-vinylboryl ketones and β-cyclopropylboryl ketones were successfully transformed into several other value-added products. A novel procedure for regiodivergent borocarbonylation of benzylidenecyclopropanes has been developed. A variety of valuable γ-vinylboryl ketones and β-cyclopropylboryl ketones can be obtained selectively in excellent yields.![]()
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
17
|
Dahiya A, Schoenebeck F. Direct C-H Dehydrogenative Germylation of Terminal Alkynes with Hydrogermanes. Org Lett 2022; 24:2728-2732. [PMID: 35364815 DOI: 10.1021/acs.orglett.2c00840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A direct C(sp)-H germylation of terminal alkynes with triethyl germanium hydride is reported. The method is operationally simple and makes use of B(C6F5)3 catalysis in combination with 2,6-lutidine as an organic base. Exclusive selectivity for dehydrogenative germylation of the alkyne over the competing hydrogermylation is observed.
Collapse
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
18
|
Kassamba S, Perez-Luna A, Ferreira F, Durandetti M. Modular access to substituted germoles by intramolecular germylzincation. Chem Commun (Camb) 2022; 58:3901-3904. [PMID: 35234232 DOI: 10.1039/d1cc07163g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular alkyne germylzincation giving access to a wide range of germoles is achieved from triarylhydrogermanes in the presence of diethylzinc and AIBN as radical initiator. The reaction proceeds through activation of the Ge-H bond, leading to a heteroarylzinc intermediate after cyclisation, which can then be involved in a post-functionalisation reaction. Our results show that only 5-endo-dig cyclizations occur, with benzogermoles being exclusively obtained.
Collapse
Affiliation(s)
- Seydou Kassamba
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000 Rouen, France.
| | - Alejandro Perez-Luna
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75005 Paris, France
| | - Franck Ferreira
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75005 Paris, France
| | - Muriel Durandetti
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000 Rouen, France.
| |
Collapse
|
19
|
Abstract
The concurrent incorporation of a germyl fragment and another functional group (beyond the hydrogen atom) across the C═C double bond is a highly appealing yet challenging task. Herein we demonstrate the efficient germyl peroxidation of alkenes with germanium hydrides and tert-butyl hydroperoxide via a copper-catalyzed three-component radical relay strategy. This protocol exhibits excellent functional group tolerance and exquisite chemo- and regioselectivity under mild conditions and represents a rare example of constructing synthetically challenging metal-embedded organic peroxides.
Collapse
Affiliation(s)
- Yani Luo
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Boxia Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
20
|
A Rosin-Based Surfactant Enabling Cross-Couplings of Vinyl Dibromides with Sulfonamides in Water. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Tribedi S, Sunoj RB. Molecular insights into chirality transfer from double axially chiral phosphoric acid in a synergistic enantioselective intramolecular amination. Chem Sci 2022; 13:1323-1334. [PMID: 35222916 PMCID: PMC8809490 DOI: 10.1039/d1sc05749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
In the most general practice of asymmetric catalysis, a chiral catalyst, typically bearing a center or an axis of chirality, is employed as the chiral source for imparting enantiocontrol over the developing product. Given the current interest toward optically pure compounds, various forms of chiral induction enabled by diverse chiral sources as well as the use of multiple catalysts under one-pot conditions have been in focus. In one such promising development, an achiral N-sulfonamide protected 1,6-amino allyl alcohol (NaphSO2NHCH2C(Ph)2CH2CH
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CHCH2OH) was subjected to Tsuji–Trost activation and an intramolecular amination to form important chiral pyrrolidine frameworks. A dual catalytic system comprising Pd(PPh3)4 and DAPCy (β-cyclohexyl substituted double axially chiral phosphoric acid derived from two homocoupled BINOL backbones with a dynamic central chiral axis) under mild conditions was reported to offer quantitative conversion with an ee of 95%. Here, we provide molecular insights into the origin of chiral induction by DAPCy, as obtained through a comprehensive density functional theory (SMD(toluene)/B3LYP-D3/6-31G**,Pd(SDD)) investigation. Two key steps in the mechanism are identified to involve a cooperative mode of activation of the Pd-bound allyl alcohol in the form of a Pd-π-allyl moiety at one end of the substrate, followed by an intramolecular nucleophilic addition of N-sulfonamide from the other end to yield a pyrrolidine derivative bearing an α-vinyl stereogenic center. (S,R,S)-DAPCy is found to steer the dehydroxylation to yield a Pd-π-allyl intermediate with a suitably poised si prochiral face for the nucleophilic addition. In the enantiocontrolled (as well as the turn-over determining step) nucleophilic addition, the chiral catalyst is identified to serve as a chiral phosphate counterion. The chiral induction is facilitated by a series of N–H⋯O, C–H⋯O, C–H⋯π, lone pair (lp)⋯π, O–H⋯O, O–H⋯π, and π⋯π noncovalent interactions, which is noted as more effective in the lower energy C–N bond formation transition state through the si prochiral face of the Pd-π-allyl moiety. These insights into the novel dynamic axially double chiral catalyst could be valuable toward exploiting such modes of stereoinduction. The origin of enantiocontrol in an intramolecular amination involving Pd(PPh3)4 and a double axially chiral phosphoric acid (DAPCy) dual catalytic system is traced to a more effective series of noncovalent interactions in the lower energy C–N bond formation transition state.![]()
Collapse
Affiliation(s)
- Soumi Tribedi
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
22
|
Xu Q, Wei L, Zhang Z, Xiao B. Copper Promoted Synthesis of Tetraalkylgermanes from Germanium Electrophiles and Alkyl Bromides ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
|
24
|
Gong W, Fu D, Zhong K, Ni H, He X, Shan C, Li R, Lan Y. What is the difference between mono- and biphosphine ligands? Revealing the chemoselectivity in Pd-catalysed carbenation of bromonaphthalene. Org Chem Front 2022. [DOI: 10.1039/d2qo00910b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligand-controlled chemoselectivity is an important topic in organometallic chemistry.
Collapse
Affiliation(s)
- Wenting Gong
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Dongmin Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Hao Ni
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Xiaoqian He
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Chunhui Shan
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Rong Li
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
25
|
Xu QH, Wei LP, Xiao B. Alkyl-GeMe3: Neutral Metalloid Radical Precursors upon Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2021; 61:e202115592. [PMID: 34967484 DOI: 10.1002/anie.202115592] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/07/2022]
Abstract
Single-electron transfer (SET) oxidation of ionic hypervalent complexes, representatively alkyltrifluoroborates (Alkyl-BF3-) and alkylbis(catecholato)silicates (Alkyl-Si(cat)2-), have contributed substantially to alkyl radical generation compared to alkali or alkaline earth organometallics because of their excellent activity-stability balance. Herein, we report another proposal using neutral metalloid compounds, Alkyl-GeMe3, as radical precursors. Compared to Alkyl-BF3- and Alkyl-Si(cat)2-, Alkyl-GeMe3 show comparable activity in radical addition reactions. Moreover, Alkyl-GeMe3 gives the first success of group 14 tetraalkyl nucleophiles in nickel catalyzed cross-coupling. Meanwhile, the neutral nature of these organogermanes supplemented the limination of ionic precursors in purification and derivatization. A preliminary mechanism study corresponds to the procedure that alkyl radical generates from tetraalkylgermane radical cation with the assistance of a nucleophile, which may also enlighten the development of more non-ionic alkyl radical precursors with metalloid center.
Collapse
Affiliation(s)
- Qing-Hao Xu
- USTC: University of Science and Technology of China, Department of Chemistry, CHINA
| | - Li-Pu Wei
- USTC: University of Science and Technology of China, Department of Chemistry, CHINA
| | - Bin Xiao
- University of Science and Technology of China, Department of Chemistry, Jinzhai Road 96#, 230026, Hefei, CHINA
| |
Collapse
|
26
|
Xu QH, Wei LP, Xiao B. Alkyl‒GeMe3: Neutral Metalloid Radical Precursors upon Visible‐Light Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing-Hao Xu
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Li-Pu Wei
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Bin Xiao
- University of Science and Technology of China Department of Chemistry Jinzhai Road 96# 230026 Hefei CHINA
| |
Collapse
|
27
|
Queen AE, Selmani A, Schoenebeck F. Hydrogermylation of Alkenes via Organophotoredox-Initiated HAT Catalysis. Org Lett 2021; 24:406-409. [PMID: 34914403 DOI: 10.1021/acs.orglett.1c04088] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This Letter discloses the straightforward hydrogermylation of olefins under visible-light organophotoredox-initiated HAT catalysis conditions to yield primary and secondary alkyl germanes at room temperature. The protocol is operationally simple, metal-free, and tolerant of various functional groups. The synthesized alkyl germanes proved to be highly robust toward acidic, basic, or oxidizing conditions and chemical transformations of Csp2-GeEt3 or Csp2-BPin functionalities in their presence.
Collapse
Affiliation(s)
- Adele E Queen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
28
|
Hajiloo Shayegan M, Li ZY, Cui X. Ligand-Controlled Regiodivergence for Catalytic Stereoselective Semireduction of Allenamides. Chemistry 2021; 28:e202103402. [PMID: 34693580 DOI: 10.1002/chem.202103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Ligand-controlled regiodivergence has been developed for catalytic semireduction of allenamides with excellent chemo- and stereocontrol. This system also provides an example of catalytic regiodivergent semireduction of allenes for the first time. The divergence of the semireduction is enabled by ligand switch with the same palladium pre-catalyst under operationally simple and mild conditions. Monodentate ligand XPhos exclusively promotes selective 1,2-semireduction to afford allylic amides, while bidentate ligand BINAP completely switched the regioselectivity to 2,3-semireduction, producing (E)-enamide derivatives.
Collapse
Affiliation(s)
| | - Zhong-Yuan Li
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xin Cui
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
29
|
Sahoo MK, Kim D, Chang S, Park JW. Regioselective Access to α-Vinylsilanes and α-Vinylgermanes by Cobalt-Catalyzed Migratory Hydrofunctionalization of 2-Alkynes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manoj Kumar Sahoo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jung-Woo Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
30
|
Luo Y, Tian T, Nishihara Y, Lv L, Li Z. Iron-catalysed radical cyclization to synthesize germanium-substituted indolo[2,1- a]isoquinolin-6(5 H)-ones and indolin-2-ones. Chem Commun (Camb) 2021; 57:9276-9279. [PMID: 34519301 DOI: 10.1039/d1cc03907e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A simple and efficient strategy for iron-catalysed cascade radical cyclization was developed, by which an array of germanium-substituted indolo[2,1-a]isoquinolin-6(5H)-ones and indolin-2-ones were obtained in one pot with germanium hydrides as radical precursors. A rapid intramolecular radical trapping mode enabled the selective arylgermylation of alkenes over the prevalent hydrogermylation reaction.
Collapse
Affiliation(s)
- Yani Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Tian Tian
- Department of Chemistry, Renmin University of China, Beijing 100872, China. .,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
31
|
Shandilya S, Protim Gogoi M, Dutta S, Sahoo AK. Gold-Catalyzed Transformation of Ynamides. CHEM REC 2021; 21:4123-4149. [PMID: 34432929 DOI: 10.1002/tcr.202100159] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Indexed: 11/07/2022]
Abstract
Ynamide, a unique species with inherited polarization of nitrogen lone pair electron to triple bond, has been largely used for the developement of novel synthetic methods and the construction of unusual N-bearing heterocycles. The reaction versatility of ynamide on umpolung reactivity, radical reactions and asymmetric synthesis have been recently reviewed. This review provides an overall scenic view into the gold catalyzed transformation of ynamides. The ynamides reactivity towards nitrogen-transfer reagents, such as azides, nitrogen ylides, isoxazoles, and anthranils; oxygen atom-transfer reagents, like nitrones, sulfoxides, and pyridine N-oxides; and carbon nucleophiles under gold catalysis are herein uncovered. The scope as well the mechanistic insights of each reaction is also briefed.
Collapse
Affiliation(s)
| | | | - Shubham Dutta
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| |
Collapse
|
32
|
Selmani A, Schoenebeck F. Transition-Metal-Free, Formal C–H Germylation of Arenes and Styrenes via Dibenzothiophenium Salts. Org Lett 2021; 23:4779-4784. [DOI: 10.1021/acs.orglett.1c01505] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
33
|
Deng Y, Zhang J, Bankhead B, Markham JP, Zeller M. Photoinduced oxidative cyclopropanation of ene-ynamides: synthesis of 3-aza[ n.1.0]bicycles via vinyl radicals. Chem Commun (Camb) 2021; 57:5254-5257. [PMID: 33973595 DOI: 10.1039/d1cc02016a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first photoinduced synthesis of polyfunctionalized 3-aza[n.1.0]bicycles from readily available ene-ynamides and 2,6-lutidine N-oxide using an organic acridinium photocatalyst is reported. Applying a photocatalytic strategy to the reactive distonic cation vinyl radical intermediate from ynamide, a series of bio-valuable 3-azabicycles, including diverse 3-azabicyclio[4.1.0]heptanes and 3-azabicyclo[5.1.0]octanes that are challenging to accomplish using traditional methods, have been successfully synthesized in good to high yields under mild and metal-free conditions. Mechanistic studies are consistent with the photocatalyzed single-electron oxidation of ene-ynamide and the intermediacy of a putative cationic vinyl radical in this transformation. Importantly, this strategy provides new access to the development of photocatalytic vinyl radical cascades for the synthesis of structurally sophisticated substrates.
Collapse
Affiliation(s)
- Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, Indiana 46202, USA.
| | - Jason Zhang
- Chemistry Department, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Bradley Bankhead
- Chemistry Department, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Jonathan P Markham
- Chemistry Department, Western Kentucky University, Bowling Green, KY 42101, USA
| | | |
Collapse
|
34
|
de la Vega-Hernández K, Chemla F, Ferreira F, Jackowski O, Perez-Luna A. Radical Germylzincation of Aryl- and Alkyl-Substituted Internal Alkynes. Org Lett 2021; 23:4426-4430. [PMID: 34032457 DOI: 10.1021/acs.orglett.1c01367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The stereoselective germylzincation of internal alkynes delivering trisubstituted vinylgermanes is achieved via a radical chain process involving Ph3GeH and Et2Zn with AIBN as the initiator. Excellent levels of regiocontrol are observed for nonsymmetric (aryl, alkyl)-substituted alkynes and for propargylic alcohols with aryl-, alkyl-, or silyl-substituted alkynes. The germylzincation reaction can be combined in one pot with the Cu(I)-mediated electrophilic substitution of the C(sp2)-Zn bond to obtain synthetically challenging tetrasubstituted vinylgermanes.
Collapse
Affiliation(s)
| | - Fabrice Chemla
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75005 Paris, France
| | - Franck Ferreira
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75005 Paris, France
| | - Olivier Jackowski
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75005 Paris, France
| | - Alejandro Perez-Luna
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75005 Paris, France
| |
Collapse
|
35
|
Sun F, Yang C, Ni J, Cheng GJ, Fang X. Ligand-Controlled Regiodivergent Nickel-Catalyzed Hydrocyanation of Silyl-Substituted 1,3-Diynes. Org Lett 2021; 23:4045-4050. [PMID: 33979524 DOI: 10.1021/acs.orglett.1c01262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A regiodivergent nickel-catalyzed hydrocyanation of 1-aryl-4-silyl-1,3-diynes is reported. When appropriate bisphosphine and phosphine-phosphite ligands are applied, the same starting materials can be converted into two different enynyl nitriles with good yields and high regioselectivities. The DFT calculations unveiled that the structural features of different ligands bring divergent alkyne insertion modes, which in turn lead to different regioselectivities. Moreover, the synthetic value of the cyano-containing 1,3-enynes has been demonstrated with several downstream transformations.
Collapse
Affiliation(s)
- Feilong Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chengxi Yang
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Jie Ni
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
36
|
Nie S, Lu A, Kuker EL, Dong VM. Enantioselective Hydrothiolation: Diverging Cyclopropenes through Ligand Control. J Am Chem Soc 2021; 143:6176-6184. [PMID: 33856804 DOI: 10.1021/jacs.1c00939] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this article, we advance Rh-catalyzed hydrothiolation through the divergent reactivity of cyclopropenes. Cyclopropenes undergo hydrothiolation to provide cyclopropyl sulfides or allylic sulfides. The choice of bisphosphine ligand dictates whether the pathway involves ring-retention or ring-opening. Mechanistic studies reveal the origin for this switchable selectivity. Our results suggest the two pathways share a common cyclopropyl-Rh(III) intermediate. Electron-rich Josiphos ligands promote direct reductive elimination from this intermediate to afford cyclopropyl sulfides in high enantio- and diastereoselectivities. Alternatively, atropisomeric ligands (such as DTBM-BINAP) enable ring-opening from the cyclopropyl-Rh(III) intermediate to generate allylic sulfides with high enantio- and regiocontrol.
Collapse
Affiliation(s)
- Shaozhen Nie
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Alexander Lu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Erin L Kuker
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
37
|
Louka A, Stratakis M. Synthesis of Vinylgermanes via the Au/TiO2-Catalyzed cis-1,2-Digermylation of Alkynes and the Regioselective Hydrogermylation of Allenes. Org Lett 2021; 23:3599-3603. [DOI: 10.1021/acs.orglett.1c00997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anastasia Louka
- Department of Chemistry, University of Crete, Voutes 71003, Heraklion, Greece
| | - Manolis Stratakis
- Department of Chemistry, University of Crete, Voutes 71003, Heraklion, Greece
| |
Collapse
|
38
|
Radzhabov MR, Mankad NP. Cobalt-Catalyzed ( E)-β-Selective Hydrogermylation of Terminal Alkynes. Org Lett 2021; 23:3221-3226. [PMID: 33822635 DOI: 10.1021/acs.orglett.1c00928] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cobalt-catalyzed method for the hydrogermylation of alkynes is reported, providing a selective and accessible route to (E)-β-vinyl(trialkyl)germanes from terminal alkynes and HGeBu3. As shown in multiple examples, the developed method demonstrates a broad functional group tolerance an practical utility for late-stage hydrogermylation of natural products. The method is compatible with alkynes bearing both aryl and alkyl substituents, providing unrivaled selectivity for previously challenging 1° alkyl-substituted alkynes. Moreover, the catalyst used in this method, Co2(CO)8, is a cheap and commercially available reagent. Conducted mechanistic studies supported the syn-addition of Bu3GeH to an alkyne π-complex.
Collapse
Affiliation(s)
- Maxim R Radzhabov
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
39
|
Hu X, Xie X, Gan Y, Wang G, Liu Y. Nickel-Catalyzed β-Regioselective Amination/Cyclization of Ynamide-Nitriles with Amines: Synthesis of Functionalized 3-Aminoindoles and 4-Aminoisoquinolines. Org Lett 2021; 23:1296-1301. [PMID: 33533626 DOI: 10.1021/acs.orglett.0c04278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly regioselective nickel/Lewis acid catalyzed amination/cyclization of ynamide-nitriles with amines involving β-addition has been developed. The reaction offers an attractive and efficient route for the synthesis of 3-aminoindoles and 4-aminoisoquinoline derivatives. The Ts-group on the ynamide acts as a directing group to produce the alkenyl nickel species with high regioselectivity.
Collapse
Affiliation(s)
- Xiaoping Hu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Xin Xie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Yi Gan
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Gaonan Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|
40
|
Wu FP, Wu XF. Ligand-Controlled Copper-Catalyzed Regiodivergent Carbonylative Synthesis of α-Amino Ketones and α-Boryl Amides from Imines and Alkyl Iodides. Angew Chem Int Ed Engl 2021; 60:695-700. [PMID: 32991025 DOI: 10.1002/anie.202012251] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Regioselective transformation is among the long-standing challenges in organic synthesis. In this communication, a copper-catalyzed selectivity controlled regiodivergent borocarbonylation of imines with alkyl iodides has been developed. Various α-amino ketones and α-boryl amides were produced in moderate to good yields from the same substrates. The choice of the ligand is key for the regioselectivity control: α-amino ketones were produced selectively in good yields with (p-CF3 C6 H4 )3 P as the ligand, whereas the corresponding α-boryl amides were obtained with high regioselectivities when using Me IMes as the ligand.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
41
|
Zhou J, Liu D, Bai C, Bao A, Muschin T, Baiyin M, Bao YS. Transient directing group controlled regiodivergent C(sp 3)–H and C(sp 2)–H polyfluoroalkoxylation of aromatic aldehydes. Org Chem Front 2021. [DOI: 10.1039/d1qo00895a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel method for achieving regiodivergent C(sp3)–H and C(sp2)–H polyfluoroalkoxylation in the o-methyl benzaldehyde framework by altering the transient directing group is disclosed.
Collapse
Affiliation(s)
- Jiayu Zhou
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Dan Liu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Agula Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Tegshi Muschin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Menghe Baiyin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Yong-Sheng Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China
| |
Collapse
|
42
|
Kameo H, Mushiake A, Isasa T, Matsuzaka H, Bourissou D. Pd/Ni-Catalyzed Germa-Suzuki coupling via dual Ge–F bond activation. Chem Commun (Camb) 2021; 57:5004-5007. [DOI: 10.1039/d1cc01392k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pd/Ni → Ge–F interactions supported by phosphine-chelation were found to trigger dual activation of Ge–F bonds under mild conditions.
Collapse
Affiliation(s)
- Hajime Kameo
- Department of Chemistry
- Graduate School of Science
- Osaka Prefecture University
- Japan
| | - Akihiro Mushiake
- Department of Chemistry
- Graduate School of Science
- Osaka Prefecture University
- Japan
| | - Tomohito Isasa
- Department of Chemistry
- Graduate School of Science
- Osaka Prefecture University
- Japan
| | - Hiroyuki Matsuzaka
- Department of Chemistry
- Graduate School of Science
- Osaka Prefecture University
- Japan
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée
- Université Paul Sabatier/CNRS UMR 5069
- 31062 Toulouse Cedex 09
- France
| |
Collapse
|
43
|
Liu J, Song H, Wang T, Jia J, Tong QX, Tung CH, Wang W. Iron-Catalyzed Regiodivergent Hydrostannation of Alkynes: Intermediacy of Fe(IV)-H versus Fe(II)-Vinylidene. J Am Chem Soc 2020; 143:409-419. [PMID: 33371677 DOI: 10.1021/jacs.0c11448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report an iron system, Cp*Fe(1,2-R2PC6H4X), which controls the Markovnikov and anti-Markovnikov hydrostannation of alkynes by tuning the ionic metal-heteroatom bonds (Fe-X) reactivity. The sequential addition of nBu3SnH to the iron-amido catalyst (1, X = HN-, R = Ph) affords a distannyl Fe(IV)-H species responsible for syn-addition of the Sn-H bond across the C≡C bond to produce branched α-vinylstannanes. Activation of the C(sp)-H bond of alkynes by an iron-aryloxide catalyst (2, X = O-, R = Cy) affords an iron(II) vinylidene intermediate, allowing for gem-addition of the Sn-H to the terminal-carbon producing β-vinylstannanes. These catalytic reactions exhibit excellent regioselectivity and broad functional group compatibility and enable the large-scale synthesis of diverse vinylstannanes. Many new reactions have been established based on such a synthetic Fe-X platform to demonstrate that the initial step of the catalysis is conveniently controlled by the activation of either the tin hydride or the alkyne substrate.
Collapse
Affiliation(s)
- Jianguo Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Heng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tianlin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jiong Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qing-Xiao Tong
- Department of Chemistry, Shantou University, Shantou 515063, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
44
|
Wu F, Wu X. Ligand‐Controlled Copper‐Catalyzed Regiodivergent Carbonylative Synthesis of α‐Amino Ketones and α‐Boryl Amides from Imines and Alkyl Iodides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fu‐Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|