1
|
Lin QK, Sun WQ, Zhang B, Ling Q, Qian Y, Huang CZ, Li CM, Wang N. A portable point-of-care testing platform for rapid and sensitive miRNA-21 detection for heart failure diagnosis. Anal Chim Acta 2025; 1361:344168. [PMID: 40414678 DOI: 10.1016/j.aca.2025.344168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/21/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND MicroRNAs (miRNAs) play a pivotal role in various physiological and pathological processes. In particular, miRNA-21 holds significant potential as a novel biomarker for the diagnosis of heart failure. The development of miRNA detection methods is rapidly advancing, with point-of-care testing (POCT) platforms garnering considerable attention. However, traditional methods are often hampered by their reliance on expensive instruments and complex procedures, limiting clinical applicability. Therefore, there is an urgent need to develop a simple, portable, sensitive, and rapid POCT platform for miRNA-21 detection. RESULTS In this work, we proposed a portable POCT platform using a colorimetric biosensor specifically sensitive for miRNA-21. The platform utilized 3,3',5,5'-tetramethylbenzidine as the signaling molecule, and a Linear G-quadruplex loaded with Blocker Nanostructures (LGBN) generated by the RCA reaction as the probe. Furthermore, changes in primary color channels (R/G/B) of TMB for miRNA-21 detection were analyzed via smartphone-based digital image recognition. Under optimal conditions, the platform showed a linear detection range between 0.01 nM and 1 nM, with limits of detection of 8.3 pM (colorimetric methods) and 9.5 pM (digital image colorimetry). Moreover, the colorimetric biosensor exhibited excellent specificity and resistance to interference, successfully detecting miRNA-21 in serum samples from heart failure patients. SIGNIFICANCE This detection method has an accuracy consistent with RT-qPCR results, providing a novel and practical approach with POCT for miRNA-21 detection.
Collapse
Affiliation(s)
- Qian Kai Lin
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Wen Qing Sun
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Bo Zhang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Qiao Ling
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Na Wang
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
2
|
Li J, Jiang L, Wu H, Zou Y, Zhu S, Huang Y, Hu X, Bai H, Li Y, Zou Y, Ding S, Cheng W. Self-contained G-quadruplex/hemin DNAzyme: a superior ready-made catalyst for in situ imaging analysis. Nucleic Acids Res 2025; 53:gkaf227. [PMID: 40156860 PMCID: PMC11952962 DOI: 10.1093/nar/gkaf227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
The G4 DNAzyme holds significant potential for applications in bioanalysis and determination owing to its peroxidase mimetic activity and DNA programmability. However, its clinical practicability is constrained by limited catalytic activity and supplementary assembly requirements, attributed to weak π-π stacking, deficient active-site components, and ion-dependent assembly mechanisms. Thus, we constructed a highly active self-contained intramolecular G4/hemin DNAzyme through the direct covalent cross-linking of catalytic core components involving the hemin prosthetic group, G4 pocket, and distal ligand-like assistant nucleotide (adenine or cytosine). Detailed investigations of the catalytic efficiency and mechanism confirmed the formation of a compact catalytic active center through covalent bonding, which enhanced the catalysis to a stage comparable to that of horseradish peroxidase in localized surroundings. The superior ready-made catalytic modularity with programmability enabled the highly sensitive in situ imaging analysis of HER2 protein in breast cancer specimens. This study provides a powerful tool for disease marker imaging detection with high sensitivity and immediate availability.
Collapse
Affiliation(s)
- Jia Li
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lanxin Jiang
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haiping Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Yuting Zou
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shasha Zhu
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Huang
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinping Hu
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Huili Bai
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Li
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuan Zou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Cheng
- Department of Clinical Molecular Medical detection center, Laboratory medicine center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
3
|
Yao C, Zhang GQ, Yu L, Li YL, Yang T, Yang JM, Yang YH, Hu R. Homogeneous electrochemical ratiometric biosensor for MircoRNA detection based on UiO-66-NH 2 signal probe and waste-free entropy-driven DNA machine. Talanta 2024; 274:125999. [PMID: 38583327 DOI: 10.1016/j.talanta.2024.125999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The construction of efficient methods for highly sensitive and rapid detection of disease markers is essential for the early diagnosis of serious diseases. In this paper, taking advantage of the UiO-66-NH2 signal molecule in combination with a waste-free entropy-driven DNA machine, a novel homogeneous electrochemical ratiometric platform is developed to detect MircoRNA (miRNA). Metal-organic framework materials (UiO-66-NH2 MOF) and ferrocene were utilized as electrochemical signal tags and reference probes, respectively. The target-initiated waste-free three-dimensional (3D) entropy-driven DNA nanomachine is activated in the presence of miRNA, resulting in DNA-labeled-UiO-66-NH2 falling off from the electrode, leading to a decrease in the signal of UiO-66-NH2 at 0.83V. Our strategy can mitigate false positive responses induced by the DNA probes immobilized on electrodes in traditional distance-dependent signal adjustment ratiometric strategies. The proposed ratiometric platform demonstrates superior sensitivity (a detection limit of 9.8 fM), simplified operation, high selectivity, and high repeatability. The ratiometric biosensor is also applied to detect miRNA content in spiked serum samples.
Collapse
Affiliation(s)
- Chao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Gui-Qun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Lan Yu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Yu-Long Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Jian-Mei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China; Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theronastics, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
4
|
Shi K, Tian Y, Liu S, Luo W, Liu K, Zhang L, Zhang Y, Chang J, Zhang J, Wang S. Phosphorothioate-modified G-quadruplex as a signal-on dual-mode reporter for CRISPR/Cas12a-based portable detection of environmental pollutants. Anal Chim Acta 2024; 1308:342649. [PMID: 38740457 DOI: 10.1016/j.aca.2024.342649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-powered biosensor with a G-quadruplex (G4) reporter offer the benefits of simplicity and sensitivity, making them extensively utilized in detection applications. However, these biosensors used for monitoring pollutants in environmental water samples may face the problem of high background signal and easy interference due to the "signal-off" output. It is obvious that a biosensor based on the CRISPR/Cas12a system and G4 with a "signal on" output mode needs to be designed for detecting environmental pollutants. RESULTS By using phosphorothioate-modified G4 as a reporter and catalytic hairpin assembly (CHA) integrated with Cas12a as an amplification strategy, a "signal-on" colorimetric/photothermal biosensor (psG4-CHA/Cas) for portable detection of environmental pollutants was developed. With the help of functional nucleotides, the target pollutant (kanamycin or Pb2+) triggers a CHA reaction to produce numerous double-strand DNA, which can activate Cas12a's trans-cleavage activity. The active Cas12a cleaves locked DNA to release caged psG-rich sequences. Upon binding hemin, the psG-rich sequence forms a psG4/hemin complex, facilitating the oxidation of the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the blue photothermal agent (oxTMB). The smartphone was employed for portable colorimetric detection of kanamycin and Pb2+. The detection limits were found to be 100 pM for kanamycin and 50 pM for Pb2+. Detection of kanamycin and Pb2+ was also carried out using a portable thermometer with a detection limit of 10 pM for kanamycin and 8 pM for Pb2+. SIGNIFICANCE Sensitive, selective, simple and robust detection of kanamycin and Pb2+ in environmental water samples is achieved with the psG4-CHA/Cas system. This system not only provides a new perspective on the development of efficient CRISPR/Cas12a-based "signal-on" designs, but also has a promising application for safeguarding human health and environmental monitoring.
Collapse
Affiliation(s)
- Kai Shi
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China.
| | - Yi Tian
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Sujun Liu
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Wenjie Luo
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Keer Liu
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Lin Zhang
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Ying Zhang
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Jiali Chang
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China.
| | - Jiaheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Shuo Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, Guangdong, 518110, PR China.
| |
Collapse
|
5
|
Yu J, Liu Q, Qi L, Fang Q, Shang X, Zhang X, Du Y. Fluorophore and nanozyme-functionalized DNA walking: A dual-mode DNA logic biocomputing platform for microRNA sensing in clinical samples. Biosens Bioelectron 2024; 252:116137. [PMID: 38401282 DOI: 10.1016/j.bios.2024.116137] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Inspired by the programmability and modifiability of nucleic acids, point-of-care (POC) diagnostics for nucleic acid target detection is evolving to become more diversified and intelligent. In this study, we introduce a fluorescent and photothermal dual-mode logic biosensing platform that integrates catalytic hairpin assembly (CHA), toehold-mediated stand displacement reaction (SDR) and a DNA walking machine. Dual identification and signal reporting modules are incorporated into DNA circuits, orchestrated by an AND Boolean logic gate operator and magnetic beads (MBs). In the presence of bispecific microRNAs (miRNAs), the AND logic gate activates, driving the DNA walking machine, and facilitating the collection of hairpin DNA stands modified with FAM fluorescent group and CeO2@Au nanoparticles. The CeO2@Au nanoparticles, served as a nanozyme, can oxidize TMB into oxidation TMB (TMBox), enabling a near-infrared (NIR) laser-driven photothermal effect following the magnetic separation of MBs. This versatile platform was employed to differentiate between plasma samples from breast cancer patients, lung cancer patients, and healthy donors. The thermometer-readout transducers, derived from the CeO2@Au@DNA complexes, provided reliable results, further corroborated by fluorescence assays, enhancing the confidence in the diagnostics compared to singular detection method. The dual-mode logic biosensor can be easily customized to various nucleic acid biomarkers and other POC signal readout modalities by adjusting recognition sequences and modification strategies, heralding a promising future in the development of intelligent, flexible diagnostics for POC testing.
Collapse
Affiliation(s)
- Jingyuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Lijuan Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xudong Shang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
6
|
Qian D, Zhang J, Sun G, Zhang Y, Xu Q, Li J, Li H. Programmable Entropy-Driven Circuit-Cascaded Self-Feedback DNAzyme Network for Ultra-Sensitive Fluorescence and Photoelectrochemical Dual-Mode Biosensing. Anal Chem 2024; 96:7274-7280. [PMID: 38655584 DOI: 10.1021/acs.analchem.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Inspired by natural DNA networks, programmable artificial DNA networks have become an attractive tool for developing high-performance biosensors. However, there is still a lot of room for expansion in terms of sensitivity, atom economy, and result self-validation for current microRNA sensors. In this protocol, miRNA-122 as a target model, an ultrasensitive fluorescence (FL) and photoelectrochemical (PEC) dual-mode biosensing platform is developed using a programmable entropy-driven circuit (EDC) cascaded self-feedback DNAzyme network. The well-designed EDC realizes full utilization of the DNA strands and improves the atomic economy of the signal amplification system. The unique and rational design of the double-CdSe quantum-dot-released EDC substrate and the cascaded self-feedback DNAzyme amplification network significantly avoids high background signals and enhances sensitivity and specificity. Also, the enzyme-free, programmable EDC cascaded DNAzyme network effectively avoids the risk of signal leakage and enhances the accuracy of the sensor. Moreover, the introduction of superparamagnetic Fe3O4@SiO2-cDNA accelerates the rapid extraction of E2-CdSe QDs and E3-CdSe QDs, which greatly improves the timeliness of sensor signal reading. In addition to the strengths of linear range (6 orders of magnitude) and stability, the biosensor design with dual signal reading makes the test results self-confirming.
Collapse
Affiliation(s)
- Defu Qian
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Jingling Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Guoshuai Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| |
Collapse
|
7
|
Tang J, Liu J, Wang F, Yao Y, Hu R. Colorimetric and photothermal dual-mode aptasensor with redox cycling amplification for the detection of ochratoxin A in corn samples. Food Chem 2024; 439:137968. [PMID: 38043279 DOI: 10.1016/j.foodchem.2023.137968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
Ochratoxin A (OTA) detection is critical for public health safety. This study proposes a G-quadruplex-Hemin/iodide (G4-Hemin/I-)-mediated non-enzyme redox cycling amplification (RCA) system for dual-modal (colorimetric and photothermal thermometer) OTA analysis. The proposed aptasensor platform for point-of-care testing employs a common thermometer for quantitative signal readouts. The OTA aptamer folds into a G4 structure, which significantly enhances the catalytic activity in the presence of I- after RCA reaction. Moreover, a notable temperature enhancement causes color changes, providing an ultrasensitive and label-free platform for OTA detection. Further, the designed sensor was applied to OTA content determination in corn samples and achieved satisfactory results compared to a commercial enzyme-linked immunoassay kit. The proposed dual-mode aptasensor is simple, highly sensitive (1 pg/mL for colorimetric method, 0.8 pg/mL for photothermal method), selective, and suitable for low-cost instrument-free bioanalysis in low-resource settings.
Collapse
Affiliation(s)
- Jian Tang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Jiali Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Fupeng Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Yaochun Yao
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, China.
| |
Collapse
|
8
|
Song N, Fan X, Guo X, Tang J, Li H, Tao R, Li F, Li J, Yang D, Yao C, Liu P. A DNA/Upconversion Nanoparticle Complex Enables Controlled Co-Delivery of CRISPR-Cas9 and Photodynamic Agents for Synergistic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309534. [PMID: 38199243 DOI: 10.1002/adma.202309534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Photodynamic therapy (PDT) depends on the light-irradiated exciting of photosensitizer (PS) to generate reactive oxygen species (ROS), which faces challenges and limitations in hypoxia and antioxidant response of cancer cells, and limited tissue-penetration of light. Herein, a multifunctional DNA/upconversion nanoparticles (UCNPs) complex is developed which enables controlled co-delivery of CRISPR-Cas9, hemin, and protoporphyrin (PP) for synergistic PDT. An ultralong single-stranded DNA (ssDNA) is prepared via rolling circle amplification (RCA), which contains recognition sequences of single guide RNA (sgRNA) for loading Cas9 ribonucleoprotein (RNP), G-quadruplex sequences for loading hemin and PP, and linker sequences for combining UCNP. Cas9 RNP cleaves the antioxidant regulator nuclear factor E2-related factor 2 (Nrf2), improving the sensitivity of cancer cells to ROS, and enhancing the synergistic PDT effect. The G-quadruplex/hemin DNAzyme mimicks horseradish peroxidase (HRP) to catalyze the endogenous H2O2 to O2, overcoming hypoxia condition in tumors. The introduced UCNP converts NIR irradiation with deep tissue penetration to light with shorter wavelength, exciting PP to transform the abundant O2 to 1O2. The integration of gene editing and PDT allows substantial accumulation of 1O2 in cancer cells for enhanced cell apoptosis, and this synergistic PDT has shown remarkable therapeutic efficacy in a breast cancer mouse model.
Collapse
Affiliation(s)
- Nachuan Song
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaoting Fan
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaocui Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Hongjin Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Ruoyu Tao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Fengqin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Junru Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| |
Collapse
|
9
|
Li Y, Zhou P, Wang Z, Ren Y, Zhu X, Wang J, Yan H, Hua L, Gao F. Sea Anemone-like Nanomachine Based on DNA Strand Displacement Composed of Three Boolean Logic Gates: Diversified Input for Intracellular Multitarget Detection. Anal Chem 2024; 96:4120-4128. [PMID: 38412037 DOI: 10.1021/acs.analchem.3c05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Efficient and accurate acquisition of cellular biomolecular information is crucial for exploring cell fate, achieving early diagnosis, and the effective treatment of various diseases. However, current DNA biosensors are mostly limited to single-target detection, with few complex logic circuits for comprehensive analysis of three or more targets. Herein, we designed a sea anemone-like DNA nanomachine based on DNA strand displacement composed of three logic gates (YES-AND-YES) and delivered into the cells using gold nano bipyramid carriers. The AND gate activation depends on the trigger chain released by upstream DNA strand displacement reactions, while the output signal relies on the downstream DNAzyme structure. Under the influence of diverse inputs (including enzymes, miRNA, and metal ions), the interconnected logic gates simultaneously perform logical analysis on multiple targets, generating a unique output signal in the YES/NO format. This sensor can successfully distinguish healthy cells from tumor cells and can be further used for the diagnosis of different tumor cells, providing a promising platform for accurate cell-type identification.
Collapse
Affiliation(s)
- Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Zhenxin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Hua
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
10
|
Zhao X, Na N, Ouyang J. Functionalized DNA nanoplatform for multi-target simultaneous imaging: Establish the atlas of cancer cell species. Talanta 2024; 267:125222. [PMID: 37778181 DOI: 10.1016/j.talanta.2023.125222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Detection and imaging of cell membrane receptor proteins have gained widespread interest in recent years. However, recognition based on a single biomarker can induce false positive feedback, including off-target phenomenon caused by the absence of tumor-specific antigens. In addition, nucleic acid probes often cause nonspecific and undesired cell internalization during cell imaging. In this work, we constructed a logic gate DNA nano-platform (LGDP) for single-molecule imaging of cell membrane proteins to synergistically diagnose cancer cells. The traffic light-like color response of LGDP facilitates the precise discrimination among different cell lines. Combined with single molecule technology, the target proteins were qualitatively and quantitatively analyzed synergistically. Logic-gated recognition integrated in aptamer-functionalized molecular machines will prompt fast cells analysis, laying the foundation of cancer early diagnosis and treatment.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Na Na
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jin Ouyang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China; Department of Chemistry, College of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai City, 519087, Guangdong Province, China.
| |
Collapse
|
11
|
Zhang Q, Yu S, Shang J, He S, Liu X, Wang F. Spatiotemporally Programmed Disassembly of Multifunctional Integrated DNAzyme Nanoplatfrom for Amplified Intracellular MicroRNA Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305672. [PMID: 37670211 DOI: 10.1002/smll.202305672] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Indexed: 09/07/2023]
Abstract
The sensing performance of DNAzymes in live cells is tremendously hampered by the inefficient and inhomogeneous delivery of DNAzyme probes and their incontrollable off-site activation, originating from their susceptibility to nuclease digestion. This requires the development of a more compact and robust DNAzyme-delivering system with site-specific DNAzyme activation property. Herein, a highly compact and robust Zn@DDz nanoplatform is constructed by integrating the unimolecular microRNA-responsive DNA-cleaving DNAzyme (DDz) probe with the requisite DNAzyme Zn2+ -ion cofactors, and the amplified intracellular imaging of microRNA via the spatiotemporally programmed disassembly of Zn@DDz nanoparticles is achieved. The multifunctional Zn@DDz nanoplatform is simply composed of a structurally blocked self-hydrolysis DDz probe and the inorganic Zn2+ -ion bridge, with high loading capacity, and can effectively deliver the initially catalytic inert DDz probe and Zn2+ into living cells with enhanced stabilities. Upon their entry into the acidic microenvironment of living cells, the self-sufficient Zn@DDz nanoparticle is disassembled to release DDz probe and simultaneously supply Zn2+ -ion cofactors. Then, endogenous microRNA-21 catalyzes the reconfiguration and activation of DDz for generating the amplified readout signal with multiply guaranteed imaging performance. Thus, this work paves an effective way for promoting DNAzyme-based biosensing systems in living cells, and shows great promise in clinical diagnosis.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Shanshan Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Shizhen He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China
| |
Collapse
|
12
|
Wang H, Zhang X, Liu Y, Zhou S. A nicking enzyme-assisted allosteric strategy for self-resetting DNA switching circuits. Analyst 2023; 149:169-179. [PMID: 37999719 DOI: 10.1039/d3an01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The self-regulation of biochemical reaction networks is crucial for maintaining balance, stability, and adaptability within biological systems. DNA switching circuits, serving as basic units, play essential roles in regulating pathways, facilitating signal transduction, and processing biochemical reaction networks. However, the non-reusability of DNA switching circuits hinders its application in current complex information processing. Herein, we proposed a nicking enzyme-assisted allosteric strategy for constructing self-resetting DNA switching circuits to realize complex information processing. This strategy utilizes the unique cleavage ability of the nicking enzyme to achieve the automatic restoration of states. Based on this strategy, we implemented a self-resetting DNA switch. By leveraging the reusability of the DNA switch, we constructed a DNA switching circuit with selective activation characteristics and further extended its functionality to include fan-out and fan-in processes by expanding the number of functional modules and connection modes. Furthermore, we demonstrated the complex information processing capabilities of these switching circuits by integrating recognition, translation, and decision functional modules, which could analyze and transmit multiple input signals and realize parallel logic operations. This strategy simplifies the design of switching circuits and promotes the future development of biosensing, molecular computing, and nanomachines.
Collapse
Affiliation(s)
- Haoliang Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China.
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Shihua Zhou
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China.
| |
Collapse
|
13
|
Li J, Yang C, Zhang L, Li C, Xie S, Fu T, Zhang Z, Li L, Qi L, Lyu Y, Chen F, He L, Tan W. Phase Separation of DNA-Encoded Artificial Cells Boosts Signal Amplification for Biosensing. Angew Chem Int Ed Engl 2023; 62:e202306691. [PMID: 37455257 DOI: 10.1002/anie.202306691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Life-like hierarchical architecture shows great potential for advancing intelligent biosensing, but modular expansion of its sensitivity and functionality remains a challenge. Drawing inspiration from intracellular liquid-liquid phase separation, we discovered that a DNA-encoded artificial cell with a liquid core (LAC) can enhance peroxidase-like activity of Hemin and its DNA G-quadruplex aptamer complex (DGAH) without substrate-selectivity, unlike its gelled core (GAC) counterpart. The LAC is easily engineered as an ultrasensitive biosensing system, benefiting from DNA's high programmability and unique signal amplification capability mediated by liquid-liquid phase separation. As proof of concept, its versatility was successfully demonstrated by coupling with two molecular recognition elements to monitor tumor-related microRNA and profile cancer cell phenotypes. This scalable design philosophy offers new insights into the design of next generation of artificial cells-based biosensors.
Collapse
Affiliation(s)
- Juncai Li
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Cai Yang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lizhuan Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chunying Li
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sitao Xie
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ziwen Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Longjie Li
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lubin Qi
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lei He
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Du Y, Liu Z, Yang Q, Zhen D, Liu Y, Feng G. Fluoride-activated photothermal system for promoting bacteria-infected wound healing. J Nanobiotechnology 2023; 21:331. [PMID: 37715178 PMCID: PMC10504784 DOI: 10.1186/s12951-023-02091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
Although photothermal therapy (PTT) employing nanozymes has shown excellent antibacterial potential, excessive heating generally harms host cells and hinders recovery. Herein, we report an innovative technique for acquiring the programmed temperature by managing the catalytic activity of nanozymes. The photothermal system of CeO2 + F- + TMB can obtain precise photothermal temperature by adjusting the concentration of fluoride ions under near-infrared irradiation. At the optimized photothermal temperature, the photothermal system affords fine photothermal antibacterial treatment with high-efficiency antibacterial effects against Staphylococcus aureus and Escherichia coli in vitro. In vivo wound healing experiments confirm that the system can effectively promote fibroblast proliferation, angiogenesis and collagen deposition with remarkable wound healing efficiency. This strategy offers a novel design concept for creating a new generation of PTT and opens the way for the creation of alternative antibiotics.
Collapse
Affiliation(s)
- Yuanchun Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Zekai Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Qingxin Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Deshuai Zhen
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
15
|
Li J, Zhang Y, Wang X, Zhang S, Tan Q, Hu B, Xu Q, Li H. Engineering Entropy-Driven Nanomachine-Mediated Morphological Evolution of Anisotropic Silver Triangular Nanoplates for Colorimetric and Photothermal Biosensing. Anal Chem 2023; 95:12032-12038. [PMID: 37542454 DOI: 10.1021/acs.analchem.3c01888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
A DNA/RNA biosensor capable of single nucleotide variation (SNV) resolution is highly desirable for drug design and disease diagnosis. To meet the point-of-care demand, rapid, cost-effective, and accurate SNV detection is of great significance but still suffers from a challenge. In this work, a unique nonenzymatic dual-modal (multicolorimetric and photothermal) visualization DNA biosensor is first proposed for SNV identification on the basis of an entropy-driven nanomachine with double output DNAs and coordination etching of anisotropic silver triangular nanoplates (Ag TNPs). When the target initiates the DNA nanomachine, the liberated multiple output DNAs can be utilized as a bridge to produce a superparamagnetic sandwich complex. The incoming poly-C DNA can coordinate and etch highly active Ag+ ions at the tips of Ag TNPs, causing a shift in the plasmon peak of Ag TNPs from 808 to 613 nm. The more target DNAs are introduced, the more output DNAs are released and thus the more Ag+ ions are etched. The noticeable color changes of anisotropic Ag TNPs can be differentiated by "naked eye" and accurate temperature reading. The programmable DNA nanotechnology and magnetic extraction grant the high specificity. Also, the SNV detection results can be self-verified by the two-signal readouts. Moreover, the dual-modal biosensor has the advantages of portability, cost-effectiveness, and simplicity. Particularly, the exclusive entropy-driven amplifier liberates double output DNAs to bridge more poly-C DNAs, enabling the dual-modal visualization DNA biosensor with improved sensitivity.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Yansong Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Shenlong Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Qingqing Tan
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Bingtao Hu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| |
Collapse
|
16
|
Ding Z, Wei Y, Han F, Zhang X, Xu Z. DNA-Driven Photothermal Amplification Transducer for Highly Sensitive Visual Determination of Extracellular Vesicles. ACS Sens 2023; 8:2282-2289. [PMID: 37246908 DOI: 10.1021/acssensors.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Extracellular vesicles (EVs) are crucial focus of current biomedical research and future medical diagnosis. However, the requirement for specialized sophisticated instruments for quantitative readouts has limited the sensitive measurement of EVs to specialized laboratory settings, which in turn has limited bench-to-bedside translation of EV-based liquid biopsies. In this work, a straightforward temperature-output platform based on a DNA-driven photothermal amplification transducer was developed for the highly sensitive visual detection of EVs using a simple household thermometer. The EVs were specifically recognized by the antibody-aptamer sandwich immune-configuration that was constructed on portable microplates. Via a one-pot reaction, cutting-mediated exponential rolling circle amplification was initiated in situ on the EV surface, generating substantial G-quadruplex-DNA-hemin conjugates. Significant amplification in temperature was achieved from the effective photothermal conversion and regulation guided by the G-quadruplex-DNA-hemin conjugates in the 3,3',5,5'-tetramethylbenzidine-H2O2 system. Through obvious temperature outputs, the DNA-driven photothermal transducer enabled highly sensitive EV detection at close to the single-particle level and supported the highly specific identification of tumor-derived EVs directly in serum samples, without the requirement of any sophisticated instrument or labeling process. Benefiting from highly sensitive visual quantification, an easy-to-use readout, and portable detection, this photothermometric strategy is expected to be deliverable across professional on-site screening to home self-testing as EV-based liquid biopsies.
Collapse
Affiliation(s)
- Ziling Ding
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| | - Yunyun Wei
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| | - Fei Han
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| | - Xu Zhang
- Department of Oncology and Hematology, The Third Affiliated Hospital of Shenyang Medical College, Shenyang 110034, China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
17
|
Yin F, Zhao H, Lu S, Shen J, Li M, Mao X, Li F, Shi J, Li J, Dong B, Xue W, Zuo X, Yang X, Fan C. DNA-framework-based multidimensional molecular classifiers for cancer diagnosis. NATURE NANOTECHNOLOGY 2023; 18:677-686. [PMID: 36973399 DOI: 10.1038/s41565-023-01348-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A molecular classification of diseases that accurately reflects clinical behaviour lays the foundation of precision medicine. The development of in silico classifiers coupled with molecular implementation based on DNA reactions marks a key advance in more powerful molecular classification, but it nevertheless remains a challenge to process multiple molecular datatypes. Here we introduce a DNA-encoded molecular classifier that can physically implement the computational classification of multidimensional molecular clinical data. To produce unified electrochemical sensing signals across heterogeneous molecular binding events, we exploit DNA-framework-based programmable atom-like nanoparticles with n valence to develop valence-encoded signal reporters that enable linearity in translating virtually any biomolecular binding events to signal gains. Multidimensional molecular information in computational classification is thus precisely assigned weights for bioanalysis. We demonstrate the implementation of a molecular classifier based on programmable atom-like nanoparticles to perform biomarker panel screening and analyse a panel of six biomarkers across three-dimensional datatypes for a near-deterministic molecular taxonomy of prostate cancer patients.
Collapse
Affiliation(s)
- Fangfei Yin
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haipei Zhao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Lu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Li
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Baijun Dong
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiurong Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Dong C, Fang X, Qin X, Wang Y, Zhang J, Song C, Wang L. Colorimetric Detection of Met Dimerization on Live Cells via Smartphone for High-Sensitivity Sensing of the HGF/Met Signaling Pathway. Anal Chem 2023; 95:6810-6817. [PMID: 37075136 DOI: 10.1021/acs.analchem.2c05165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Membrane protein dimerization regulates numerous cellular biological processes; therefore, highly sensitive and facile detection of membrane protein dimerization are very crucial for clinical diagnosis and biomedical research. Herein, a colorimetric detection of Met dimerization on live cells via smartphone for high-sensitivity sensing of the HGF/Met signaling pathway was developed for the first time. The Met monomers on live cells were recognized by specific ligands (aptamers) first, and the Met dimerizations triggered the proximity-ligation-assisted catalytic hairpin assembly (CHA) reaction to generate large amounts of G-quadruplex (G4) fragments which can further combine hemin to form G4/hemin DNAzymes possessing the horseradish-peroxidase-like catalytic activity for catalyzing the oxidation of ABTS by H2O2 and producing the colorimetric signal (i.e., color change). The colorimetric detection of Met on live cells was then achieved by image acquisition and processing via a smartphone. As a proof-of-principle, the HGF/Met signaling pathway based on Met-Met dimerization was facile monitored, and the human gastric cancer cells MKN-45 with natural Met-Met dimers were sensitively tested and a wide linear working range from 2 to 1000 cells with a low detection limit of 1 cell was obtained. The colorimetric assay possesses a good specificity and high recovery rate of MKN-45 cells spiked in peripheral blood, which indicates that the proposed colorimetric detection of Met dimerization can be used for convenient observation of the HGF/Met signaling pathway and has extensive application prospects in point-of-care testing (POCT) of Met-dimerization-related tumor cells.
Collapse
Affiliation(s)
- Chen Dong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinyue Fang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xingcai Qin
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yeran Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
19
|
He C, Ke Z, Liu K, Peng J, Yang Q, Wang L, Feng G, Fang J. Nanozyme-based dual-signal sensing system for colorimetric and photothermal detection of AChE activity in the blood of liver-injured mice. Anal Bioanal Chem 2023; 415:2655-2664. [PMID: 36995409 DOI: 10.1007/s00216-023-04663-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Acetylcholinesterase (AChE), a crucial enzyme related to liver function, is involved in numerous physiological processes such as neurotransmission and muscular contraction. The currently reported techniques for detecting AChE mainly rely on a single signal output, limiting their high-accuracy quantification. The few reported dual-signal assays are challenging to implement in dual-signal point-of-care testing (POCT) because of the need for large instruments, costly modifications, and trained operators. Herein, we report a colorimetric and photothermal dual-signal POCT sensing platform based on CeO2-TMB (3,3',5,5'-tetramethylbenzidine) for the visualization of AChE activity in liver-injured mice. The method compensates for the false positives of a single signal and realizes the rapid, low-cost portable detection of AChE. More importantly, the CeO2-TMB sensing platform enables the diagnosis of liver injury and provides an effective tool for studying liver disease in basic medicine and clinical applications. Rapid colorimetric and photothermal biosensor for sensitive detection of acetylcholinesterase (I) and acetylcholinesterase levels in mouse serum (II).
Collapse
Affiliation(s)
- Chang He
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenyi Ke
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Kai Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiasheng Peng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qinghui Yang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lixiang Wang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
20
|
Shi L, Tang Q, Yang B, Liu W, Li B, Yang C, Jin Y. Logic-Gates of Gas Pressure for Portable, Intelligent and Multiple Analysis of Metal Ions. Anal Chem 2023; 95:5702-5709. [PMID: 36939344 DOI: 10.1021/acs.analchem.2c05677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
DNA logic gates have shown outstanding magic in intelligent biology applications, but it remains challenging to construct a portable, affordable and convenient DNA logic gate. Herein, logic gates of gas pressure were innovatively developed for multiplex analysis of metal ions. Hg2+ and Ag+ were input to interact specifically with the respective mismatched base pairs, which activated DNA extension reaction by polymerase and led to the enrichment of platinum nanoparticles for catalyzing the decomposition of peroxide hydrogen. Thus, the gas pressure obtained from a sealed well was used as output for detecting or identifying metal ions. Hg2+ and Ag+ were sensitively and selectively detected, and the assay of the real samples was also satisfactory. Based on this, DNA logic gates, including YES, NOT, AND, OR, NAND, NOR, INHIBIT, and XOR were successfully established using a portable and hand-held gas pressure meter as detector. So, the interactions between DNA and metal ions were intelligently transferred into the output of gas pressure, which made metal ions to be detected portably and identified intelligently. Given the remarkable merits of simplicity, logic operation, and portable output, the metal ion-driven DNA logic gate of gas pressure provides a promising way for intelligent and portable biosensing.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
21
|
Liu Z, Xie N, Li J, Fu X, Wang K, Shi H, Huang J. Self-Priming DNA Polymerization-Propelled Stochastic Walkers on Magnetic Microbeads for Amplified Detection of miRNA. Anal Chem 2023; 95:4529-4535. [PMID: 36814089 DOI: 10.1021/acs.analchem.2c05648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Sensitive detection of miRNA targets in complex biological samples possesses great value in biopsy analysis and disease diagnosis but is still challenging because of low abundance and nonspecific interferences. In this work, self-primer DNA polymerization-propelled stochastic walkers (SWs) were proposed to detect miRNA-24 by combining magnetic microbeads (MMBs) and flow cytometry. The MMBs not only provide a three-dimensional interface for DNA walkers but also facilitate the enrichment and isolation of RNA targets from complex biological samples such as serum. The SWs can be initiated to walk through the entire surface of MMBs and transduce RNA walking into amplified fluorescence signals, with the detection limit of miRNA-24 at 0.95 pM. Moreover, this strategy integrating with flow cytometry was demonstrated to have good specificity with other homologous miRNAs. This platform offers promising applications in RNA biosensing and biomedical diagnostics.
Collapse
Affiliation(s)
- Zhenxiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Nuli Xie
- Xiangya School of Pharmaceutical Sciences, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410013, China
| | - Juan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
22
|
Iwaniuk EE, Adebayo T, Coleman S, Villaros CG, Nesterova IV. Activatable G-quadruplex based catalases for signal transduction in biosensing. Nucleic Acids Res 2023; 51:1600-1607. [PMID: 36727464 PMCID: PMC9976883 DOI: 10.1093/nar/gkad031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/03/2023] Open
Abstract
Discovery of oxidative catalysis with G-quadruplex•hemin constructs prompted a range of exciting developments in the field of biosensor design. Thus, G-quadruplex based DNAzymes with peroxidase activity found a niche as signal transduction modules in a wide range of analytical applications. The ability of nucleic acid scaffolds to recognise a variety of practically meaningful markers and to translate the recognition events into conformational changes powers numerous sensor design possibilities. In this work, we establish a catalase activity of G-quadruplex•hemin scaffolds. Catalase activated hydrogen peroxide decomposition generates molecular oxygen that forms bubbles. Observation of bubbles is a truly equipment free signal readout platform that is highly desirable in limited resources or do-it-yourself environments. We take a preliminary insight into a G-quadruplex structure-folding topology-catalase activity correlation and establish efficient operating conditions. Further, we demonstrate the platform's potential as a signal transduction modality for reporting on biomolecular recognition using an oligonucleotide as a proof-of-concept target. Ultimately, activatable catalases based on G-quadruplex•hemin scaffolds promise to become valuable contributors towards accessible molecular diagnostics applications.
Collapse
Affiliation(s)
- Elzbieta E Iwaniuk
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Thuwebat Adebayo
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Seth Coleman
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Caitlin G Villaros
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
23
|
Yang T, Li J, Zhang D, Cheng X, Li J, Huang X, Ding S, Tang BZ, Cheng W. Pre-Folded G-Quadruplex as a Tunable Reporter to Facilitate CRISPR/Cas12a-Based Visual Nucleic Acid Diagnosis. ACS Sens 2022; 7:3710-3719. [PMID: 36399094 DOI: 10.1021/acssensors.2c01391] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-based detection strategies with a fluorophore quencher-labeled ssDNA reporter or gold nanoparticle ssDNA reporter have been widely used in point-of-care (POC) molecular diagnostics. However, the potential of these CRISPR/Cas12a strategies for POC molecular diagnostics is often compromised due to the complex labeling, high cost, and low signal-to-noise ratio. Herein, we show a pre-folded G-quadruplex (G4) structure with tunable tolerance to CRISPR/Cas12a trans-cleavage and explore its mechanism. Two G4 structures (i.e., Tel22-10 and G16C) sensitive or tolerant to CRISPR/Cas12a trans-cleavage are designed and used as signal elements to fabricate a label-free visible fluorescent strategy or "signal-on" colorimetric strategy, respectively. These two strategies facilitate an ultrasensitive visual nucleic acid determination of Group B Streptococci with a naked-eye limit of detection of 1 aM. The feasibility of the developed G4-assisted CRISPR/Cas12a strategies for real-world applications is demonstrated in clinical vaginal/anal specimens and further verified by a commercial qPCR assay. This work suggests that the proposed G4 structures with tunable tolerance can act as promising signal reporters in the CRISPR/Cas12a system to enable ultrasensitive visible nucleic acid detection.
Collapse
Affiliation(s)
- Tiantian Yang
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Juan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang330047, China
| | - Decai Zhang
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Xiaoxue Cheng
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Jia Li
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang330047, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing400016, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Wei Cheng
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| |
Collapse
|
24
|
Liu Q, Hou L, Zhang Y, Liu M, Jin Y, Li B. Improving efficiency of entropy-driven DNA amplification biosensing through producing two label-free signal strands in one cycle. Anal Chim Acta 2022; 1232:340484. [DOI: 10.1016/j.aca.2022.340484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/01/2022]
|
25
|
Du Y, Ke Z, Zhang J, Feng G. Dual-signal output paper sensor based on coordinative self-assembly biomimetic nanozyme for point-of-care detection of biomarker. Biosens Bioelectron 2022; 216:114656. [DOI: 10.1016/j.bios.2022.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
|
26
|
Qi L, Du Y. Diagnosis of disease relevant nucleic acid biomarkers with off-the-shelf devices. J Mater Chem B 2022; 10:3959-3973. [PMID: 35575030 DOI: 10.1039/d2tb00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in the level of nucleic acids in blood may be correlated with some clinical disorders like cancer, stroke, trauma and autoimmune diseases, and thus, nucleic acids can serve as potential biomarkers for pathological processes. The requirement of technical equipment and operator expertise in effective information readout of modern molecular diagnostic technologies significantly restricted application outside clinical laboratories. The ability to detect nucleic acid biomarkers with off-the-shelf devices, which have the advantages of portability, simplicity, low cost and short response time, is critical to provide a prompt clinical result in circumstances where the laboratory instruments are not available. This review throws light on the current strategies and challenges for nucleic acid diagnosis with commercial portable devices, indicating the future prospect of portable diagnostic devices and making a great difference in improving the healthcare and disease surveillance in resource-limited areas.
Collapse
Affiliation(s)
- Lijuan Qi
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Anhui, P. R. China
| | - Yan Du
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Anhui, P. R. China
| |
Collapse
|
27
|
A high-integrated DNA biocomputing platform for MicroRNA sensing in living cells. Biosens Bioelectron 2022; 207:114183. [PMID: 35303538 DOI: 10.1016/j.bios.2022.114183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
DNA logic computing has captured increasing interest due to its ability to assemble programmable DNA computing elements for disease diagnosis, gene regulation, and targeted therapy. In this work, we developed an aptamer-equipped high-integrated DNA biocomputing platform (HIDBP-A) with a dual-recognition function that enabled cancer cell targeting. Dual microRNAs were the input signals and can perform AND logic operations. Compared to the free DNA biocomputing platform (FDBP), the integration of all computing elements into the same DNA tetrahedron greatly improved logic computing speed and efficiency owing to the confinement effect reflected by the high local concentration of computing elements. As a proof of concept, the utilization of microRNA as the input signal was beneficial for improving the scalability and flexibility of the sequence design of the logic nano-platform. Given that the different microRNAs were over-expressed in cancer cells, this new HIDBP-A has great promise in accurate diagnosis and logic-controlled disease treatment.
Collapse
|
28
|
Lv WY, Li CH, Yang FF, Li YF, Zhen SJ, Huang CZ. Sensitive Logic Nanodevices with Strong Response for Weak Inputs. Angew Chem Int Ed Engl 2022; 61:e202115561. [PMID: 34989066 DOI: 10.1002/anie.202115561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 02/04/2023]
Abstract
Sensitive sensing is critical when developing new calculation systems with weak input signals (ISs). In this work, a "weak-inputs-strong-outputs" strategy was proposed to guide the construction of sensitive logic nanodevices by coupling an input-induced reversible DNA computing platform with a hybridization chain reaction-based signal amplifier. By rational design of the sequence of computing elements (CEs) so as to avoid cross-talking between ISs and signal amplifier, the newly formed logic nanodevices have good sensitivity to the weak ISs even at low concentrations of CEs, and are able to perform YES, OR, NAND, NOR, INHIBIT, INHIBIT-OR and number classifier operation, showing that the DNA calculation proceeds in dilute solution medium that greatly improves the calculation proficiency of logic nanodevices without the confinement of the lithography process in nanotechnology.
Collapse
Affiliation(s)
- Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Fei Fan Yang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
29
|
Lv WY, Li CH, Yang FF, Li YF, Zhen SJ, Huang CZ. Sensitive Logic Nanodevices with Strong Response for Weak Inputs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen Yi Lv
- Southwest University College of Pharmaceutical Sciences CHINA
| | - Chun Hong Li
- Southwest University College of Pharmaceutical Sciences CHINA
| | - Fei Fan Yang
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Yuan Fang Li
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Shu Jun Zhen
- Southwest University College of Chemistry and Chemical Engineering Tiansheng Road, BeiBei 400715 Chongqing CHINA
| | - Cheng Zhi Huang
- Southwest University College of Pharmaceutical Sciences CHINA
| |
Collapse
|
30
|
Chen H, Liu Y, Feng S, Cao Y, Wu T, Liu Z. Cotton thread-based multi-channel photothermal biosensor for simultaneous detection of multiple microRNAs. Biosens Bioelectron 2021; 200:113913. [PMID: 34968855 DOI: 10.1016/j.bios.2021.113913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
The abnormal expression of microRNAs (miRNAs) is associated with various diseases. Developing simple and portable methods for sensitive, rapid and simultaneous detection of multiple miRNAs is critical to achieve accurate and timely diagnosis. Herein, a cotton thread-based multi-channel photothermal biosensor was proposed for simultaneous detection of three breast cancer-related miRNAs including miRNA-10b, miRNA-27a and miRNA-let-7a. Three cotton thread-based channels with one input were designed and the capture probes for detecting different miRNAs were immobilized on the test zones of the corresponding channels. Cu2-xS nanostrings prepared on the basis of hybridization chain reaction (HCR) were taken as the photothermal agents for signal transduction and amplification. The formation of a sandwich structure among the capture probe, target miRNA, and Cu2-xS nanostrings led to the accumulation of the Cu2-xS nanostrings on the test zones and transformed the concentration of miRNA into temperature signal under 808 nm laser irradiation. The temperature changes were quantified by a portable thermal camera and directly reflected the concentration of miRNAs. Under the optimal conditions, the developed multi-channel photothermal biosensor showed excellent specificity and sensitivity with the detection limits of 37 pM, 38 pM and 38 pM for miRNA-10b, miRNA-27a and miRNA-let-7a, respectively. Furthermore, a simultaneous detection of the three miRNAs in cell lysates were achieved and the results were in accordance with that obtained by the quantitative reverse transcription polymerase chain reaction (qRT-PCR), indicating its excellent capacity for practical applications. The developed biosensor provided an important tool for analysis of multiple targets and showed great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Hanjun Chen
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Ying Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shaoqiong Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Yu Cao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Tingting Wu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| |
Collapse
|
31
|
Chen L, Chen W, Liu G, Li J, Lu C, Li J, Tan W, Yang H. Nucleic acid-based molecular computation heads towards cellular applications. Chem Soc Rev 2021; 50:12551-12575. [PMID: 34604889 DOI: 10.1039/d0cs01508c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids, with the advantages of programmability and biocompatibility, have been widely used to design different kinds of novel biocomputing devices. Recently, nucleic acid-based molecular computing has shown promise in making the leap from the test tube to the cell. Such molecular computing can perform logic analysis within the confines of the cellular milieu with programmable modulation of biological functions at the molecular level. In this review, we summarize the development of nucleic acid-based biocomputing devices that are rationally designed and chemically synthesized, highlighting the ability of nucleic acid-based molecular computing to achieve cellular applications in sensing, imaging, biomedicine, and bioengineering. Then we discuss the future challenges and opportunities for cellular and in vivo applications. We expect this review to inspire innovative work on constructing nucleic acid-based biocomputing to achieve the goal of precisely rewiring, even reconstructing cellular signal networks in a prescribed way.
Collapse
Affiliation(s)
- Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Wanzhen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Guo Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. .,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
32
|
Wang D, Li S, Zhao Z, Zhang X, Tan W. Engineering a Second‐Order DNA Logic‐Gated Nanorobot to Sense and Release on Live Cell Membranes for Multiplexed Diagnosis and Synergistic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Shenhuan Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine College of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
33
|
Wang D, Li S, Zhao Z, Zhang X, Tan W. Engineering a Second-Order DNA Logic-Gated Nanorobot to Sense and Release on Live Cell Membranes for Multiplexed Diagnosis and Synergistic Therapy. Angew Chem Int Ed Engl 2021; 60:15816-15820. [PMID: 33908144 DOI: 10.1002/anie.202103993] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Indexed: 01/24/2023]
Abstract
Tumor biomarker-based theranostics have achieved broad interest and success in recent years. However, single biomarker-based recognition can cause false-positive feedback, including the on-target off-tumor phenomenon, in the absence of tumor-specific antigen. Multibiomarker-based recognition molecules often elicit nonspecific and undesired internalization when they bind to "bystander" cells. We report a universal DNA tetrahedral scaffold (DTS) that anchors on the cell membrane to load multiple aptamers and therapeutics for precise and effective theranostics. This DNA logic-gated nanorobot (DLGN) not only facilitates precise discrimination among five cell lines, but also triggers synergistic killing of effector aptamer-tethered synergistic drugs (EASDs) to target cancer cells. Logic-gated recognition integrated into aptamer-functionalized molecular machines will prompt fast tumor profiling, in situ capture and isolation, and safe delivery of precise medicine.
Collapse
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Shenhuan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
- The Cancer Hospital of the University of, Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
34
|
Huang D, Han H, Guo C, Lin X, Chen D, Yang S, Yang Q, Li F. Information processing using an integrated DNA reaction network. NANOSCALE 2021; 13:5706-5713. [PMID: 33683263 DOI: 10.1039/d0nr09148k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Living organisms use interconnected chemical reaction networks (CRNs) to exchange information with the surrounding environment and respond to diverse external stimuli. Inspired by nature, numerous artificial CRNs with a complex information processing function have been recently introduced, with DNA as one of the most attractive engineering materials. Although much progress has been made in DNA-based CRNs in terms of controllable reaction dynamics and molecular computation, the effective integration of signal translation with information processing in a single CRN remains to be difficult. In this work, we introduced a stimuli-responsive DNA reaction network capable of integrated information translation and processing in a stepwise manner. This network is designed to integrate sensing, translation, and decision-making operations by independent modules, in which various logic units capable of performing different functions were realized, including information identification (YES and OR gates), integration (AND and AND-AND gates), integration-filtration (AND-AND-NOT gate), comparison (Comparator), and map-to-map analysis (Feynman gate). Benefitting from the modular and programmable design, continuous and parallel processing operations are also possible. With the innovative functions, we show that the DNA network is a highly useful addition to the current DNA-based CRNs by offering a bottom-up strategy to design devices capable of cascaded information processing with high efficiency.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu S, Wang S, Zhu M, Gao E. SYNTHESIS, CHARACTERIZATION, DNA BINDING,
AND ANTICANCER ABILITY OF A Co(II) COMPLEX CONSTRUCTED
BY 2-PROPYL-1H-IMIDAZOLE-4,5-DICARBOXYLIC ACID. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|