1
|
Qu Y, Liu Z, Zhou Y, Feng X, Liu X. Asymmetric Catalytic Aziridination to Synthesize Spiro-aziridine Oxindoles. Chemistry 2025; 31:e202500302. [PMID: 39979234 DOI: 10.1002/chem.202500302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Asymmetric catalytic aza-Michael-initiated ring closure of methyleneindolinones with N-tosyloxycarbamates has been established. The reaction using a chiral nickel complex catalyst enabled the formation of a series of spiro-aziridine oxindoles in good yields (up to 99 %) with high stereoselectivity (up to 97 % ee, >19 : 1 dr) under mild reaction conditions. Ring-opening of spiro-aziridine oxindole leads to formation of glycinate-bearing oxindoles with retention of configuration.
Collapse
Affiliation(s)
- Yinhe Qu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| |
Collapse
|
2
|
Li Y, Chen L, Deng P, Guo Y, Wang XL, Wang YZ. Catalytic amounts of sodium-sulfonate-naphthol enable mechanically robust, ultra-transparent, super-fire-resistant and easily recyclable polycarbonate. MATERIALS HORIZONS 2025. [PMID: 40123479 DOI: 10.1039/d5mh00260e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Polycarbonate is an advanced engineering plastic widely used in aerospace, high-speed rail and 5G communications. However, it remains a huge challenge to synthesize polycarbonate materials using a strategy that simultaneously integrates green-preparation, service-stage advanced-performance and end-of-life easy-recyclability. Herein, we propose an ultrahigh-efficiency and green halogen/phosphorus-free strategy to prepare a mechanically robust, highly transparent, super-fire-resistant and chemically easily recyclable polycarbonate plastic. By chemical copolymerization of only catalytic amounts of sodium sulfonate-naphthol (0.3-0.5 mol%, namely 3400-5600 ppm), the corresponding polycarbonates exhibit >85 MPa tensile strength, >67 kJ m-2 notched impact strength, >90% transparency, >36% ultra-high limiting oxygen index and 1.6 mm thin-wall UL-94 V-0 rating during the service-stage. Especially, at the end-of-life, these polycarbonates can be easily depolymerized back to the raw monomer bisphenol A and high-value 2-oxazolidinone under mild conditions (50 °C for 4 h), achieving ultra-high atom-economic chemical recycling. Starting from the source of a chemical structure, this work opens up a new perspective for constructing life cycle-managed plastic materials with advanced high-performance and full-recyclability, contributing to the global circular economy through sustainable material design.
Collapse
Affiliation(s)
- Yue Li
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Lin Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Pan Deng
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yan Guo
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xiu-Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Holovko-Kamoshenkova O, Tošner Z, Císařová I, Hrdina R. C-H amination of enolizable and nonenolizable ketones. Org Biomol Chem 2025; 23:2818-2822. [PMID: 39989355 DOI: 10.1039/d5ob00009b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
We present a method for the amination of enolizable and non-enolizable ketones in the alpha (or beta) position to the carbonyl group. This approach is based on the conversion of the corresponding cyanohydrins to carbonazidates, precursors for thermal intramolecular nitrene insertion reactions into the adjacent C-H bond. Hydrolysis of the resulting carbamates under basic conditions with simultaneous regeneration of the carbonyl group yields amino ketones.
Collapse
Affiliation(s)
- Oksana Holovko-Kamoshenkova
- Charles University, Faculty of Science, Department of Organic Chemistry, Hlavova 8, 12840 Praha, Czech Republic.
- Uzhhorod National University, Narodna ploshcha 3, 88000 Uzhhorod, Ukraine
| | - Zdeněk Tošner
- Charles University, Faculty of Science, Department of Organic Chemistry, Hlavova 8, 12840 Praha, Czech Republic.
| | - Ivana Císařová
- Charles University, Faculty of Science, Department of Inorganic Chemistry, Hlavova 8, 12840 Praha, Czech Republic
| | - Radim Hrdina
- Charles University, Faculty of Science, Department of Organic Chemistry, Hlavova 8, 12840 Praha, Czech Republic.
| |
Collapse
|
4
|
Tian B, Ding N, Xu X, Jiang Z, Chang J, Jiang Y, Zhao C, Sun Q, Li S, Pang S. Attaining the Utmost Stability and Energy of Carbonyl Azides by the Synergistic Improvement of Conjugation and H-bonding. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39446555 DOI: 10.1021/acsami.4c13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Carbonyl azides are important precursors to isocyanates and are used as energetic compounds. However, the further development of these compounds is limited by their inherently poor stability. In this study, we present a new family of carbonyl azides, 5-nitro-1H-1,2,4-triazol-3-yl-carbamoyl-azide (NTCA), which was synthesized through in situ oxidation cleavage of amino-tetrazole. Compared with its precursor (nitrocarbamoyl azide, HNCA), X-ray data and quantum calculations indicate that NTCA has much stronger conjugation (dihedral angle decreased from 13.39° to 1.35°) and more H-bonds (increase from 2 to 7 pairs). As a result, NTCA exhibits the highest thermal stability (decomposition temperature of 212 °C) and highest density (1.820 g cm-3) among all known carbonyl azides. In addition, a series of Curtius rearrangements were performed to generate substituted ionic derivatives, which also exhibit high stability and energy. This study provides an effective strategy for synthesizing carbonyl azides with high stability and energy, paving the way for future practical applications.
Collapse
Affiliation(s)
- Baojing Tian
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ning Ding
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xudong Xu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiyi Jiang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jinyu Chang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanda Jiang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chaofeng Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Sun
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shenghua Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Siping Pang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Mendas I, Gastaldi S, Suppo JS. Strategies for Accessing cis-1-Amino-2-Indanol. Molecules 2024; 29:2442. [PMID: 38893318 PMCID: PMC11173559 DOI: 10.3390/molecules29112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
cis-1-amino-2-indanol is an important building block in many areas of chemistry. Indeed, this molecule is currently used as skeleton in many ligands (BOX, PyBOX…), catalysts and chiral auxiliaries. Moreover, it has been incorporated in numerous bioactive structures. The major issues during its synthesis are the control of cis-selectivity, for which various strategies have been devised, and the enantioselectivity of the reaction. This review highlights the various methodologies implemented over the last few decades to access cis-1-amino-2-indanol in racemic and enantioselective manners. In addition, the various substitution patterns on the aromatic ring and their preparations are listed.
Collapse
|
6
|
Vollgraff T, Doppiu A, Sundermeyer J. Dihydroguaiazulenide Complexes and Catalysts of Group 8-12 Transition Metals: Ligands from Renewable Feedstock Replace, even Outmatch Petrochemical Based Cyclopentadienyl Chemistry. Chemistry 2024; 30:e202302994. [PMID: 37955549 DOI: 10.1002/chem.202302994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
We present an in-depth study of the sterically demanding Cp-synthon (8-H-GuaH)Li isolated from natural product guaiazulene (Gua) as a ligand transfer reagent towards late transition metal complex precursors. The synthesis and full characterization of selected, essentially unexplored homo- and heteroleptic 8-H-guaiazulenide complexes of iron, ruthenium, cobalt, rhodium, platinum, copper and zinc are discussed in detail. In order to demonstrate their potential in catalytic applications, [(GuaH)PtMe3 ] was selected. The latter proved an even higher catalytic activity in light induced olefin hydrosilylation at catalyst loads as low as 5 ppm than classical [CpPtMe3 ] in a typical test reaction of silicone elastomer fabrication. Our results demonstrate that traditional petrochemical based Cp metal chemistry and catalysis can be replaced, sometimes even outmatched by superior catalysts based on cheap building blocks from renewable feedstock.
Collapse
Affiliation(s)
- Tobias Vollgraff
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Angelino Doppiu
- Umicore AG&Co. KG, PMC R&D, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| |
Collapse
|
7
|
Bhattacharyya A, Sk MR, Sen S, Kundu S, Maji MS. Annulative π-Extension by Cp*Co(III)-Catalyzed Ketone-Directed peri-Annulation: An Approach to Access Fused Arenes. Org Lett 2023. [PMID: 38032281 DOI: 10.1021/acs.orglett.3c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A masked-bay-region selective first-row transition-metal Cp*Co(III)-catalyzed annulative π-extension of arene-derived ketones is achieved to afford K-region-functionalized benzo[e]pyrenes, benzotetraphenes, and pyrenes. Comprehensive density functional theory studies buttress the mechanistic pathway comprising key steps like peri-C-H activation, alkyne 1,2-migratory insertion, and nucleophilic attack toward ketone, this attack being the rate-determining step. In addition, π-conjugated 1,1'-bipyrenes, potential photocatalyst pyrene-quinones, and putative n-type semiconductor cyano group-containing dibenzo[de,qr]tetracenes are also accessed.
Collapse
Affiliation(s)
- Arya Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Md Raja Sk
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Supreeta Sen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
8
|
Niu RH, Zhang J, Zhao RY, Luo QJ, Li JH, Sun B. Cobalt(III)-Catalyzed Directed C-7 Selective C-H Alkynylation of Indolines with Bromoalkynes. Org Lett 2023; 25:5411-5415. [PMID: 37458331 DOI: 10.1021/acs.orglett.3c01584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A cobalt(III)-catalyzed directed C-7 alkynylation of indolines with easily accessible bromoalkynes has been developed. The reaction has a broad substrate scope with excellent yields and represents a powerful route to the synthesis of 7-alkynyl-substituted indolines. In addition, the reaction can be extended to the coupling of N-aryl 7-azaindoles, highlighting the synthetic practicability of the strategy.
Collapse
Affiliation(s)
- Rui-Han Niu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jing Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ru-Yuan Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Quan-Jian Luo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
9
|
Sunbal, Alamzeb M, Omer M, Abid OUR, Ullah M, Sohail M, Ullah I. Chemical insights into the synthetic chemistry of five-membered saturated heterocycles-a transition metal-catalyzed approach. Front Chem 2023; 11:1185669. [PMID: 37564110 PMCID: PMC10411457 DOI: 10.3389/fchem.2023.1185669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Drug design and delivery is primarily based on the hunt for new potent drug candidates and novel synthetic techniques. Recently, saturated heterocycles have gained enormous attention in medicinal chemistry as evidenced by the medicinal drugs listed in the FDA Orange Book. Therefore, the demand for novel saturated heterocyclic syntheses has increased tremendously. Transition metal (TM)-catalyzed reactions have remained the prime priority in heterocyclic syntheses for the last three decades. Nowadays, TM catalysis is well adorned by combining it with other techniques such as bio- and/or enzyme-catalyzed reactions, organocatalysis, or using two different metals in a single catalysis. This review highlights the recent developments of the transition metal-catalyzed synthesis of five-membered saturated heterocycles.
Collapse
Affiliation(s)
- Sunbal
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Mohib Ullah
- Department of Chemistry, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Muhammad Sohail
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| |
Collapse
|
10
|
Wang F, Chen C, Meng Q. Comprehensive Theoretical Study of Cp*Ir III-Catalyzed Intermolecular Enantioselective Allylic C-H Amidation: Reaction Mechanism, Electronic Processes, and Regioselectivity. J Org Chem 2023; 88:2493-2504. [PMID: 36716217 DOI: 10.1021/acs.joc.2c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Density functional theory was used to elucidate the reaction mechanism of Cp*IrIII-catalyzed intermolecular regioselective C(sp3)-H amidation of alkenes with methyl dioxazolones. All substrates, intermediates, and transition states were fully optimized at the ωB97XD/6-31G(d,p) level (LANL2DZ(f) for Ir). The computational results revealed that this amidation occurred through the IrIII/IrV catalytic cycle, involving four important elementary steps: C-H bond activation, oxidative addition of methyl dioxazolone, reductive elimination, and proto-demetalation, and the first was the rate-determining step. The C-H bond activation showed good α- and branch-regioselectivity, decided by the distortion energy of 2-pentene and the interaction energy of the transition state, respectively. The oxidative addition of dioxazolone occurred in one elementary step with CO2 disassociation. The reductive elimination showed good branch-regioselectivity determined by the distorted energy of the allyl group. In the proto-demetalation, hydrogen directly transferred from the oxygen atom to the nitrogen atom. Moreover, to clarify the effect of the substituted groups, selected 12 substrates were also discussed in this text.
Collapse
Affiliation(s)
- Fen Wang
- College of Chemistry and Chemical Engineering, Taishan University, Taian271000, Shandong, People's Republic of China
| | - Changbao Chen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian271018, Shandong, People's Republic of China.,Key Laboratory of Agricultural Film Application, Ministry of Agriculture and Rural Affairs, Taian271018, Shandong, People's Republic of China
| | - Qingxi Meng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian271018, Shandong, People's Republic of China.,Key Laboratory of Agricultural Film Application, Ministry of Agriculture and Rural Affairs, Taian271018, Shandong, People's Republic of China
| |
Collapse
|
11
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
12
|
Capdevila L, Montilla M, Planas O, Brotons A, Salvador P, Martin-Diaconescu V, Parella T, Luis JM, Ribas X. C sp2-H Amination Reactions Mediated by Metastable Pseudo- Oh Masked Aryl-Co III-nitrene Species. Inorg Chem 2022; 61:14075-14085. [PMID: 35997604 PMCID: PMC9455280 DOI: 10.1021/acs.inorgchem.2c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cobalt-catalyzed C–H amination via M-nitrenoid
species is
spiking the interest of the research community. Understanding this
process at a molecular level is a challenging task, and here we report
a well-defined macrocyclic system featuring a pseudo-Oh aryl-CoIII species that
reacts with aliphatic azides to effect intramolecular Csp2–N bond formation. Strikingly, a putative aryl-Co=NR
nitrenoid intermediate species is formed and is rapidly trapped by
a carboxylate ligand to form a carboxylate masked-nitrene, which functions
as a shortcut to stabilize and guide the reaction to productive intramolecular
Csp2–N bond formation. On one hand, several intermediate
species featuring the Csp2–N bond formed have been
isolated and structurally characterized, and the essential role of
the carboxylate ligand has been proven. Complementarily, a thorough
density functional theory study of the Csp2–N bond
formation mechanism explains at the molecular level the key role of
the carboxylate-masked nitrene species, which is essential to tame
the metastability of the putative aryl-CoIII=NR
nitrene species to effectively yield the Csp2–N
products. The solid molecular mechanistic scheme determined for the
Csp2–N bond forming reaction is fully supported
by both experimental and computation complementary studies. A well-defined pseudo-Oh aryl-CoIII species reacts
with aliphatic azides
to effect intramolecular Csp2−N bond formation via
a carboxylate masked-CoIII-nitrene, which serves as a shortcut
to guide the reaction to productive Csp2−N bond
formation.
Collapse
Affiliation(s)
- Lorena Capdevila
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003, Catalonia, Spain
| | - Marc Montilla
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003, Catalonia, Spain
| | - Oriol Planas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003, Catalonia, Spain
| | - Artur Brotons
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003, Catalonia, Spain
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003, Catalonia, Spain
| | | | - Teodor Parella
- Servei de RMN, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, E-08193 Catalonia, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003, Catalonia, Spain
| |
Collapse
|
13
|
Lee J, Kang B, Kim D, Chang S. Alcohol-Incorporating Diels-Alder Dimerization of In Situ Formed ortho-Quinamine via Co-Nitrenoid Insertion. Org Lett 2022; 24:5845-5850. [PMID: 35916774 DOI: 10.1021/acs.orglett.2c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We disclose herein a Cp*Co(III)(LX)-catalyzed dearomative Diels-Alder dimerization of 2,6-disubstituted phenyl azidoformates. Upon the postulated cobalt-nitrenoid insertion into the neighboring ortho-carbon, the key intermediate of ortho-quinamine was generated for the subsequent dimeric cycloaddition process. A series of experimental and computational studies suggested that the quinolinol ligand of the cobalt catalyst plays a crucial role in the alcoholic solvent incorporation into the o-quinamine moiety, thereby enabling the Diels-Alder dimerization to furnish the bridged tricyclic bisamidation products.
Collapse
Affiliation(s)
- Jeonghyo Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Bora Kang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
14
|
Jeong J, Jung H, Kim D, Chang S. Multidimensional Screening Accelerates the Discovery of Rhodium Catalyst Systems for Selective Intra- and Intermolecular C–H Amidations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiwoo Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
15
|
Dahiya P, Sarkar A, Sundararaju B. Well‐defined [Cp*Co(N,O)I]‐Catalysts for Site‐selective Intramolecular C‐H Amidation. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Asahara H, Takao N, Moriguchi M, Inoue T, Ohkubo K. Visible-light-induced phosgenation of amines by chloroform oxygenation using chlorine dioxide. Chem Commun (Camb) 2022; 58:6176-6179. [PMID: 35474124 DOI: 10.1039/d2cc01336c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the visible-light-induced in situ preparation of COCl2 through the oxygenation of chloroform in the presence of chlorine dioxide, which leads to the safe constructions of carbamoyl chlorides with good-to-high yields and wide substrate scopes. In addition, this method can also be applied to the synthesis of various carbonates.
Collapse
Affiliation(s)
- Haruyasu Asahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. .,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nozomi Takao
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Maiko Moriguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. .,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Pereira A, Albornoz C, Trofymchuk OS. Data-Driven Analysis of Reactions Catalyzed by [CoCp*(CO)I 2]. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alfredo Pereira
- Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile, Sergio Livingstone 1007, Casilla 233, Santiago, Metropolitan Region 8380492, Chile
| | - Camilo Albornoz
- C. Albornoz, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Maule Region 3460000, Chile
| | - Oleksandra S. Trofymchuk
- Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile, Sergio Livingstone 1007, Casilla 233, Santiago, Metropolitan Region 8380492, Chile
| |
Collapse
|
18
|
Tahara K, Takezaki S, Ozawa Y, Abe M. Synthesis of an Organometallic Alkyl-Co(III) Complex with Amidoquinoline Directing Groups via C(sp3)-H Activation and its UV-vis/NMR Spectroscopic, Crystallographic, DFT, and Electrochemical Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shun Takezaki
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
19
|
Gwon Y, Lee M, Kim D, Chang S. Iridium-Catalyzed Amidation of In Situ Prepared Silyl Ketene Acetals to Access α-Amino Esters. Org Lett 2022; 24:1088-1093. [PMID: 35084196 DOI: 10.1021/acs.orglett.1c04376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disclosed herein is a convenient Ir-catalyzed amidation of esters to access α-amido esters. Initially prepared silyl ketene acetals are directly employed, without separate purification, for subsequent amidation with an oxycarbonylnitrenoid precursor using the Cp*(LX)Ir(III) catalyst. The α-amidation was facile for both α-aryl and α-alkyl esters. Density functional theory studies revealed that the generation of a putative Ir-nitrenoid is facilitated by the chelation of the countercation additive during the N-O bond cleavage of the nitrene precursor.
Collapse
Affiliation(s)
- Yunyeong Gwon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Minhan Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
20
|
Gambacorta G, Baxendale IR. Continuous-Flow Hofmann Rearrangement Using Trichloroisocyanuric Acid for the Preparation of 2-Benzoxazolinone. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Guido Gambacorta
- Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K
| | - Ian R. Baxendale
- Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
21
|
Saha S, Maji MS. Cp*Co(III)-catalyzed thiocarbamate directed C−H aminocarbonyl-ation, amination, and cascade annulation of pyrroles. Chem Commun (Camb) 2022; 58:10865-10868. [DOI: 10.1039/d2cc03992c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt(III)-catalyzed thiocarbamate directed aminocarbonylation and amination of C−H bond are described to access diverse amides. Biologically relevant pyrrolo[1,2-c]imidazoles were readily accessed via one-pot intramolecular cyclization at thiocarbamoyl directing group. Notably,...
Collapse
|
22
|
Zhong X, Lin S, Xu H, Zhao X, Gao H, Wei Y, Zhou Z. Rh(III)-Catalysed Cascade C-H Imidization/Cyclization of N-Methoxybenzamides with Isoxazolones for the Assembly of Dihydroquinazolin-4(1H)-one Derivatives. Org Chem Front 2022. [DOI: 10.1039/d1qo01935j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By virtue of isoxazolones as viable imidizating reagents, an efficient Rh(III)-catalysed redox-neutral C-H imidization/cyclization cascade has been developed for the specific assembly of dihydroquinazolin-4(1H)-ones with the equipment of a quaternary...
Collapse
|
23
|
Lee J, Kang B, Kim D, Lee J, Chang S. Cobalt-Nitrenoid Insertion-Mediated Amidative Carbon Rearrangement via Alkyl-Walking on Arenes. J Am Chem Soc 2021; 143:18406-18412. [PMID: 34714632 DOI: 10.1021/jacs.1c10138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We herein disclose the Cp*Co(III)(LX)-catalyzed amidative alkyl migration using 2,6-disubstituted phenyl azidoformates. Upon the cobalt-nitrenoid insertion toward the substituted ortho carbon, an arenium cationic species bearing a quaternary carbon is generated, and a subsequent alkyl migration process is suggested to occur through an unforeseen alkyl-walking mechanism. A quinolinol ligand of the cobalt catalyst system is proposed to facilitate the final product-releasing rearomatization process by serving as an internal base. This new mechanistic mode enabled both [1,2]- and [1,4]-alkyl rearrangements to allow the structural variation of N-heterocyclic compounds.
Collapse
Affiliation(s)
- Jeonghyo Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Bora Kang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jia Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
24
|
|
25
|
Pulcinella A, Mazzarella D, Noël T. Homogeneous catalytic C(sp 3)-H functionalization of gaseous alkanes. Chem Commun (Camb) 2021; 57:9956-9967. [PMID: 34495026 DOI: 10.1039/d1cc04073a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of light alkanes into bulk chemicals is becoming an important challenge as it effectively avoids the use of prefunctionalized alkylating reagents. The implementation of such processes is, however, hampered by their gaseous nature and low solubility, as well as the low reactivity of the C-H bonds. Efforts have been made to enable both polar and radical processes to activate these inert compounds. In addition, these methodologies also benefit significantly from the development of a suitable reactor technology that intensifies gas-liquid mass transfer. In this review, we critically highlight these developments, both from a conceptual and a practical point of view. The recent expansion of these mechanistically-different methods have enabled the use of various gaseous alkanes for the development of different bond-forming reactions, including C-C, C-B, C-N, C-Si and C-S bonds.
Collapse
Affiliation(s)
- Antonio Pulcinella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Daniele Mazzarella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. C–H activation. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00041-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Raziullah, Kumar M, Khan AA, Dutta HS, Ahmad A, Vaishnav J, Kant R, Ampapathi RS, Koley D. Ru(II)‐Catalyzed Regioselective Hydroarylative Coupling of Indolines with Internal Alkynes by C−H Activation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Raziullah
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Mohit Kumar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Afsar Ali Khan
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | | | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | | | - Ruchir Kant
- Molecular and Structural Biology Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Ravi Sankar Ampapathi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- SAIF CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Dipankar Koley
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
28
|
Lee J, Jin S, Kim D, Hong SH, Chang S. Cobalt-Catalyzed Intermolecular C-H Amidation of Unactivated Alkanes. J Am Chem Soc 2021; 143:5191-5200. [PMID: 33780628 DOI: 10.1021/jacs.1c01524] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alkanes are an abundant and inexpensive source of hydrocarbons; thus, development of new methods to convert the hydrocarbon feedstocks to value-added chemicals is of high interest. However, it is challenging to achieve such transformation in a direct and selective manner mainly due to the intrinsic inertness of their C-H bonds. We herein report a tailored Cp*Co(III)(LX)-catalyzed efficient and site-selective intermolecular amidation of unactivated hydrocarbons including light alkanes. Electronic modulation of the cobalt complexes led to the enhanced amidation efficiency, and these effects were theoretically rationalized by the FMO analysis of presupposed cobalt nitrenoid species. Under the current cobalt protocol, a secondary C-H bond selectivity was observed in various nonactivated alkanes to reverse the intrinsic tertiary preference, which is attributed to the steric demands of the cobalt system that imposes difficulties in accessing tertiary C-H bonds. Experimental and computational studies suggested that the putative triplet Co nitrenoids are transferred to the C-H bonds of alkanes via a radical-like hydrogen abstraction pathway.
Collapse
Affiliation(s)
- Jeonghyo Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Seongho Jin
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Soon Hyeok Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
29
|
Kim YB, Won J, Lee J, Kim J, Zhou B, Park JW, Baik MH, Chang S. Ni-Catalyzed Intermolecular C(sp3)–H Amidation Tuned by Bidentate Directing Groups. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yeong Bum Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Joonghee Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jeonghyo Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Junho Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Bingwei Zhou
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jung-Woo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
30
|
Tian X, Li X, Duan S, Du Y, Liu T, Fang Y, Chen W, Zhang H, Li M, Yang X. Room Temperature Benzofused Lactam Synthesis Enabled by Cobalt(III)‐Catalyzed C(
sp
2
)−H Amidation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xun Tian
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Xin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Ya Du
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Tongqi Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Yongsheng Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Minyan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| |
Collapse
|
31
|
Benz M, Klapötke TM, Krumm B, Lommel M, Stierstorfer J. Nitrocarbamoyl Azide O 2NN(H)C(O)N 3: A Stable but Highly Energetic Member of the Carbonyl Azide Family. J Am Chem Soc 2021; 143:1323-1327. [PMID: 33433207 DOI: 10.1021/jacs.0c12507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The diazotization of nitrosemicarbazide (1) resulted in the formation and isolation of nitrocarbamoyl azide (2), which was thoroughly characterized by spectroscopic and structural methods. This compound shows surprising stability but also high reactivity and sensitivity, with a melting point of 72 °C and a detonative decomposition point at 83 °C. In addition, five selected salts were synthesized by careful deprotonation. The decomposition mechanism of 2 in solution was investigated and could be clarified by performing experiments using methanol and hydrazine as trapping reagents. The energetic and physicochemical properties of all these compounds were investigated and classified.
Collapse
Affiliation(s)
- Maximilian Benz
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13(D), D-81377 Munich, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13(D), D-81377 Munich, Germany
| | - Burkhard Krumm
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13(D), D-81377 Munich, Germany
| | - Marcus Lommel
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13(D), D-81377 Munich, Germany
| | - Jörg Stierstorfer
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13(D), D-81377 Munich, Germany
| |
Collapse
|
32
|
Huang F, Tian X, Hou F, Xu Y, Lu G. Electrostatic repulsion-controlled regioselectivity in nitrene-mediated allylic C–H amidations. Org Chem Front 2021. [DOI: 10.1039/d1qo01018b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The difference of repulsive electrostatic interactions between nitrene N and allyl carbon atoms is the dominant factor affecting the regioselectivity in metal nitrenoid-catalyzed allylic C–H amidations.
Collapse
Affiliation(s)
- Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiaoxiao Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Fangao Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yaping Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
33
|
Liu J, Song H, Wang T, Jia J, Tong QX, Tung CH, Wang W. Iron-Catalyzed Regiodivergent Hydrostannation of Alkynes: Intermediacy of Fe(IV)-H versus Fe(II)-Vinylidene. J Am Chem Soc 2020; 143:409-419. [PMID: 33371677 DOI: 10.1021/jacs.0c11448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report an iron system, Cp*Fe(1,2-R2PC6H4X), which controls the Markovnikov and anti-Markovnikov hydrostannation of alkynes by tuning the ionic metal-heteroatom bonds (Fe-X) reactivity. The sequential addition of nBu3SnH to the iron-amido catalyst (1, X = HN-, R = Ph) affords a distannyl Fe(IV)-H species responsible for syn-addition of the Sn-H bond across the C≡C bond to produce branched α-vinylstannanes. Activation of the C(sp)-H bond of alkynes by an iron-aryloxide catalyst (2, X = O-, R = Cy) affords an iron(II) vinylidene intermediate, allowing for gem-addition of the Sn-H to the terminal-carbon producing β-vinylstannanes. These catalytic reactions exhibit excellent regioselectivity and broad functional group compatibility and enable the large-scale synthesis of diverse vinylstannanes. Many new reactions have been established based on such a synthetic Fe-X platform to demonstrate that the initial step of the catalysis is conveniently controlled by the activation of either the tin hydride or the alkyne substrate.
Collapse
Affiliation(s)
- Jianguo Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Heng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tianlin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jiong Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qing-Xiao Tong
- Department of Chemistry, Shantou University, Shantou 515063, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
34
|
Hong SY, Kim D, Chang S. Catalytic access to carbocation intermediates via nitrenoid transfer leading to allylic lactams. Nat Catal 2020. [DOI: 10.1038/s41929-020-00558-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Zhou Z, Tan Y, Shen X, Ivlev S, Meggers E. Catalytic enantioselective synthesis of β-amino alcohols by nitrene insertion. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9906-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Organic Azides: Versatile Synthons in Transition Metal‐Catalyzed C(
sp
2
)−H Amination/Annulation for N‐Heterocycle Synthesis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Kweon J, Chang S. Highly Robust Iron Catalyst System for Intramolecular C(sp
3
)−H Amidation Leading to γ‐Lactams. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jeonguk Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
38
|
Kweon J, Chang S. Highly Robust Iron Catalyst System for Intramolecular C(sp
3
)−H Amidation Leading to γ‐Lactams. Angew Chem Int Ed Engl 2020; 60:2909-2914. [DOI: 10.1002/anie.202013499] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Jeonguk Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
39
|
Wei K, Yang T, Chen Q, Liang S, Yu W. Iron-catalysed 1,2-aryl migration of tertiary azides. Chem Commun (Camb) 2020; 56:11685-11688. [DOI: 10.1039/d0cc04579a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2-Carbon to nitrogen aryl migration of α,α-diaryl tertiary azides was realized by using FeCl2 and N-heterocyclic carbene SIPr·HCl as a catalyst.
Collapse
Affiliation(s)
- Kaijie Wei
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Tonghao Yang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Qing Chen
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Siyu Liang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|