1
|
Basran K, Luedtke NW. "Click" disaggregation-induced emission of a fluorescent dye. Chem Commun (Camb) 2025; 61:4172-4175. [PMID: 39963867 DOI: 10.1039/d4cc05916f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Here we demonstrate a new approach to fluorogenic labelling, where a cationic hemicyanine (CHyC) exhibits disaggregation-induced emission (DIE) upon undergoing an azide-alkyne "click" reaction. CHyC self-associates and is self-quenched in aqueous buffer over a low micromolar concentration range. When an azido nucleoside (AmdU) or azide-containing cellular DNA is added to CHyC in the presence of Cu(I), a copper-catalysed azide-alkyne cycloaddition drives dye disaggregation, significantly increasing the fluorescence intensity of the probe upon its covalent attachment to modified biomolecules.
Collapse
Affiliation(s)
- Kaleena Basran
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
2
|
Pfeiffer P, Nilsson J, Gallud A, Baladi T, Le HN, Bood M, Lemurell M, Dahlén A, Grøtli M, Esbjörner E, Wilhelmsson L. Metabolic RNA labeling in non-engineered cells following spontaneous uptake of fluorescent nucleoside phosphate analogues. Nucleic Acids Res 2024; 52:10102-10118. [PMID: 39162218 PMCID: PMC11417403 DOI: 10.1093/nar/gkae722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
RNA and its building blocks play central roles in biology and have become increasingly important as therapeutic agents and targets. Hence, probing and understanding their dynamics in cells is important. Fluorescence microscopy offers live-cell spatiotemporal monitoring but requires labels. We present two fluorescent adenine analogue nucleoside phosphates which show spontaneous uptake and accumulation in cultured human cells, likely via nucleoside transporters, and show their potential utilization as cellular RNA labels. Upon uptake, one nucleotide analogue, 2CNqAXP, localizes to the cytosol and the nucleus. We show that it could then be incorporated into de novo synthesized cellular RNA, i.e. it was possible to achieve metabolic fluorescence RNA labeling without using genetic engineering to enhance incorporation, uptake-promoting strategies, or post-labeling through bio-orthogonal chemistries. By contrast, another nucleotide analogue, pAXP, only accumulated outside of the nucleus and was rapidly excreted. Consequently, this analogue did not incorporate into RNA. This difference in subcellular accumulation and retention results from a minor change in nucleobase chemical structure. This demonstrates the importance of careful design of nucleoside-based drugs, e.g. antivirals to direct their subcellular localization, and shows the potential of fine-tuning fluorescent base analogue structures to enhance the understanding of the function of such drugs.
Collapse
Affiliation(s)
- Pauline Pfeiffer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- LanteRNA (Stealth Labels Biotech AB), c/o Chalmers Ventures AB, Vera Sandbergs allé 8, SE-41296 Gothenburg, Sweden
| | - Audrey Gallud
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-43181 Gothenburg, Sweden
| | - Tom Baladi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hoang-Ngoan Le
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mattias Bood
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| |
Collapse
|
3
|
Koplūnaitė M, Butkutė K, Stankevičiūtė J, Meškys R. Exploring the Mutated Kinases for Chemoenzymatic Synthesis of N4-Modified Cytidine Monophosphates. Molecules 2024; 29:3767. [PMID: 39202847 PMCID: PMC11357392 DOI: 10.3390/molecules29163767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Nucleosides, nucleotides, and their analogues are an important class of molecules that are used as substrates in research of enzymes and nucleic acid, or as antiviral and antineoplastic agents. Nucleoside phosphorylation is usually achieved with chemical methods; however, enzymatic phosphorylation is a viable alternative. Here, we present a chemoenzymatic synthesis of modified cytidine monophosphates, where a chemical synthesis of novel N4-modified cytidines is followed by an enzymatic phosphorylation of the nucleosides by nucleoside kinases. To enlarge the substrate scope, multiple mutant variants of Drosophila melanogaster deoxynucleoside kinase (DmdNK) (EC:2.7.1.145) and Bacillus subtilis deoxycytidine kinase (BsdCK) (EC:2.7.1.74) have been created and tested. It has been determined that certain point mutations in the active sites of the kinases alter their substrate specificities noticeably and allow phosphorylation of compounds that had been otherwise not phosphorylated by the wild-type DmdNK or BsdCK.
Collapse
Affiliation(s)
| | | | | | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Av. 7, LT-10257 Vilnius, Lithuania; (K.B.); (J.S.)
| |
Collapse
|
4
|
Li T, Cheng C, Liu J. Chemical and Enzyme-Mediated Chemical Reactions for Studying Nucleic Acids and Their Modifications. Chembiochem 2024; 25:e202400220. [PMID: 38742371 DOI: 10.1002/cbic.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nucleic acids are genetic information-carrying molecules inside cells. Apart from basic nucleotide building blocks, there exist various naturally occurring chemical modifications on nucleobase and ribose moieties, which greatly increase the encoding complexity of nuclei acids, contribute to the alteration of nucleic acid structures, and play versatile regulation roles in gene expression. To study the functions of certain nucleic acids in various biological contexts, robust tools to specifically label and identify these macromolecules and their modifications, and to illuminate their structures are highly necessary. In this review, we summarize recent technique advances of using chemical and enzyme-mediated chemical reactions to study nucleic acids and their modifications and structures. By highlighting the chemical principles of these techniques, we aim to present a perspective on the advancement of the field as well as to offer insights into developing specific chemical reactions and precise enzyme catalysis utilized for nucleic acids and their modifications.
Collapse
Affiliation(s)
- Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
| | - Chongguang Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
- Life Sciences Institute, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, Zhejiang Province, China
| |
Collapse
|
5
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik S, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. eLife 2024; 12:RP90683. [PMID: 38682900 PMCID: PMC11057873 DOI: 10.7554/elife.90683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Brian C Grieb
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Brianna N Smith
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Elizabeth M Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Stephen Fesik
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Pharmacology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
6
|
Gregor C, Grimm F, Rehman J, Wurm CA, Egner A. Click Chemistry with Cell-Permeable Fluorophores Expands the Choice of Bioorthogonal Markers for Two-Color Live-Cell STED Nanoscopy. Cells 2024; 13:683. [PMID: 38667298 PMCID: PMC11049381 DOI: 10.3390/cells13080683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
STED nanoscopy allows for the direct observation of dynamic processes in living cells and tissues with diffraction-unlimited resolution. Although fluorescent proteins can be used for STED imaging, these labels are often outperformed in photostability by organic fluorescent dyes. This feature is especially crucial for time-lapse imaging. Unlike fluorescent proteins, organic fluorophores cannot be genetically fused to a target protein but require different labeling strategies. To achieve simultaneous imaging of more than one protein in the interior of the cell with organic fluorophores, bioorthogonal labeling techniques and cell-permeable dyes are needed. In addition, the fluorophores should preferentially emit in the red spectral range to reduce the potential phototoxic effects that can be induced by the STED light, which further restricts the choice of suitable markers. In this work, we selected five different cell-permeable organic dyes that fulfill all of the above requirements and applied them for SPIEDAC click labeling inside living cells. By combining click-chemistry-based protein labeling with other orthogonal and highly specific labeling methods, we demonstrate two-color STED imaging of different target structures in living specimens using different dye pairs. The excellent photostability of the dyes enables STED imaging for up to 60 frames, allowing the observation of dynamic processes in living cells over extended time periods at super-resolution.
Collapse
Affiliation(s)
- Carola Gregor
- Department of Optical Nanoscopy, Institut für Nanophotonik Göttingen e.V., 37077 Göttingen, Germany;
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Florian Grimm
- Abberior GmbH, Hans-Adolf-Krebs Weg 1, 37077 Göttingen, Germany; (F.G.); (J.R.)
| | - Jasmin Rehman
- Abberior GmbH, Hans-Adolf-Krebs Weg 1, 37077 Göttingen, Germany; (F.G.); (J.R.)
| | - Christian A. Wurm
- Abberior GmbH, Hans-Adolf-Krebs Weg 1, 37077 Göttingen, Germany; (F.G.); (J.R.)
| | - Alexander Egner
- Department of Optical Nanoscopy, Institut für Nanophotonik Göttingen e.V., 37077 Göttingen, Germany;
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
7
|
Min Y, Xiong W, Shen W, Liu X, Qi Q, Zhang Y, Fan R, Fu F, Xue H, Yang H, Sun X, Ning Y, Tian T, Zhou X. Developing nucleoside tailoring strategies against SARS-CoV-2 via ribonuclease targeting chimera. SCIENCE ADVANCES 2024; 10:eadl4393. [PMID: 38598625 PMCID: PMC11006213 DOI: 10.1126/sciadv.adl4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
In response to the urgent need for potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) therapeutics, this study introduces an innovative nucleoside tailoring strategy leveraging ribonuclease targeting chimeras. By seamlessly integrating ribonuclease L recruiters into nucleosides, we address RNA recognition challenges and effectively inhibit severe acute respiratory syndrome coronavirus 2 replication in human cells. Notably, nucleosides tailored at the ribose 2'-position outperform those modified at the nucleobase. Our in vivo validation using hamster models further bolsters the promise of this nucleoside tailoring approach, positioning it as a valuable asset in the development of innovative antiviral drugs.
Collapse
Affiliation(s)
- Yuanqin Min
- Wuhan Institute of Virology; Hubei Jiangxia Laboratory; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430200, Hubei, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Ruochen Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Fang Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Heng Xue
- Wuhan Institute of Virology; Hubei Jiangxia Laboratory; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430200, Hubei, China
| | - Hang Yang
- Wuhan Institute of Virology; Hubei Jiangxia Laboratory; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430200, Hubei, China
| | - Xiulian Sun
- Wuhan Institute of Virology; Hubei Jiangxia Laboratory; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430200, Hubei, China
| | - Yunjia Ning
- Wuhan Institute of Virology; Hubei Jiangxia Laboratory; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430200, Hubei, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
8
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
9
|
Li T, Shu X, Gao M, Huang C, Li T, Cao J, Ying X, Liu D, Liu J. N4-Allylcytidine: a new nucleoside analogue for RNA labelling and chemical sequencing. RSC Chem Biol 2024; 5:225-235. [PMID: 38456037 PMCID: PMC10915972 DOI: 10.1039/d3cb00189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024] Open
Abstract
RNA labelling has become indispensable in studying RNA biology. Nucleoside analogues with a chemical sequencing power represent desirable RNA labelling molecules because precise labelling information at base resolution can be obtained. Here, we report a new nucleoside analogue, N4-allylcytidine (a4C), which is able to tag RNA through both in vitro and in vivo pathways and further specifically reacts with iodine to form 3, N4-cyclized cytidine (cyc-C) in a catalyst-free, fast and complete manner. Full spectroscopic characterization concluded that cyc-C consisted of paired diastereoisomers with opposite chiral carbon centers in the fused 3, N4-five-membered ring. During RNA reverse transcription into complementary DNA, cyc-C induces base misincorporation due to the disruption of canonical hydrogen bonding by the cyclized structure and thus can be accurately identified by sequencing at single base resolution. With the chemical sequencing rationale of a4C, successful applications have been performed including pinpointing N4-methylcytidine methyltransferases' substrate modification sites, metabolically labelling mammalian cellular RNAs, and mapping active cellular RNA polymerase locations with the chromatin run-on RNA sequencing technique. Collectively, our work demonstrates that a4C is a promising molecule for RNA labelling and chemical sequencing and expands the toolkit for studying sophisticated RNA biology.
Collapse
Affiliation(s)
- Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Chenyang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Ting Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
- Life Sciences Institute, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Xiner Ying
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Donghong Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
- Life Sciences Institute, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| |
Collapse
|
10
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
11
|
Li Y, Ling Y, Loehr MO, Chaabane S, Cheng OW, Zhao K, Wu C, Büscher M, Weber J, Stomakhine D, Munker M, Pientka R, Christ SB, Dobbelstein M, Luedtke NW. DNA templated Click Chemistry via 5-vinyl-2'-deoxyuridine and an acridine-tetrazine conjugate induces DNA damage and apoptosis in cancer cells. Life Sci 2023; 330:122000. [PMID: 37541577 DOI: 10.1016/j.lfs.2023.122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
AIMS Click Chemistry is providing valuable tools to biomedical research, but its direct use in therapies remains nearly unexplored. For cancer treatment, nucleoside analogues (NA) such as 5-vinyl-2'-deoxyuridine (VdU) can be metabolically incorporated into cancer cell DNA and subsequently "clicked" to form a toxic product. The inverse electron-demand Diels-Alder (IEDDA) reaction between VdU and an acridine-tetrazine conjugate (PINK) has previously been used to label cell nuclei of cultured cells. Here, we report tandem usage of VdU and PINK to induce cytotoxicity. MAIN METHODS Cell lines were subsequently treated with VdU and PINK, and cell viability was measured via well confluency and 3D tumor spheroid assays. DNA damage and apoptosis were evaluated using Western Blotting and cell cycle analysis by flow cytometry. Double stranded DNA break (DSB) formation was measured using the comet assay. Apoptosis was assessed by fluorescent detection of externalized phosphatidylserine residues. KEY FINDINGS We report that the combination of VdU and PINK synergistically induces cytotoxicity in cultured human cells. The combination of VdU and PINK strongly reduced cell viability in 2D and 3D cultured cancer cells. Mechanistically, the compounds induced DNA damage through DSB formation, which leads to S-phase accumulation and apoptosis. SIGNIFICANCE The combination of VdU and PINK represents a novel and promising DNA-templated "click" approach for cancer treatment via selective induction of DNA damage.
Collapse
Affiliation(s)
- Yizhu Li
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany.
| | - Yurong Ling
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Morten O Loehr
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Sabrina Chaabane
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Oh Wan Cheng
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Kaifeng Zhao
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Chao Wu
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Moritz Büscher
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Jana Weber
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Daria Stomakhine
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Marina Munker
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Ronja Pientka
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Sarah B Christ
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal H3G 1Y6, Canada
| |
Collapse
|
12
|
Shu X, Huang C, Li T, Cao J, Liu J. a 6A-seq: N 6-allyladenosine-based cellular messenger RNA metabolic labelling and sequencing. FUNDAMENTAL RESEARCH 2023; 3:657-664. [PMID: 38933292 PMCID: PMC11197751 DOI: 10.1016/j.fmre.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2024] Open
Abstract
The integration of RNA metabolic labelling by nucleoside analogues with high-throughput RNA sequencing has been harnessed to study RNA dynamics. The immunoprecipitation purification or chemical pulldown technique is generally required to enrich the analogue-labelled RNAs. Here we developed an a6A-seq method, which takes advantage of N6-allyladenosine (a6A) metabolic labelling on cellular mRNAs and profiles them in an immunoprecipitation-free and mutation-based manner. a6A plays a role as a chemical sequencing tag in that the iodination of a6A in mRNAs results in 1,N 6-cyclized adenosine (cyc-A), which induces base misincorporation during RNA reverse transcription, thus making a6A-labelled mRNAs detectable by sequencing. A nucleic acid melting assay was utilized to investigate why cyc-A prefers to be paired with guanine. a6A-seq was utilized to study cellular gene expression changes under a methionine-free stress condition. Compared with regular RNA-seq, a6A-seq could more sensitively detect the change of mRNA production over a time scale. The experiment of a6A-containing mRNA immunoprecipitation followed by qPCR successfully validated the high-throughput a6A-seq data. Together, our results show a6A-seq is an effective tool to study RNA dynamics.
Collapse
Affiliation(s)
- Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Chenyang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| |
Collapse
|
13
|
Kleiner RE. Chemical Approaches To Investigate Post-transcriptional RNA Regulation. ACS Chem Biol 2023; 18:1684-1697. [PMID: 37540831 PMCID: PMC11031734 DOI: 10.1021/acschembio.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
RNA plays a central role in biological processes, and its activity is regulated by a host of diverse chemical and biochemical mechanisms including post-transcriptional modification and interactions with RNA-binding proteins. Here, we describe our efforts to illuminate RNA biology through the application of chemical tools, focusing on post-transcriptional regulatory mechanisms. We describe the development of an activity-based protein profiling approach for discovery and characterization of RNA-modifying enzymes. Next, we highlight novel approaches for RNA imaging based upon metabolic labeling with modified nucleosides and engineering of the nucleotide salvage pathway. Finally, we discuss profiling RNA-protein interactions using small molecule-dependent RNA editing and synthetic photo-cross-linkable oligonucleotide probes. Our work provides enabling technologies for deciphering the complexity of RNA and its diverse functions in biology.
Collapse
Affiliation(s)
- Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
14
|
Nechay M, Wang D, Kleiner RE. Inhibition of nucleolar transcription by oxaliplatin involves ATM/ATR kinase signaling. Cell Chem Biol 2023; 30:906-919.e4. [PMID: 37433295 PMCID: PMC10529435 DOI: 10.1016/j.chembiol.2023.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Platinum (Pt) compounds are an important class of anti-cancer therapeutics, but outstanding questions remain regarding their mechanism of action. Here, we demonstrate that oxaliplatin, a Pt drug used to treat colorectal cancer, inhibits rRNA transcription through ATM and ATR signaling, and induces DNA damage and nucleolar disruption. We show that oxaliplatin causes nucleolar accumulation of the nucleolar DNA damage response proteins (n-DDR) NBS1 and TOPBP1; however transcriptional inhibition does not depend upon NBS1 or TOPBP1, nor does oxaliplatin induce substantial amounts of nucleolar DNA damage, distinguishing the nucleolar response from previously characterized n-DDR pathways. Taken together, our work indicates that oxaliplatin induces a distinct ATM and ATR signaling pathway that functions to inhibit Pol I transcription in the absence of direct nucleolar DNA damage, demonstrating how nucleolar stress and transcriptional silencing can be linked to DNA damage signaling and highlighting an important mechanism of Pt drug cytotoxicity.
Collapse
Affiliation(s)
- Misha Nechay
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Danyang Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
15
|
Nechay M, Kleiner RE. Oxaliplatin Inhibits RNA Polymerase I via DNA Damage Signaling Targeted to the Nucleolus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535301. [PMID: 37066425 PMCID: PMC10103995 DOI: 10.1101/2023.04.02.535301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Platinum (Pt) compounds are an important class of anti-cancer therapeutics, but outstanding questions remain regarding their mode of action. In particular, emerging evidence indicates that oxaliplatin, a Pt drug used to treat colorectal cancer, kills cells by inducing ribosome biogenesis stress rather than through DNA damage generation, but the underlying mechanism is unknown. Here, we demonstrate that oxaliplatin-induced ribosomal RNA (rRNA) transcriptional silencing and nucleolar stress occur downstream of DNA damage signaling involving ATM and ATR. We show that NBS1 and TOPBP1, two proteins involved in the nucleolar DNA damage response (n-DDR), are recruited to nucleoli upon oxaliplatin treatment. However, we find that rRNA transcriptional inhibition by oxaliplatin does not depend upon NBS1 or TOPBP1, nor does oxaliplatin induce substantial amounts of nucleolar DNA damage, distinguishing it from previously characterized n-DDR pathways. Taken together, our work indicates that oxaliplatin induces a distinct DDR signaling pathway that functions in trans to inhibit Pol I transcription in the nucleolus, demonstrating how nucleolar stress can be linked to DNA damage signaling and highlighting an important mechanism of Pt drug cytotoxicity.
Collapse
|
16
|
Precise assembly of inside-out cell membrane camouflaged nanoparticles via bioorthogonal reactions for improving drug leads capturing. Acta Pharm Sin B 2023; 13:852-862. [PMID: 36873174 PMCID: PMC9979189 DOI: 10.1016/j.apsb.2022.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Cell membrane camouflaged nanoparticles have been widely used in the field of drug leads discovery attribute to their unique biointerface targeting function. However, random orientation of cell membrane coating does not guarantee effective and appropriate binding of drugs to specific sites, especially when applied to intracellular regions of transmembrane proteins. Bioorthogonal reactions have been rapidly developed as a specific and reliable method for cell membrane functionalization without disturbing living biosystem. Herein, inside-out cell membrane camouflaged magnetic nanoparticles (IOCMMNPs) were accurately constructed via bioorthogonal reactions to screen small molecule inhibitors targeting intracellular tyrosine kinase domain of vascular endothelial growth factor recptor-2. Azide functionalized cell membrane acted as a platform for specific covalently coupling with alkynyl functionalized magnetic Fe3O4 nanoparticles to prepare IOCMMNPs. The inside-out orientation of cell membrane was successfully verified by immunogold staining and sialic acid quantification assay. Ultimately, two compounds, senkyunolide A and ligustilidel, were successfully captured, and their potential antiproliferative activities were further testified by pharmacological experiments. It is anticipated that the proposed inside-out cell membrane coating strategy endows tremendous versatility for engineering cell membrane camouflaged nanoparticles and promotes the development of drug leads discovery platforms.
Collapse
|
17
|
Moreno S, Ramos Pittol JM, Hartl M, Micura R. Robust synthesis of 2'-azido modified RNA from 2'-amino precursors by diazotransfer reaction. Org Biomol Chem 2022; 20:7845-7850. [PMID: 36172831 DOI: 10.1039/d2ob01560a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azides are versatile bioorthogonal reporter moieties that are commonly used for site-specific labeling and functionalization of RNA to probe its biology. The preparation of azido modified nucleic acids by solid-phase synthesis is problematic due to the inherent reactivity of P(III) species with azides according to the Staudinger reaction. Various strategies have been developed to bypass this limitation and are often time-consuming, low-yielding and labor-intensive. In particular, the synthesis of RNA with internal 2'-azido modifications is restricted to a single approach that employs P(V) chemistry instead of the widely used P(III) phosphoramidite chemistry. To fill this methodological gap, we present a novel convenient path toward 2'-azido RNA from readily accessible 2'-amino RNA through treatment with the diazotizing reagent fluorosulfuryl azide (FSO2N3). A diazotransfer reaction was established for oligoribonucleotides of different lengths and secondary structures. The robustness of the approach was further demonstrated for RNAs containing multiple 2'-azido moieties and for RNAs containing other sensitive modifications such as thiouridine or methylated nucleobases with a positive charge. The synthetic ease of generating 2'-azido RNA will pave the way for biotechnological applications, in particular for siRNA technologies and for referencing the growing number of RNA metabolic labeling approaches that rely on 2'-azido nucleosides.
Collapse
Affiliation(s)
- Sarah Moreno
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - José M Ramos Pittol
- Institute of Biochemistry, Center for Chemistry and Biomedicine (CCB) Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Markus Hartl
- Institute of Biochemistry, Center for Chemistry and Biomedicine (CCB) Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
18
|
Gupta M, Levine SR, Spitale RC. Probing Nascent RNA with Metabolic Incorporation of Modified Nucleosides. Acc Chem Res 2022; 55:2647-2659. [PMID: 36073807 DOI: 10.1021/acs.accounts.2c00347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The discovery of previously unknown functional roles of RNA in biological systems has led to increased interest in revealing novel RNA molecules as therapeutic targets and the development of tools to better understand the role of RNA in cells. RNA metabolic labeling broadens the scope of studying RNA by incorporating of unnatural nucleobases and nucleosides with bioorthogonal handles that can be utilized for chemical modification of newly synthesized cellular RNA. Such labeling of RNA provides access to applications including measurement of the rates of synthesis and decay of RNA, cellular imaging for RNA localization, and selective enrichment of nascent RNA from the total RNA pool. Several unnatural nucleosides and nucleobases have been shown to be incorporated into RNA by endogenous RNA synthesis machinery of the cells. RNA metabolic labeling can also be performed in a cell-specific manner, where only cells expressing an essential enzyme incorporate the unnatural nucleobase into their RNA. Although several discoveries have been enabled by the current RNA metabolic labeling methods, some key challenges still exist: (i) toxicity of unnatural analogues, (ii) lack of RNA-compatible conjugation chemistries, and (iii) background incorporation of modified analogues in cell-specific RNA metabolic labeling. In this Account, we showcase work done in our laboratory to overcome these challenges faced by RNA metabolic labeling.To begin, we discuss the cellular pathways that have been utilized to perform RNA metabolic labeling and study the interaction between nucleosides and nucleoside kinases. Then we discuss the use of vinyl nucleosides for metabolic labeling and demonstrate the low toxicity of 5-vinyluridine (5-VUrd) compared to other widely used nucleosides. Next, we discuss cell-specific RNA metabolic labeling with unnatural nucleobases, which requires the expression of a specific phosphoribosyl transferase (PRT) enzyme for incorporation of the nucleobase into RNA. In the course of this work, we discovered the enzyme uridine monophosphate synthase (UMPS), which is responsible for nonspecific labeling with modified uracil nucleobases. We were able to overcome this background labeling by discovering a mutant uracil PRT (UPRT) that demonstrates highly specific RNA metabolic labeling with 5-vinyluracil (5-VU). Furthermore, we discuss the optimization of inverse-electron-demand Diels-Alder (IEDDA) reactions for performing chemical modification of vinyl nucleosides to achieve covalent conjugation of RNA without transcript degradation. Finally, we highlight our latest endeavor: the development of mutually orthogonal chemical reactions for selective labeling of 5-VUrd and 2-vinyladenosine (2-VAdo), which allows for potential use of multiple vinyl nucleosides for simultaneous investigation of multiple cellular processes involving RNA. We hope that our methods and discoveries encourage scientists studying biological systems to include RNA metabolic labeling in their toolkit for studying RNA and its role in biological systems.
Collapse
|
19
|
Wang D, Shalamberidze A, Arguello AE, Purse BW, Kleiner RE. Live-Cell RNA Imaging with Metabolically Incorporated Fluorescent Nucleosides. J Am Chem Soc 2022; 144:14647-14656. [PMID: 35930766 PMCID: PMC9940818 DOI: 10.1021/jacs.2c04142] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence imaging is a powerful method for probing macromolecular dynamics in biological systems; however, approaches for cellular RNA imaging are limited to the investigation of individual RNA constructs or bulk RNA labeling methods compatible primarily with fixed samples. Here, we develop a platform for fluorescence imaging of bulk RNA dynamics in living cells. We show that fluorescent bicyclic and tricyclic cytidine analogues can be metabolically incorporated into cellular RNA by overexpression of uridine-cytidine kinase 2. In particular, metabolic feeding with the tricyclic cytidine-derived nucleoside tC combined with confocal imaging enables the investigation of RNA synthesis, degradation, and trafficking at single-cell resolution. We apply our imaging modality to study RNA metabolism and localization during the oxidative stress response and find that bulk RNA turnover is greatly accelerated upon NaAsO2 treatment. Furthermore, we identify cytoplasmic RNA granules containing RNA transcripts generated during oxidative stress that are distinct from canonical stress granules and P-bodies and co-localize with the RNA helicase DDX6. Taken together, our work provides a powerful approach for live-cell RNA imaging and reveals how cells reshape RNA transcriptome dynamics in response to oxidative stress.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ana Shalamberidze
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | | | - Byron W. Purse
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
20
|
Li Y, Yu P, Gan Y, Wang R. Labeling of prenylated proteins via Ene-ligation using naturally-occurring citronellol. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Beasley S, Vandewalle A, Singha M, Nguyen K, England W, Tarapore E, Dai N, Corrêa IR, Atwood SX, Spitale RC. Exploiting Endogenous Enzymes for Cancer-Cell Selective Metabolic Labeling of RNA in Vivo. J Am Chem Soc 2022; 144:7085-7088. [PMID: 35416650 PMCID: PMC10032647 DOI: 10.1021/jacs.2c02404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tissues and organs are composed of many diverse cell types, making cell-specific gene expression profiling a major challenge. Herein we report that endogenous enzymes, unique to a cell of interest, can be utilized to enable cell-specific metabolic labeling of RNA. We demonstrate that appropriately designed "caged" nucleosides can be rendered active by serving as a substrate for cancer-cell specific enzymes to enable RNA metabolic labeling, only in cancer cells. We envision that the ease and high stringency of our approach will enable expression analysis of tumor cells in complex environments.
Collapse
Affiliation(s)
- Samantha Beasley
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
| | - Abigail Vandewalle
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
| | - Monika Singha
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
| | - Kim Nguyen
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
| | - Whitney England
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
| | - Eric Tarapore
- Department of Developmental & Cellular Biology, University of California─Irvine, Irvine, California 92697, United States
| | - Nan Dai
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Ivan R Corrêa
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Scott X Atwood
- Department of Developmental & Cellular Biology, University of California─Irvine, Irvine, California 92697, United States
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States
| |
Collapse
|
22
|
Moreno S, Brunner M, Delazer I, Rieder D, Lusser A, Micura R. Synthesis of 4-thiouridines with prodrug functionalization for RNA metabolic labeling. RSC Chem Biol 2022; 3:447-455. [PMID: 35441143 PMCID: PMC8985182 DOI: 10.1039/d2cb00001f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Metabolic labeling has emerged as a powerful tool to endow RNA with reactive handles allowing for subsequent chemical derivatization and processing. Recently, thiolated nucleosides, such as 4-thiouridine (4sU), have attracted great interest in metabolic labeling-based RNA sequencing approaches (TUC-seq, SLAM-seq, TimeLapse-seq) to study cellular RNA expression and decay dynamics. For these and other applications (e.g. PAR-CLIP), thus far only the naked nucleoside 4sU has been applied. Here we examined the concept of derivatizing 4sU into a 5'-monophosphate prodrug that would allow for cell permeation and potentially improve labeling efficiency by bypassing the rate-limiting first step of 5' phosphorylation of the nucleoside into the ultimately bioactive 4sU triphosphate (4sUTP). To this end, we developed robust synthetic routes towards diverse 4sU monophosphate prodrugs. Using metabolic labeling assays, we found that most of the newly introduced 4sU prodrugs were well tolerated by the cells. One derivative, the bis(4-acetyloxybenzyl) 5'-monophosphate of 4sU, was also efficiently incorporated into nascent RNA.
Collapse
Affiliation(s)
- Sarah Moreno
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck Innrain 80-82 6020 Innsbruck Austria
| | - Melanie Brunner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck Innrain 80-82 6020 Innsbruck Austria
| | - Isabel Delazer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck Innrain 80-82 6020 Innsbruck Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck Innrain 82 6020 Innsbruck Austria
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck Innrain 80-82 6020 Innsbruck Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
23
|
Müggenburg F, Müller S. Azide-modified Nucleosides as Versatile Tools for Bioorthogonal Labeling and Functionalization. CHEM REC 2022; 22:e202100322. [PMID: 35189013 DOI: 10.1002/tcr.202100322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
Azide-modified nucleosides are important building blocks for RNA and DNA functionalization by click chemistry based on azide-alkyne cycloaddition. This has put demand on synthetic chemistry to develop approaches for the preparation of azide-modified nucleoside derivatives. We review here the available methods for the synthesis of various nucleosides decorated with azido groups at the sugar residue or nucleobase, their incorporation into oligonucleotides and cellular RNAs, and their application in azide-alkyne cycloadditions for labelling and functionalization.
Collapse
Affiliation(s)
- Frederik Müggenburg
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| |
Collapse
|
24
|
Wodzanowski KA, Caplan JL, Kloxin AM, Grimes CL. Multiscale Invasion Assay for Probing Macrophage Response to Gram-Negative Bacteria. Front Chem 2022; 10:842602. [PMID: 35242744 PMCID: PMC8886205 DOI: 10.3389/fchem.2022.842602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 01/21/2023] Open
Abstract
The immune system is a complex network of various cellular components that must differentiate between pathogenic bacteria and the commensal bacteria of the human microbiome, where misrecognition is linked to inflammatory disorders. Fragments of bacterial cell wall peptidoglycan bind to pattern recognition receptors within macrophages, leading to immune activation. To study this complex process, a methodology to remodel and label the bacterial cell wall of two different species of bacteria was established using copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted azide-alkyne cycloaddition (SPAAC). Additionally, an approach for three-dimensional (3D) culture of human macrophages and their invasion with relevant bacteria in a well-defined hydrogel-based synthetic matrix inspired by the microenvironment of the gut was established. Workflows were developed for human monocyte encapsulation and differentiation into macrophages in 3D culture with high viability. Bacteria invaded into macrophages permitted in situ peptidoglycan labeling. Macrophages exhibited biologically-relevant cytokine release in response to bacteria. This molecularly engineered, multi-dimensional bacteria-macrophage co-culture system will prove useful in future studies to observe immunostimulatory, bacterial fragment production and localization in the cell at the carbohydrate level for insights into how the immune system properly senses bacteria.
Collapse
Affiliation(s)
| | - Jeffrey L. Caplan
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- Bioimaging Center, Delaware Biotechnology Institute, Newark, DE, United States
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
25
|
Kleiner RE. Interrogating the transcriptome with metabolically incorporated ribonucleosides. Mol Omics 2021; 17:833-841. [PMID: 34635895 DOI: 10.1039/d1mo00334h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA is a central player in biological processes, but there remain major gaps in our understanding of transcriptomic processes and the underlying biochemical mechanisms regulating RNA in cells. A powerful strategy to facilitate molecular analysis of cellular RNA is the metabolic incorporation of chemical probes. In this review, we discuss current approaches for RNA metabolic labeling with modified ribonucleosides and their integration with Next-Generation Sequencing, mass spectrometry-based proteomics, and fluorescence microscopy in order to interrogate RNA behavior in its native context.
Collapse
Affiliation(s)
- Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
26
|
Krasheninina OA, Thaler J, Erlacher MD, Micura R. Amine-to-Azide Conversion on Native RNA via Metal-Free Diazotransfer Opens New Avenues for RNA Manipulations. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:7046-7050. [PMID: 38504956 PMCID: PMC10947191 DOI: 10.1002/ange.202015034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/19/2020] [Indexed: 03/21/2024]
Abstract
A major challenge in the field of RNA chemistry is the identification of selective and quantitative conversion reactions on RNA that can be used for tagging and any other RNA tool development. Here, we introduce metal-free diazotransfer on native RNA containing an aliphatic primary amino group using the diazotizing reagent fluorosulfuryl azide (FSO2N3). The reaction provides the corresponding azide-modified RNA in nearly quantitatively yields without affecting the nucleobase amino groups. The obtained azido-RNA can then be further processed utilizing well-established bioortho-gonal reactions, such as azide-alkyne cycloadditions (Click) or Staudinger ligations. We exemplify the robustness of this approach for the synthesis of peptidyl-tRNA mimics and for the pull-down of 3-(3-amino-3-carboxypropyl)uridine (acp3U)- and lysidine (k2C)-containing tRNAs of an Escherichia coli tRNA pool isolated from cellular extracts. Our approach therefore adds a new dimension to the targeted chemical manipulation of diverse RNA species.
Collapse
Affiliation(s)
- Olga A. Krasheninina
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Julia Thaler
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Matthias D. Erlacher
- Institute of Genomics and RNomicsBiocenterMedical University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
27
|
Krasheninina OA, Thaler J, Erlacher MD, Micura R. Amine-to-Azide Conversion on Native RNA via Metal-Free Diazotransfer Opens New Avenues for RNA Manipulations. Angew Chem Int Ed Engl 2021; 60:6970-6974. [PMID: 33400347 PMCID: PMC8048507 DOI: 10.1002/anie.202015034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/19/2020] [Indexed: 12/12/2022]
Abstract
A major challenge in the field of RNA chemistry is the identification of selective and quantitative conversion reactions on RNA that can be used for tagging and any other RNA tool development. Here, we introduce metal-free diazotransfer on native RNA containing an aliphatic primary amino group using the diazotizing reagent fluorosulfuryl azide (FSO2 N3 ). The reaction provides the corresponding azide-modified RNA in nearly quantitatively yields without affecting the nucleobase amino groups. The obtained azido-RNA can then be further processed utilizing well-established bioortho-gonal reactions, such as azide-alkyne cycloadditions (Click) or Staudinger ligations. We exemplify the robustness of this approach for the synthesis of peptidyl-tRNA mimics and for the pull-down of 3-(3-amino-3-carboxypropyl)uridine (acp3 U)- and lysidine (k2 C)-containing tRNAs of an Escherichia coli tRNA pool isolated from cellular extracts. Our approach therefore adds a new dimension to the targeted chemical manipulation of diverse RNA species.
Collapse
Affiliation(s)
- Olga A. Krasheninina
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Julia Thaler
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Matthias D. Erlacher
- Institute of Genomics and RNomicsBiocenterMedical University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
28
|
Singha M, Spitalny L, Nguyen K, Vandewalle A, Spitale RC. Chemical methods for measuring RNA expression with metabolic labeling. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1650. [PMID: 33738981 DOI: 10.1002/wrna.1650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
Tracking the expression of RNA in a cell-specific manner is a major challenge in basic and disease research. Herein we outline the current state of employing chemical approaches for cell-specific RNA expression studies. We define the utility of metabolic labels for tracking RNA synthesis, the approaches for characterizing metabolic incorporation and enrichment of labeled RNAs, and finally outline how these approaches have been used to study biological systems by providing mechanistic insights into transcriptional dynamics. Further efforts on this front will be the continued development of novel chemical handles for RNA enrichment and profiling as well as innovative approaches to control cell-specific incorporation of chemically modified metabolic probes. These advancements in RNA metabolic labeling techniques permit sensitive detection of RNA expression dynamics within relatively small subsets of cells in living tissues and organisms that are critical to performing complex developmental and pathological processes. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Evolution and Genomics > Ribonomics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Monika Singha
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Leslie Spitalny
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Kim Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Abigail Vandewalle
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA.,Department of Developmental and Cellular Biology, University of California, Irvine, Irvine, California, USA.,Department of Chemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
29
|
Mattay J, Dittmar M, Rentmeister A. Chemoenzymatic strategies for RNA modification and labeling. Curr Opin Chem Biol 2021; 63:46-56. [PMID: 33690011 DOI: 10.1016/j.cbpa.2021.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
RNA is a central molecule in numerous cellular processes, including transcription, translation, and regulation of gene expression. To reveal the numerous facets of RNA function and metabolism in cells, labeling has become indispensable and enables the visualization, isolation, characterization, and even quantification of certain RNA species. In this review, we will cover chemoenzymatic approaches for covalent RNA labeling. These approaches rely on an enzymatic step to introduce an RNA modification before conjugation with a label for detection or isolation. We start with in vitro manipulation of RNA, sorted according to the enzymatic reaction exploited. Then, metabolic approaches for co- and post-transcriptional RNA labeling will be treated. We focus on recent advances in the field and highlight the most relevant applications for cellular imaging, RNA isolation and sequencing.
Collapse
Affiliation(s)
- Johanna Mattay
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany
| | - Maria Dittmar
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
30
|
Huang J, Zhao R, Mo J, Wang F, Weng X, Zhou X. N 3 -Kethoxal-Based Bioorthogonal Intracellular RNA Labeling. Chembiochem 2021; 22:1559-1562. [PMID: 33393712 DOI: 10.1002/cbic.202000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Indexed: 11/11/2022]
Abstract
There is growing interest in developing intracellular RNA tools. Herein, we describe a strategy for N3 -kethoxal (N3 K)-based bioorthogonal intracellular RNA functionalization. With N3 K labeling followed by an in vivo click reaction with DBCO derivatives, RNA can be modified with fluorescent or phenol groups. This strategy provides a new way of labeling RNA inside cells.
Collapse
Affiliation(s)
- Jinguo Huang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Ruiqi Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jing Mo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Fang Wang
- Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
31
|
Fantoni NZ, El-Sagheer AH, Brown T. A Hitchhiker's Guide to Click-Chemistry with Nucleic Acids. Chem Rev 2021; 121:7122-7154. [PMID: 33443411 DOI: 10.1021/acs.chemrev.0c00928] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Click chemistry is an immensely powerful technique for the fast and efficient covalent conjugation of molecular entities. Its broad scope has positively impacted on multiple scientific disciplines, and its implementation within the nucleic acid field has enabled researchers to generate a wide variety of tools with application in biology, biochemistry, and biotechnology. Azide-alkyne cycloadditions (AAC) are still the leading technology among click reactions due to the facile modification and incorporation of azide and alkyne groups within biological scaffolds. Application of AAC chemistry to nucleic acids allows labeling, ligation, and cyclization of oligonucleotides efficiently and cost-effectively relative to previously used chemical and enzymatic techniques. In this review, we provide a guide to inexperienced and knowledgeable researchers approaching the field of click chemistry with nucleic acids. We discuss in detail the chemistry, the available modified-nucleosides, and applications of AAC reactions in nucleic acid chemistry and provide a critical view of the advantages, limitations, and open-questions within the field.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
32
|
Nguyen K, Kubota M, Arco JD, Feng C, Singha M, Beasley S, Sakr J, Gandhi SP, Blurton-Jones M, Fernández Lucas J, Spitale RC. A Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA. ACS Chem Biol 2020; 15:3099-3105. [PMID: 33222436 DOI: 10.1021/acschembio.0c00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Herein, we design and demonstrate that uracil phosphoribosyltransferase can be engineered to match 5-vinyluracil for cell-specific metabolic labeling of RNA with exceptional specificity and stringency.
Collapse
Affiliation(s)
- Kim Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Miles Kubota
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jon del Arco
- Universidad Europea de Madrid, E-28670 Villaviciosa de Odon, Madrid Spain
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Monika Singha
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Samantha Beasley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jasmine Sakr
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Sunil P. Gandhi
- Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, United States
| | - Matthew Blurton-Jones
- Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, United States
| | - Jesus Fernández Lucas
- Universidad Europea de Madrid, E-28670 Villaviciosa de Odon, Madrid Spain
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine. Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|