1
|
Wang X, Li J, Wang L, Szostak M. Palladium/N-Heterocyclic Carbene-Decorated Covalent Organic Framework for Suzuki-Miyaura and Mizoroki-Heck Cross-Coupling. J Org Chem 2025; 90:6532-6537. [PMID: 40314354 DOI: 10.1021/acs.joc.5c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Recently, significant breakthroughs have been achieved in covalent organic frameworks (COF) as well-defined porous materials for palladium catalysis. However, the development of modular frameworks decorated with readily available and strongly σ-donating N-heterocyclic ligands is unexplored. In this study, we report a novel modular Pd-NHC/COF framework, where the active palladium species is incorporated into a covalent organic framework (COF) through readily accessible benzimidazolium. The Pd-NHC/COF system promotes the Suzuki-Miyaura and Mizoroki-Heck C-C cross-coupling as a highly active reusable catalyst. Excellent catalytic efficiency and high Z/E selectivity have been achieved for the construction of biaryls and stilbenes using this Pd-NHC/COF catalytic system.
Collapse
Affiliation(s)
- Xiaogang Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Jiayu Li
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Linqian Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Reusser E, Aeschlimann M, Albrecht M. Enhancing activity and selectivity of palladium catalysts in ketone α-arylation by tailoring the imine chelate of pyridinium amidate (PYA) ligands. Catal Sci Technol 2025; 15:867-877. [PMID: 39781109 PMCID: PMC11701426 DOI: 10.1039/d4cy01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Even though α-arylation of ketones is attractive for direct C-H functionalization of organic substrates, the method largely relies on phosphine-ligated palladium complexes. Only recently, efforts have focused on developing nitrogen-based ligands as a more sustainable alternative to phosphines, with pyridine-functionalized pyridinium amidate (pyr-PYA) N,N'-bidentate ligands displaying good selectivity and activity. Here, we report on a second generation set of catalyst precursors that feature a 5-membered N-heterocycle instead of a pyridine as chelating unit of the PYA ligand to provide less steric congestion for the rate-limiting transmetalation of the enolate. To this end, new heterocycle-functionalized PYA palladium(ii) complexes containing an oxazole (5b), N-phenyl-triazole (5c), N-methyl pyrazole (5d), N-phenyl-pyrazole, (5e), N-xylyl-pyrazole (5f), and N-isopropyl-pyrazole (5g) were synthesized compared to the parent pyr-PYA complex 5a. Less packing of the palladium coordination sphere was evidenced from solid state X-ray diffraction analysis. While the catalytic activity of the oxazole system was lower, all other complexes showed higher activity. In particular, complex 5g comprised of an electron-donating and sterically demanding iPr-pyrazole chelating PYA ligand is remarkably stable towards air and moisture and shows outstanding catalytic activity with complete selectivity (>99% yield) and turnover frequencies up to 1200 h-1, surpassing that of parent 5a by one order of magnitude and rivalling the most active phosphine-based palladium systems. Kinetic studies demonstrate a first order rate-dependence on palladium and the substrate. Some deviation of linearity together with poisoning experiments suggest a mixed homogeneous/heterogeneous pathway, though the reproducible kinetics of in situ catalyst recycling experiments strongly point to a molecularly defined active species, demonstrating the high potential of PYA-based ligands.
Collapse
Affiliation(s)
- Esaïe Reusser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Michael Aeschlimann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
3
|
Kang G, Hu S, Guo C, Arul R, Sibug-Torres SM, Baumberg JJ. Design rules for catalysis in single-particle plasmonic nanogap reactors with precisely aligned molecular monolayers. Nat Commun 2024; 15:9220. [PMID: 39455561 PMCID: PMC11511967 DOI: 10.1038/s41467-024-53544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Plasmonic nanostructures can both drive and interrogate light-driven catalytic reactions. Sensitive detection of reaction pathways is achieved by confining optical fields near the active surface. However, effective control of the reaction kinetics remains a challenge to utilize nanostructure constructs as efficient chemical reactors. Here we present a nanoreactor construct exhibiting high catalytic and optical efficiencies, based on a nanoparticle-on-mirror (NPoM) platform. We observe and track pathways of the Pd-catalysed C-C coupling reaction of molecules within a set of nanogaps presenting different chemical surfaces. Atomic monolayer coatings of Pd on the different Au facets enable tuning of the reaction kinetics of surface-bound molecules. Systematic analysis shows the catalytic efficiency of NPoM-based nanoreactors greatly improves on platforms based on aggregated nanoparticles. More importantly, we show Pd monolayers on the nanoparticle or on the mirror play significantly different roles in the surface reaction kinetics. Our data provides clear evidence for catalytic dependencies on molecular configuration in well-defined nanostructures. Such nanoreactor constructs therefore yield clearer design rules for plasmonic catalysis.
Collapse
Affiliation(s)
- Gyeongwon Kang
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Shu Hu
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Chenyang Guo
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Rakesh Arul
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Sarah M Sibug-Torres
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jeremy J Baumberg
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
4
|
Irani MM, Koukabi N, Irani MA, Dashtian K, Seidi F. Ag-Cu 2O Supported Biomass-Derived rGO for Catalyzing Suzuki-Miyaura Cross-Coupling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18473-18485. [PMID: 39163209 DOI: 10.1021/acs.langmuir.4c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The search for cost-effective, efficient, and ecofriendly heterogeneous catalysts for the Suzuki-Miyaura reaction is crucial due to challenges with expensive, toxic homogeneous catalysts. This study centrally aims at crafting a pioneering green catalyst by adorning reduced graphene oxide (rGO), sourced from basil seeds (Ocimum basilicum L.), with an Ag-Cu2O composite structure. Comprehensive characterization of the Ag-Cu2O/rGO nanocomposite was conducted through FTIR, SEM, hHR-TEM, EDS, XPS, XRD, TGA, and N2 adsorption/desorption analyses. Results showed that nanosized Ag-Cu2O particles were partially integrated into rGO sheets derived from basil seeds, acting as active species for oxidative addition with aryl halides in the SMR. The catalytic efficacy of this robust nanocatalyst was assessed in Suzuki-Miyaura cross-coupling reactions, targeting the synthesis of biaryls employing various aryl halides and aryl boronic acids. The findings underscore that the Ag-Cu2O/rGO nanocatalyst manifests rapid reaction kinetics (15 min) alongside commendable yields (99%). The Ag-Cu2O/rGO demonstrates impressive recyclability, maintaining catalytic efficiency over four cycles. Utilizing it as a green substrate for metal loading highlights its potential, offering well-defined coordination sites. This approach facilitates stable heterogeneous catalyst fabrication, crucial for significant bond formations. Notable features include broad applicability, exceptional functional tolerance, scalability, and practicality. Moreover, it holds promise for automating safe processes and enabling efficient late-stage functionalization of complex molecules with moderate to high efficiency, presenting promising prospects for various applications in chemical synthesis.
Collapse
Affiliation(s)
| | - Nadiya Koukabi
- Department of Chemistry, Semnan University, 35131-19111 Semnan, Iran
| | | | - Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846- 13114, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Hu Y, Cao C, Zhang L, Yang W. Synthesis of Silica Particles with Controlled Microstructure via the Choline Hydroxide Cocatalyzed Stöber Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39031779 DOI: 10.1021/acs.langmuir.4c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
This study investigates the utilization of choline hydroxide as a cocatalyst in the Stöber method to synthesize silica particles with controlled microstructure. Under low ammonia concentration, we add a robust organic base choline hydroxide and systematically explore the influence of choline hydroxide concentration on the hydrolysis and condensation equilibrium of tetraethyl orthosilicate (TEOS). Through the rational control of the water content, we significantly enhance both the size range and polydispersity of the resulting silica particles. Taking advantage of the regulated microstructure induced by controlled hydrolysis and condensation catalyzed by choline hydroxide, we achieved silica particles with hollow structures through hot water etching, exhibiting significantly enhanced surface area. These findings demonstrate the versatility of choline hydroxide as a cocatalyst in tailoring the microstructure of silica particles. In addition, due to its reducing ability and biocompatibility, which are not shared by other reported catalysts, the use of choline hydroxide opens up opportunities for applications in catalysis, sensing, and drug delivery.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chi Cao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| |
Collapse
|
6
|
Polynski MV, Vlasova YS, Solovev YV, Kozlov SM, Ananikov VP. Computational analysis of R-X oxidative addition to Pd nanoparticles. Chem Sci 2024; 15:9977-9986. [PMID: 38966374 PMCID: PMC11220582 DOI: 10.1039/d4sc00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024] Open
Abstract
Oxidative addition (OA) is a necessary step in mechanisms of widely used synthetic methodologies such as the Heck reaction, cross-coupling reactions, and the Buchwald-Hartwig amination. This study pioneers the exploration of OA of aryl halide to palladium nanoparticles (NPs), a process previously unaddressed in contrast to the activity of well-studied Pd(0) complexes. Employing DFT modeling and semi-empirical metadynamics simulations, the oxidative addition of phenyl bromide to Pd nanoparticles was investigated in detail. Energy profiles of oxidative addition to Pd NPs were analyzed and compared to those involving Pd(0) complexes forming under both ligand-stabilized (phosphines) and ligandless (amine base) conditions. Metadynamics simulations highlighted the edges of the (1 1 1) facets of Pd NPs as the key element of oxidative addition activity. We demonstrate that OA to Pd NPs is not only kinetically facile at ambient temperatures but also thermodynamically favorable. This finding accentuates the necessity of incorporating OA to Pd NPs in future investigations, thus providing a more realistic view of the involved catalytic mechanisms. These results enhance the understanding of aryl halide (cross-)coupling reactions, reinforcing the concept of a catalytic "cocktail". This concept posits dynamic interconversions between diverse active and inactive centers, collectively affecting the outcome of the reaction. High activity of Pd NPs in direct C-X activation paves the way for novel approaches in catalysis, potentially enhancing the field and offering new catalytic pathways to consider.
Collapse
Affiliation(s)
- Mikhail V Polynski
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yulia S Vlasova
- Faculty of Chemistry, Moscow State University Leninskiye Gory 1-3 Moscow 119991 Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Yaroslav V Solovev
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences Miklukho-Maklaya 16/10 Moscow 117997 Russia
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Valentine P Ananikov
- Faculty of Chemistry, Moscow State University Leninskiye Gory 1-3 Moscow 119991 Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| |
Collapse
|
7
|
Zhang Z, Yamada YMA. Recent Advancements in Continuous-Flow Suzuki-Miyaura Coupling Utilizing Immobilized Molecular Palladium Complexes. Chemistry 2024; 30:e202304335. [PMID: 38418426 DOI: 10.1002/chem.202304335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Immobilized Pd-catalyzed Suzuki-Miyaura coupling under continuous-flow conditions using a packed-bed reactor, representing an efficient, automated, practical, and safe technology compared to conventional batch-type reactions. The core objective of this study is the development of an active and durable catalyst. In contrast to supported Pd nanoparticles, the attachment of Pd complexes onto solid supports through well-defined coordination sites is considered a favorable approach for preparing highly dispersed and stabilized Pd species. These species can be directly employed in various flow reactions without the need for pre-treatment. This concept paper explores recent achievements involving the application of immobilized Pd complexes as precatalysts for continuous-flow Suzuki-Miyaura coupling. Our focus is to elucidate the significance of the designed catalyst structures in relation to their catalytic performance under flow conditions. Additionally, we highlight various reaction systems and catalyst packing methods, emphasizing their crucial roles in establishing a practical synthesis process.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- RIKEN Center for Sustainable Resource Science Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoichi M A Yamada
- RIKEN Center for Sustainable Resource Science Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
8
|
Moragues T, Giannakakis G, Ruiz-Ferrando A, Borca CN, Huthwelker T, Bugaev A, de Mello AJ, Pérez-Ramírez J, Mitchell S. Droplet-Based Microfluidics Reveals Insights into Cross-Coupling Mechanisms over Single-Atom Heterogeneous Catalysts. Angew Chem Int Ed Engl 2024; 63:e202401056. [PMID: 38472115 DOI: 10.1002/anie.202401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Single-atom heterogeneous catalysts (SACs) hold promise as sustainable alternatives to metal complexes in organic transformations. However, their working structure and dynamics remain poorly understood, hindering advances in their design. Exploiting the unique features of droplet-based microfluidics, we present the first in-situ assessment of a palladium SAC based on exfoliated carbon nitride in Suzuki-Miyaura cross-coupling using X-ray absorption spectroscopy. Our results confirm a surface-catalyzed mechanism, revealing the distinct electronic structure of active Pd centers compared to homogeneous systems, and providing insights into the stabilizing role of ligands and bases. This study establishes a valuable framework for advancing mechanistic understanding of organic syntheses catalyzed by SACs.
Collapse
Affiliation(s)
- Thomas Moragues
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Georgios Giannakakis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrea Ruiz-Ferrando
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, Tarragona, 43007, Spain
- University of Rovira i Virgili, Av. Catalunya 35, Tarragona, 43002, Spain
| | - Camelia N Borca
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Thomas Huthwelker
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Aram Bugaev
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Andrew J de Mello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Sharon Mitchell
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
9
|
Zhou S, Ma W, Anjum U, Kosari M, Xi S, Kozlov SM, Zeng HC. Strained few-layer MoS 2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO 2 hydrogenation to methanol. Nat Commun 2023; 14:5872. [PMID: 37735457 PMCID: PMC10514200 DOI: 10.1038/s41467-023-41362-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
In-plane sulfur vacancies (Sv) in molybdenum disulfide (MoS2) were newly unveiled for CO2 hydrogenation to methanol, whereas edge Sv were found to facilitate methane formation. Thus, selective exposure and activation of basal plane is crucial for methanol synthesis. Here, we report a mesoporous silica-encapsulated MoS2 catalysts with fullerene-like structure and atomic copper (Cu/MoS2@SiO2). The main approach is based on a physically constrained topologic conversion of molybdenum dioxide (MoO2) to MoS2 within silica. The spherical curvature enables the generation of strain and Sv in inert basal plane. More importantly, fullerene-like structure of few-layer MoS2 can selectively expose in-plane Sv and reduce the exposure of edge Sv. After promotion by atomic copper, the resultant Cu/MoS2@SiO2 exhibits stable specific methanol yield of 6.11 molMeOH molMo-1 h-1 with methanol selectivity of 72.5% at 260 °C, much superior to its counterparts lacking the fullerene-like structure and copper decoration. The reaction mechanism and promoting role of copper are investigated by in-situ DRIFTS and in-situ XAS. Theoretical calculations demonstrate that the compressive strain facilitates Sv formation and CO2 hydrogenation, while tensile strain accelerates the regeneration of active sites, rationalizing the critical role of strain.
Collapse
Affiliation(s)
- Shenghui Zhou
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Wenrui Ma
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Uzma Anjum
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore.
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore.
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore.
| |
Collapse
|
10
|
Jiang Y, Xie B, Zhang J. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki−Miyaura reaction. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Jeddi N, Scott NWJ, Fairlamb IJS. Well-Defined Pd n Clusters for Cross-Coupling and Hydrogenation Catalysis: New Opportunities for Catalyst Design. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Neda Jeddi
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| | - Neil W. J. Scott
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| |
Collapse
|
12
|
Zhao X, Zhu X, Wang K, Lv J, Chen S, Yao G, Lang J, Lv F, Pu Y, Yang R, Zhang B, Jiang Z, Wan Y. Palladium catalyzed radical relay for the oxidative cross-coupling of quinolines. Nat Commun 2022; 13:4180. [PMID: 35853877 PMCID: PMC9296488 DOI: 10.1038/s41467-022-31967-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/06/2022] [Indexed: 02/03/2023] Open
Abstract
Traditional approaches for transition-metal catalyzed oxidative cross-coupling reactions rely on sp2-hybridized starting materials, such as aryl halides, and more specifically, homogeneous catalysts. We report a heterogeneous Pd-catalyzed radical relay method for the conversion of a heteroarene C(sp3)–H bond into ethers. Pd nanoparticles are supported on an ordered mesoporous composite which, when compared with microporous activated carbons, greatly increases the Pd d charge because of their strong interaction with N-doped anatase nanocrystals. Mechanistic studies provide evidence that electron-deficient Pd with Pd–O/N coordinations efficiently catalyzes the radical relay reaction to release diffusible methoxyl radicals, and highlight the difference between this surface reaction and C–H oxidation mediated by homogeneous catalysts that operate with cyclopalladated intermediates. The reactions proceed efficiently with a turn-over frequency of 84 h−1 and high selectivity toward ethers of >99%. Negligible Pd leaching and activity loss are observed after 7 catalytic runs. Traditional approaches for transition-metal catalyzed oxidative cross-coupling reactions rely on sp2-hybridized starting materials. Here the authors report a heterogeneous Pd-catalyzed radical relay method for the conversion of a heteroarene C(sp3)–H bond into ethers.
Collapse
Affiliation(s)
- Xiaorui Zhao
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, P. R. China.,School of Chemistry and Chemical Engineering, Taishan University, Shandong, P. R. China
| | - Xiaojuan Zhu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, P. R. China
| | - Kang Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, P. R. China
| | - Junqian Lv
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, P. R. China
| | - Shangjun Chen
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, P. R. China
| | - Guohua Yao
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, P. R. China
| | - Junyu Lang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, P. R. China
| | - Fei Lv
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, P. R. China
| | - Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P. R. China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Hubei, P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P. R. China.
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, P. R. China.
| | - Ying Wan
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, P. R. China.
| |
Collapse
|
13
|
Yin L, Wu Q, Zhang C, Xu M, Yuan Y, Yao J. Real-time visualization of the Suzuki reaction using surface enhanced Raman spectroscopy and a moveable magnetic nanoparticle film. Chem Commun (Camb) 2022; 58:6538-6541. [PMID: 35579304 DOI: 10.1039/d2cc01328b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing a moveable Fe3O4@Au film, an operando SERS strategy was developed successfully for visualizing Suzuki reaction processes. The feasibility and generality were verified by using the reaction of 3-bromopyridine and phenylboronic acid as a probe.
Collapse
Affiliation(s)
- Lu Yin
- College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China.
| | - Qian Wu
- College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China.
| | - Chenjie Zhang
- College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China.
| | - Minmin Xu
- College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China.
| | - Yaxian Yuan
- College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China.
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Surface reconstruction, modification and functionalization of natural diatomites for miniaturization of shaped heterogeneous catalysts. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Zuo B, Shao H, Zheng Y, Ma Y, Li W, Huang M, Deng Q. The Core‐Shell Magnetic Mesoporous Microspheres Immobilized NHC‐Palladacycles: An Efficient and Recyclable Catalyst for Suzuki–Miyaura Cross‐Coupling of Pharmaceutical Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Zuo
- University of Shanghai for Science and Technology School of Materials and Chemistry No. 334 Jungong Road, Shanghai, 200093, P.R. China 200093 Shanghai CHINA
| | - Han Shao
- University of Shanghai for Science and Technology School of Materials and Chemistry Shanghai 200093, China. Shanghai CHINA
| | - Yan Zheng
- University of Shanghai for Science and Technology School of Materials and Chemistry Shanghai 200093, China. Shanghai CHINA
| | - Yunhua Ma
- University of Shanghai for Science and Technology School of Materials and Chemistry Shanghai 200093, China. Shanghai CHINA
| | - Wanfang Li
- University of Shanghai for Science and Technology School of Materials and Chemistry Shanghai 200093, China. Shanghai CHINA
| | - Mingxian Huang
- University of Shanghai for Science and Technology School of Materials and Chemistry Shanghai 200093, China. Shanghai CHINA
| | - Qinyue Deng
- University of Shanghai for Science and Technology School of Materials and Chemistry No. 334 Jungong Road 200093 Shanghai CHINA
| |
Collapse
|
16
|
Carbohydrate-substituted N-heterocyclic carbenes Palladium complexes: High efficiency catalysts for aqueous Suzuki–Miyaura reaction. Carbohydr Res 2022; 512:108516. [DOI: 10.1016/j.carres.2022.108516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
|
17
|
Lyu P, Espinoza R, Khan MI, Spaller WC, Ghosh S, Nguyen SC. Mechanistic insight into deep holes from interband transitions in Palladium nanoparticle photocatalysts. iScience 2022; 25:103737. [PMID: 35118357 PMCID: PMC8792079 DOI: 10.1016/j.isci.2022.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
Utilizing hot electrons generated from localized surface plasmon resonance is of widespread interest in the photocatalysis of metallic nanoparticles. However, hot holes, especially generated from interband transitions, have not been fully explored for photocatalysis yet. In this study, a photocatalyzed Suzuki-Miyaura reaction using mesoporous Pd nanoparticle photocatalyst served as a model to study the role of hot holes. Quantum yields of the photocatalysts increase under shorter wavelength excitations and correlate to “deeper” energy of the holes from the Fermi level. This work suggests that deeper holes in the d-band catalyze the oxidative addition of aryl halide R-X onto Pd0 at the nanoparticles' surface to form R-PdII-X complex, thus accelerating the rate-determining step of the catalytic cycle. The hot electrons do not play a decisive role. In the future, catalytic mechanisms induced by deep holes should deserve as much attention as the well-known hot electron transfer mechanism. Comparison of quantum yield across different wavelengths Interband transitions from shorter wavelength excitation offering deeper holes Deeper holes with stronger oxidizing power for higher quantum yield
Collapse
|
18
|
Escalante CH, Carmona-Hernández FA, Hernández-López A, Martínez-Mora EI, Delgado F, Tamariz J. Cascade synthesis of indolizines and pyrrolo[1,2- a]pyrazines from 2-formyl-1-propargylpyrroles. Org Biomol Chem 2022; 20:396-409. [PMID: 34904608 DOI: 10.1039/d1ob01839f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward synthesis of indolizines and pyrrolo[1,2-a]pyrazines was performed through a cascade condensation/cyclization/aromatization reaction of substituted 2-formyl-N-propargylpyrroles with active methylene compounds such as nitromethane, alkyl malonates, methyl cyanoacetate and malononitrile. Under basic conditions, the reaction proceeded satisfactorily to provide the corresponding 6,7-disubstituted indolizines. The condensation of the pyrrolic analogues with ammonium acetate gave rise to pyrrolo[1,2-a]pyrazines in high yields. N-Allenyl-2-formylpyrroles behaved as more reactive substrates than 2-formyl-N-propargylpyrroles, furnishing the expected indolizines in higher yields. Hence, an allenyl-containing intermediate was probably generated as the reactive species in the reaction mechanism of some N-propargyl pyrroles prior to the cyclization reaction.
Collapse
Affiliation(s)
- Carlos H Escalante
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Fernando A Carmona-Hernández
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Alberto Hernández-López
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Eder I Martínez-Mora
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico. .,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza e Ing. J. Cárdenas S/N, 25280 Saltillo, Coah., Mexico
| | - Francisco Delgado
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| | - Joaquín Tamariz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico.
| |
Collapse
|
19
|
Wu X, Lin W, Wang L, Li N, Tu G, Fu Y, Chen DL, Zhu W, Chen G, Zhang F. Highly dispersed palladium nanoclusters anchored on nanostructured hafnium( iv) oxide as highly efficient catalysts for the Suzuki–Miyaura coupling reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj00949h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pd@HfO2 derived via two-step pyrolysis of Pd@NH2-UiO-66(Hf) exhibited high catalytic activity for the Suzuki–Miyaura coupling reactions.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Wenting Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Li Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Nan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Gaomei Tu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Yanghe Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Guihua Chen
- School of Pharmaceutical and Material Engineering, Taizhou University, 318000 Jiaojiang, People's Republic of China
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| |
Collapse
|
20
|
Osakada K, Nishihara Y. Transmetalation of boronic acids and their derivatives: mechanistic elucidation and relevance to catalysis. Dalton Trans 2021; 51:777-796. [PMID: 34951434 DOI: 10.1039/d1dt02986j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Suzuki-Miyaura reaction (the cross-coupling reaction of boronic acids with organic halides catalysed by Pd complexes) has been recognised as a useful synthetic organic reaction that forms a C(sp2)-C(sp2) bond. The catalytic cycle of the reaction involves the transmetalation of aryl- and alkenylboronic acids with Pd(II) complexes. It migrates the aryl and alkenyl groups of boronic acid to Pd and produces a Pd-C bond. Many studies have investigated the mechanism of transmetalation. They elucidated the mechanism of the organometallic reaction and its role as a fundamental step in catalytic reactions. This perspective reviews studies on the transmetalation of aryl- and alkenylboronic acids with Pd(II) complexes. Emphasis was laid on the structures and chemical properties of the intermediate Pd complexes and the effects of OH- on the pathways of the catalytic Suzuki-Miyaura reaction. The reactions of arylboronic acids with Rh(I)-OH complexes were investigated, which are relevant to the mechanism of Rh-catalysed addition of aryl boronic acids to enones and aldehydes. Recent studies on the transmetalation of boronic acids with other late transition metals such as Fe(II), Co(I), Pt(II), Au(III), and Au(I) are presented with the related catalytic reactions and their utilisation in the synthesis of aromatic molecules and π-conjugated materials.
Collapse
Affiliation(s)
- Kohtaro Osakada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan. .,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
21
|
Seo Y, Putro WS, Faried M, Lee VY, Mizusaki T, Takagi Y, Choe YK, Matsumoto K, Choi JC, Fukaya N. [Pd(4-RSi-IPr)(allyl)Cl]/KCO/EtOH: A highly effective catalytic system for the Suzuki-Miyaura cross-coupling reaction. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Du J, Xiang D, Chen J, Xia H, Wang L, Liu F, Zhao Y, Zhang Y, Xu C, Wang B. A recyclable self-supported nanoporous PdCu heterogeneous catalyst for aqueous Suzuki-Miyaura cross-coupling. Chem Commun (Camb) 2021; 57:11641-11644. [PMID: 34668897 DOI: 10.1039/d1cc04281e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoporous PdCu (NP-PdCu) was prepared by the dealloying strategy from a PdCuAl ternary alloy precursor and characterized systematically using SEM, TEM, XRD, and XPS. NP-PdCu was demonstrated to be a competent self-supported heterogenous catalyst for Suzuki-Miyaura cross-coupling, affording a series of synthetically valuable biaryl compounds in good to excellent yields. This catalyst could be easily separated from the product via centrifugation and reused several times without obvious loss of catalytic performance.
Collapse
Affiliation(s)
- Jialei Du
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250022, P. R. China.
| | - Daili Xiang
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250022, P. R. China.
| | - Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China.
| | - Hehuan Xia
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250022, P. R. China.
| | - Leichen Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China.
| | - Fushan Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China.
| | - Yiwei Zhao
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250022, P. R. China.
| | - Yuanyuan Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250022, P. R. China.
| | - Caixia Xu
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250022, P. R. China.
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China.
| |
Collapse
|
23
|
Anchoring of palladium onto the surface of porous MCM-41 modified with DL-pyroglutamic acid as a novel heterogeneous catalyst for Suzuki–Miyaura coupling reactions. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Recent developments of supported and magnetic nanocatalysts for organic transformations: an up-to-date review. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01888-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Shi W, Niu Y, Li S, Zhang L, Zhang Y, Botton GA, Wan Y, Zhang B. Revealing the Structure Evolution of Heterogeneous Pd Catalyst in Suzuki Reaction via the Identical Location Transmission Electron Microscopy. ACS NANO 2021; 15:8621-8637. [PMID: 33960778 DOI: 10.1021/acsnano.1c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki-Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications.
Collapse
Affiliation(s)
- Wen Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shunlin Li
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ying Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Gianluigi A Botton
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario Canada L8S 4M1
| | - Ying Wan
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| |
Collapse
|
26
|
Zhou Z, Xie Q, Li J, Yuan Y, Liu Y, Liu Y, Lu D, Xie Y. Glucopyranoside-Functionalized NHCs-Pd(II)-PEPPSI Complexes: Anomeric Isomerism Controlled and Catalytic Activity in Aqueous Suzuki Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Li B, Kwok KM, Zeng HC. Versatile Hollow ZSM-5 Nanoreactors Loaded with Tailorable Metal Catalysts for Selective Hydrogenation Reactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20524-20538. [PMID: 33881838 DOI: 10.1021/acsami.1c01916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zeolites are one of the most commonly used materials in the chemical industry, acting as catalysts or catalyst supports in different applications. Recently, the synthesis and functionalization of hollow zeolites have attracted many research interests, owing to the unique advantages of their hollow morphology. In the development of more sustainable processes, the hollow zeolites are often endowed with additional stability, selectivity, and activity. Herein, we present a stepwise synthetic protocol to prepare a range of complex hollow ZSM-5 catalysts with catalytic nanoparticles. Solid ZSM-5 crystals were first synthesized from Stöber silica spheres. This solid ZSM-5 sample was then loaded with transition metals via the impregnation method. A subsequent hollowing process was carried out in hydrothermal conditions in which hollow ZSM-5 crystals with confined transition metals inside were synthesized. More specifically, after the encapsulation of transition metals inside hollow ZSM-5, two different approaches have been further devised to allow the deposition of noble metals into the interior cavities or onto the exterior surfaces of the hollow ZSM-5. The deposition of Pt on the exterior surface was carried out by mixing the hollow ZSM-5 sample with presynthesized Pt nanoparticles. Loading of Pd in the interior was achieved by the galvanic replacement reaction between the Pd ions and embedded transition metals inside the hollow ZSM-5 sample. The catalytic performance of these reactor-like nanocatalysts has been evaluated with hydrogenation reactions in both liquid and gas phases, and their compositional and structural merits have been illustrated. For the hollow ZSM-5 sample with Pd loaded inside, liquid-phase selective hydrogenation of styrene over 4-vinylbiphenyl has been achieved with the ZSM-5 shell acting as a molecular sieve. The deposition of Pt on the exterior has improved the C2-C4 product yield when tested for the gas-phase CO2 hydrogenation reaction.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore
| | - Kelvin Mingyao Kwok
- Department of Process & Catalysis Research, Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833 Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore
| |
Collapse
|
28
|
Alam AM, Shon YS. Water-Soluble Noble Metal Nanoparticle Catalysts Capped with Small Organic Molecules for Organic Transformations in Water. ACS APPLIED NANO MATERIALS 2021; 4:3294-3318. [PMID: 34095774 PMCID: PMC8171274 DOI: 10.1021/acsanm.1c00335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This article recaps a variety of interesting catalytic studies based on solubilized and freely movable noble metal nanoparticle catalysts employed for organic reactions in either pure water or water-organic biphasic systems. Small organic ligand-capped metal nanoparticles are fundamentally attractive materials due to their enormous potential as a well-defined system that can provide spatial control near active catalytic sites. The nanoparticle catalysts are first grouped based on the synthetic method (direct reduction, phase transfer, and redispersion) and then again based on the type of reaction such as alkene hydrogenation, arene hydrogenation, nitroaromatic reduction, carbon-carbon coupling reactions, etc. The impacts of various ligands on the catalytic activity and selectivity of semi-heterogeneous nanoparticles in water are discussed in detail. The catalytic systems using polymers, dendrimers, and ionic liquids as supporting or protecting materials are excluded from the subject of this review.
Collapse
Affiliation(s)
- Al-Mahmnur Alam
- Department of Chemistry and Biochemistry and the Keck Energy and Materials Program (KEMP), California State University, Long Beach, Long Beach, California 90840, United States
| | - Young-Seok Shon
- Department of Chemistry and Biochemistry and the Keck Energy and Materials Program (KEMP), California State University, Long Beach, Long Beach, California 90840, United States
| |
Collapse
|
29
|
Rationally Designed Metal Cocatalyst for Selective Photosynthesis of Bibenzyls via Dehalogenative C–C Homocoupling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Yang D, Wang S, Dan T, Gao D, Au C, Zhang W, Zhang Y. Palladium supported on structurally stable phenanthroline-based polymer nanotubes as a high-performance catalyst for the aqueous Suzuki–Miyaura coupling reaction. NEW J CHEM 2021. [DOI: 10.1039/d0nj04864j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-dimensional Pd-supported catalyst exhibits excellent catalytic activity since its TOF value is 3077 h−1 for the Suzuki–Miyaura coupling reaction of bromobenzene and phenylboronic acid under ambient conditions.
Collapse
Affiliation(s)
- Didi Yang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials
- Huanggang Normal University
- Huanggang 438000
- China
| | - Shuhui Wang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials
- Huanggang Normal University
- Huanggang 438000
- China
| | - Ting Dan
- Hubei Key Laboratory for Processing and Application of Catalytic Materials
- Huanggang Normal University
- Huanggang 438000
- China
| | - Dashuang Gao
- Hubei Key Laboratory for Processing and Application of Catalytic Materials
- Huanggang Normal University
- Huanggang 438000
- China
| | - Chaktong Au
- Hubei Key Laboratory for Processing and Application of Catalytic Materials
- Huanggang Normal University
- Huanggang 438000
- China
| | - Wanju Zhang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials
- Huanggang Normal University
- Huanggang 438000
- China
| | - Yan Zhang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials
- Huanggang Normal University
- Huanggang 438000
- China
| |
Collapse
|
31
|
Kadu BS. Suzuki–Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02059a] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suzuki–Miyaura cross coupling reaction (SMCR) – A milestone in the synthesis of C–C coupled compounds.
Collapse
|
32
|
Thiosemicarbazone Complexes of Transition Metals as Catalysts for Cross-Coupling Reactions. Catalysts 2020. [DOI: 10.3390/catal10101107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Catalysis of cross-coupling reactions under phosphane-free conditions represents an important ongoing challenge. Although transition metal complexes based on the thiosemicarbazone unit have been known for a very long time, their use in homogeneous catalysis has been studied only relatively recently. In particular, reports of cross-coupling catalytic reactions with such complexes have appeared only in the last 15 years. This review provides a survey of the research in this area and a discussion of the prospects for future developments.
Collapse
|
33
|
Affiliation(s)
- Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering Faculty of Engineering National University of Singapore 10 Kent Ridge Crescent Singapore 119260 Singapore
| |
Collapse
|