1
|
Morin E, Muzzy E, Carlini AS. Surface Functionalization of Elastomers with Biopolymers. Methods Mol Biol 2025; 2902:197-227. [PMID: 40029605 DOI: 10.1007/978-1-0716-4402-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Biopolymer coatings on elastomeric surfaces have significant impact for advancements in biomedicine as they combine flexible devices with complex biological functionality. Biopolymers offer increased ability for antimicrobial coatings, sensing of relevant biological markers, and controlled drug delivery. The methodologies available to conjugate these important biopolymers to flexible elastomeric substrates are vast and rapidly evolving. This chapter aims to compile methodologies across the application space of biopolymer conjugation to elastomers. We present a guide to the field and methods ranging from surface activation and functionalization, grafting-to and grafting-from of biopolymers, and characterization of the resulting substrates.
Collapse
Affiliation(s)
- Emilie Morin
- Department of Chemistry & Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Elana Muzzy
- Department of Biological Engineering, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Andrea S Carlini
- Department of Chemistry & Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, USA.
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA, USA.
- Interdisciplinary Program in Quantitative Biosciences, University of California at Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
2
|
Seo K, Hwang K, Nam KM, Kim MJ, Song YK, Kim CY. Nucleolin-Targeting AS1411 Aptamer-Conjugated Nanospheres for Targeted Treatment of Glioblastoma. Pharmaceutics 2024; 16:566. [PMID: 38675227 PMCID: PMC11055028 DOI: 10.3390/pharmaceutics16040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Post-operative chemotherapy is still required for the treatment of glioblastoma (GBM), for which nanocarrier-based drug delivery has been identified as one of the most effective methods. However, the blood-brain barrier (BBB) and non-specific delivery to non-tumor tissues can significantly limit drug accumulation in tumor tissues and cause damage to nearby normal tissues. This study describes a targeted cancer therapy approach that uses AS1411 aptamer-conjugated nanospheres (100-300 nm in size) loaded with doxorubicin (Dox) to selectively identify tumor cells overexpressing nucleolin (NCL) proteins. The study demonstrates that the active target model, which employs aptamer-mediated drug delivery, is more effective than non-specific enhanced permeability and maintenance (EPR)-mediated delivery and passive drug delivery in improving drug penetration and maintenance in tumor cells. Additionally, the study reveals the potential for anti-cancer effects through 3D spheroidal and in vivo GBM xenograft models. The DNA-protein hybrid nanospheres utilized in this study offer numerous benefits, such as efficient synthesis, structural stability, high drug loading, dye labeling, biocompatibility, and biodegradability. When combined with nanospheres, the 1411 aptamer has been shown to be an effective drug delivery carrier allowing for the precise targeting of tumors. This combination has the potential to produce anti-tumor effects in the active targeted therapy of GBM.
Collapse
Affiliation(s)
- Kyeongjin Seo
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (K.S.); (K.H.); (K.M.N.)
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (K.S.); (K.H.); (K.M.N.)
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyung Mi Nam
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (K.S.); (K.H.); (K.M.N.)
| | - Min Ju Kim
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea;
| | - Yoon-Kyu Song
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (K.S.); (K.H.); (K.M.N.)
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Lu J, Dai Y, He Y, Zhang T, Zhang J, Chen X, Jiang C, Lu H. Organ/Cell-Selective Intracellular Delivery of Biologics via N-Acetylated Galactosamine-Functionalized Polydisulfide Conjugates. J Am Chem Soc 2024; 146:3974-3983. [PMID: 38299512 DOI: 10.1021/jacs.3c11914] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.
Collapse
Affiliation(s)
- Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuanhao Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yahui He
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Jing Zhang
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
4
|
Wang C, He W, Wang F, Yong H, Bo T, Yao D, Zhao Y, Pan C, Cao Q, Zhang S, Li M. Recent progress of non-linear topological structure polymers: synthesis, and gene delivery. J Nanobiotechnology 2024; 22:40. [PMID: 38280987 PMCID: PMC10821314 DOI: 10.1186/s12951-024-02299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024] Open
Abstract
Currently, many types of non-linear topological structure polymers, such as brush-shaped, star, branched and dendritic structures, have captured much attention in the field of gene delivery and nanomedicine. Compared with linear polymers, non-linear topological structural polymers offer many advantages, including multiple terminal groups, broad and complicated spatial architecture and multi-functionality sites to enhance gene delivery efficiency and targeting capabilities. Nevertheless, the complexity of their synthesis process severely hampers the development and applications of nonlinear topological polymers. This review aims to highlight various synthetic approaches of non-linear topological architecture polymers, including reversible-deactivation radical polymerization (RDRP) including atom-transfer radical polymerization (ATRP), nitroxide-mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization, click chemistry reactions and Michael addition, and thoroughly discuss their advantages and disadvantages, as well as analyze their further application potential. Finally, we comprehensively discuss and summarize different non-linear topological structure polymers for genetic materials delivering performance both in vitro and in vivo, which indicated that topological effects and nonlinear topologies play a crucial role in enhancing the transfection performance of polymeric vectors. This review offered a promising guideline for the design and development of novel nonlinear polymers and facilitated the development of a new generation of polymer-based gene vectors.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Wei He
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Feifei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Tao Bo
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dingjin Yao
- Shanghai EditorGene Technology Co., Ltd, Shanghai, 200000, China
| | - Yitong Zhao
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Chaolan Pan
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qiaoyu Cao
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
5
|
Yao Y, Gao L, Cai C, Lin J, Lin S. Supramolecular Polymerization of Polymeric Nanorods Mediated by Block Copolymers. Angew Chem Int Ed Engl 2023; 62:e202216872. [PMID: 36604302 DOI: 10.1002/anie.202216872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Introducing a second component is an effective way to manipulate polymerization behavior. However, this phenomenon has rarely been observed in colloidal systems, such as polymeric nanoparticles. Here, we report the supramolecular polymerization of polymeric nanorods mediated by block copolymers. Experimental observations and simulation results illustrate that block copolymers surround the polymeric nanorods and mainly concentrate around the two ends, leaving the hydrophobic side regions exposed. These polymeric nanorods connect in a side-by-side manner through hydrophobic interactions to form bundles. As polymerization progresses, the block copolymers gradually deposit onto the bundles and finally assemble into helical nanopatterns on the outermost surface, which terminates the polymerization. It is anticipated that this work could offer inspiration for a general strategy of controllable supramolecular polymerization.
Collapse
Affiliation(s)
- Yike Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Wang R, Xiao P, Yu B, Sun Y, Li J, Zhang L, Jiang X, Wu W. Fluorination Effects on the Drug Delivery Property of Cylindrical Polymer Brushes. ACS APPLIED BIO MATERIALS 2022; 5:5924-5932. [PMID: 36417709 DOI: 10.1021/acsabm.2c00870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fluorination has been widely applied to improving the properties of small-molecule drugs. However, relatively little is known about the effects of fluorination on the drug delivery property of nanomaterials. In this paper, we synthesized a fluoroalkane-modified cylindrical polymer brush (CPB) BCPB-F and an alkane-modified analogue BCPB-H. Doxorubicin (DOX) was used as a model drug and was loaded onto the CPBs through a pH-responsive acylhydrazone linkage. High drug loading and good water solubility were achieved. The in vitro and in vivo experiments suggested that fluorination played an important role in improving the cellular uptake, blood circulation, tissue permeability, and tumor targeting ability of CPBs. Due to these superiorities, the DOX-loaded BCPB-F exhibited excellent antitumor efficacy and eradicated the tumors of mice after five-dose treatments. The well-defined structures of the drug-free and drug-loaded CPBs guaranteed the accuracy of the results. This work demonstrates that fluorination is a promising strategy to improve the overall properties of nanomedicines.
Collapse
Affiliation(s)
- Ruonan Wang
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Panpan Xiao
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bo Yu
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Sun
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jia Li
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ling'e Zhang
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, P. R. China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wei Wu
- Department of Polymer Science & Engineering, State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Yuan Y, Liu Y, Liu K, Hua J. Structurally controllable anisotropic polymer brushes and their application in antifouling nanocoatings. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Cai T, Zhao S, Lin J, Zhang L. Kinetically Programming Copolymerization-like Coassembly of Multicomponent Nanoparticles with DNA. ACS NANO 2022; 16:15907-15916. [PMID: 36129379 DOI: 10.1021/acsnano.2c02867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Programmable coassembly of multicomponent nanoparticles (NPs) into heterostructures has the capability to build upon nanostructured metamaterials with enhanced complexity and diversity. However, a general understanding of how to manipulate the sequence-defined heterostructures using straightforward concepts and quantitatively predict the coassembly process remains unreached. Drawing inspiration from the synthetic concepts of molecular block copolymers is extremely beneficial to achieve controllable coassembly of NPs and access mesoscale structuring mechanisms. We herein report a general paradigm of kinetic pathway guidance for the controllable coassembly of bivalent DNA-functionalized NPs into regular block-copolymer-like heterostructures via the stepwise polymerization strategy. By quantifying the coassembly kinetics and structural statistics, it is demonstrated that the coassembly of multicomponent NPs, through directing the specific pathways of prepolymer intermediates, follows the step-growth copolymerization mechanism. Meanwhile, a quantitative model is developed to predict the growth kinetics and outcomes of heterostructures, all controlled by the designed elements of the coassembly system. Furthermore, the stepwise polymerization strategy can be generalized to build upon a great variety of regular nanopolymers with complex architectures, such as multiblock terpolymers and ladder copolymers. Our theoretical and simulation results provide fundamental insights on quantitative predictions of the coassembly kinetics and coassembled outcomes, which can aid in realizing a diverse set of supramolecular DNA materials by the rational design of kinetic pathways.
Collapse
Affiliation(s)
- Tianyun Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuochen Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Lee D, Baek S, Kim YY, Bang Y, Jung HN, Im HJ, Song YK. Self-Assembled DNA-Protein Hybrid Nanospheres: Biocompatible Nano-Drug-Carriers for Targeted Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37493-37503. [PMID: 35969502 DOI: 10.1021/acsami.2c10397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We developed hybrid nanospheres comprised of two of the most important biomolecules in nature, DNA and proteins, which have excellent biocompatibility, high drug payload capacity, in vivo imaging ability, and in vitro/in vivo cancer targeting capability. The synthesis can be done in a facile one-pot assembly system that includes three steps: step-growth polymerization of two DNA oligomers, addition of streptavidin to assemble spherical hybrid nanostructures, and functionalization of hybrid nanospheres with biotinylated aptamers. To test the feasibility of cancer targeting and drug-loading capacity of the hybrid nanospheres, MUC1-specific aptamers (MA3) were conjugated to nanosphere surfaces (apt-nanospheres), and doxorubicin (Dox) was loaded into nanospheres by DNA intercalation. The successful construction of nanospheres and apt-nanospheres was confirmed by agarose gel electrophoresis and dynamic light scattering (DLS). Their uniform spherical morphology was confirmed by transmission electron microscopy (TEM). Fluorescence spectra of nanospheres demonstrated high Dox-loading capability and slow-release characteristics. In vitro MUC1-specific binding of the apt-nanospheres was confirmed by flow cytometry and confocal microscopy. Dox-loaded apt-nanospheres significantly increased cytotoxicity of the MUC1-positive cancer cells due to aptamer-mediated selective internalization, as shown via cell viability assays. Apt-nanospheres could also be imaged in vivo through the synthesis of hybrid nanospheres using fluorescent dye-conjugated DNA strands. Finally, in vivo specific targeting ability of apt-nanospheres was confirmed in a MUC1-positive 4T1 tumor-bearing mouse model, whereas apt-nanospheres did not cause any sign of systemic toxicity in normal mice. Taken together, our self-assembled DNA-streptavidin hybrid nanospheres show promise as a biocompatible cancer targeting material for contemporary nanomedical technology.
Collapse
Affiliation(s)
- Dayoung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Seungki Baek
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Youb Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongbin Bang
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Han Na Jung
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon-Kyu Song
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Lee H, Hwang JH, Lee D, Kim I, Park J, Lee E, Jang WD. Porphyrin Tripod as a Monomeric Building Block for Guest-Induced Reversible Supramolecular Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hosoowi Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemoon-Gu, Seoul 03722, Republic of Korea
| | - Jun Ho Hwang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Dajung Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemoon-Gu, Seoul 03722, Republic of Korea
| | - Inhye Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jiwon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemoon-Gu, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022; 58:5683-5716. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular polymer bottlebrushes are densely grafted, individual macromolecules with nanoscale proportions. The last decade has seen an increased focus on this material class, especially in nanomedicine and for biomedical applications. This Feature Article provides an overview of major developments in this area to highlight the many opportunities that these polymer architectures bring to nano-bio research. The article covers aspects of bottlebrush synthesis and summarises their use in drug and gene delivery, imaging, as theranostics and as prototype materials to correlate nanoparticle structure and composition to biological function and behaviour. Areas for future research in this area are discussed.
Collapse
Affiliation(s)
- Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Whitfield C, Zhang M, Winterwerber P, Wu Y, Ng DYW, Weil T. Functional DNA-Polymer Conjugates. Chem Rev 2021; 121:11030-11084. [PMID: 33739829 PMCID: PMC8461608 DOI: 10.1021/acs.chemrev.0c01074] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 02/07/2023]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of solid phase synthesis and the discovery of DNA nanostructures. Solid phase synthesis has facilitated the availability of short DNA sequences and the expansion of the DNA toolbox to increase the chemical functionalities afforded on DNA, which in turn enabled the conception and synthesis of sophisticated and complex 2D and 3D nanostructures. In parallel, polymer science has developed several polymerization approaches to build di- and triblock copolymers bearing hydrophilic, hydrophobic, and amphiphilic properties. By bringing together these two emerging technologies, complementary properties of both materials have been explored; for example, the synthesis of amphiphilic DNA-polymer conjugates has enabled the production of several nanostructures, such as spherical and rod-like micelles. Through both the DNA and polymer parts, stimuli-responsiveness can be instilled. Nanostructures have consequently been developed with responsive structural changes to physical properties, such as pH and temperature, as well as short DNA through competitive complementary binding. These responsive changes have enabled the application of DNA-polymer conjugates in biomedical applications including drug delivery. This review discusses the progress of DNA-polymer conjugates, exploring the synthetic routes and state-of-the-art applications afforded through the combination of nucleic acids and synthetic polymers.
Collapse
Affiliation(s)
- Colette
J. Whitfield
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meizhou Zhang
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - Pia Winterwerber
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuzhou Wu
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
13
|
Lu H, Cai J, Zhang K. Synthetic Approaches for Copolymers Containing Nucleic Acids and Analogues: Challenges and Opportunities. Polym Chem 2021; 12:2193-2204. [PMID: 34394751 PMCID: PMC8356553 DOI: 10.1039/d0py01707h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A deep integration of nucleic acids with other classes of materials have become the basis of many useful technologies. Among these biohybrids, nucleic acid-containing copolymers has seen rapid development in both chemistry and application. This review focuses on the various synthetic approaches to access nucleic acid-polymer biohybrids spanning post-polymerization conjugation, nucleic acids in polymerization, solid-phase synthesis, and nucleoside/nucleobase-functionalized polymers. We highlight the challenges associated with working with nucleic acids with each approach and the ingenuity of the solutions, with the hope of lowering the entry barrier and inpsiring further investigations in this exciting area.
Collapse
Affiliation(s)
- Hao Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jiansong Cai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Abstract
The preparation and applications of DNA containing polymers are comprehensively reviewed, and they are in the form of DNA−polymer covalent conjugators, supramolecular assemblies and hydrogels for advanced materials with promising features.
Collapse
Affiliation(s)
- Zeqi Min
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Biyi Xu
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Wen Li
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Afang Zhang
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|