1
|
Rot AE, Hrovatin M, Bokalj B, Lavrih E, Turk B. Cysteine cathepsins: From diagnosis to targeted therapy of cancer. Biochimie 2024; 226:10-28. [PMID: 39245316 DOI: 10.1016/j.biochi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cysteine cathepsins are a fascinating group of proteolytic enzymes that play diverse and crucial roles in numerous biological processes, both in health and disease. Understanding these proteases is essential for uncovering novel insights into the underlying mechanisms of a wide range of disorders, such as cancer. Cysteine cathepsins influence cancer biology by participating in processes such as extracellular matrix degradation, angiogenesis, immune evasion, and apoptosis. In this comprehensive review, we explore foundational research that illuminates the diverse and intricate roles of cysteine cathepsins as diagnostic markers and therapeutic targets for cancer. This review aims to provide valuable insights into the clinical relevance of cysteine cathepsins and explore their capacity to advance personalised and targeted medical interventions in oncology.
Collapse
Affiliation(s)
- Ana Ercegovič Rot
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Matija Hrovatin
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Bor Bokalj
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Ernestina Lavrih
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Fan Y, Zhang Z, Zhang X, Xu A, Zhu JJ, Min Q. DNA Walker-Driven Mass Nanotag Assembly System for Simultaneously Profiling Dual Markers of Oxidative Stress at Different Cellular Locations. Anal Chem 2024; 96:8754-8762. [PMID: 38740024 DOI: 10.1021/acs.analchem.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Simultaneous profiling of redox-regulated markers at different cellular sublocations is of great significance for unraveling the upstream and downstream molecular mechanisms of oxidative stress in living cells. Herein, by synchronizing dual target-triggered DNA machineries in one nanoentity, we engineered a DNA walker-driven mass nanotag (MNT) assembly system (w-MNT-AS) that can be sequentially activated by oxidative stress-associated mucin 1 (MUC1) and apurinic/apyrimidinic endonuclease 1 (APE1) from plasma membrane to cytoplasm and induce recycled assembly of MNTs for multiplex detection of the two markers by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In the working cascade, the sensing process governs the separate activation of w-MNT-AS by MUC1 and APE1 in diverse locations, while the assembly process contributes to the parallel amplification of the ion signal of the characteristic mass tags. In this manner, the differences between MCF-7, HeLa, HepG2, and L02 cells in membrane MUC1 expression and cytoplasmic APE1 activation were fully characterized. Furthermore, the oxidative stress level and dynamics caused by exogenous H2O2, doxorubicin, and simvastatin were comprehensively demonstrated by tracking the fate of the two markers across different cellular locations. The proposed w-MNT-AS coupled MS method provides an effective route to probe multiple functional molecules that lie at different locations while participating in the same cellular event, facilitating the mechanistic studies on cellular response to oxidative stress and other disease-related cellular processes.
Collapse
Affiliation(s)
- Yinyin Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xue Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Aobo Xu
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Hu J, Yan X, Chris Le X. Label-free detection of biomolecules using inductively coupled plasma mass spectrometry (ICP-MS). Anal Bioanal Chem 2024; 416:2625-2640. [PMID: 38175283 DOI: 10.1007/s00216-023-05106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Bioassays using inductively coupled plasma mass spectrometry (ICP-MS) have gained increasing attention because of the high sensitivity of ICP-MS and the various strategies of labeling biomolecules with detectable metal tags. The classic strategy to tag the target biomolecules is through direct antibody-antigen interaction and DNA hybridization, and requires the separation of the bound from the unbound tags. Label-free ICP-MS techniques for biomolecular assays do not require direct labeling: they generate detectable metal ions indirectly from specific biomolecular reactions, such as enzymatic cleavage. Here, we highlight the development of three main strategies of label-free ICP-MS assays for biomolecules: (1) enzymatic cleavage of metal-labeled substrates, (2) release of immobilized metal ions from the DNA backbone, and (3) nucleic acid amplification-assisted aggregation and release of metal tags to achieve amplified detection. We briefly describe the fundamental basis of these label-free ICP-MS assays and discuss the benefits and drawbacks of various designs. Future research is needed to reduce non-specific adsorption and minimize background and interference. Analytical innovations are also required to confront challenges faced by in vivo applications.
Collapse
Affiliation(s)
- Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
4
|
Skorenski M, Ji S, Verhelst SHL. Covalent activity-based probes for imaging of serine proteases. Biochem Soc Trans 2024; 52:923-935. [PMID: 38629725 DOI: 10.1042/bst20231450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Serine proteases are one of the largest mechanistic classes of proteases. They regulate a plethora of biochemical pathways inside and outside the cell. Aberrant serine protease activity leads to a wide variety of human diseases. Reagents to visualize these activities can be used to gain insight into the biological roles of serine proteases. Moreover, they may find future use for the detection of serine proteases as biomarkers. In this review, we discuss small molecule tools to image serine protease activity. Specifically, we outline different covalent activity-based probes and their selectivity against various serine protease targets. We also describe their application in several imaging methods.
Collapse
Affiliation(s)
- Marcin Skorenski
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| | - Shanping Ji
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Zhang X, Dong Y, Wang Y, Zhang Z, Zhang X, Zhu JJ, Tian Y, Min Q. Quality Control of Mass-Encoded Nanodevices by Compartmented DNA Origami Frames for Precision Information Coding and Logic Mapping. Angew Chem Int Ed Engl 2024; 63:e202313446. [PMID: 38038595 DOI: 10.1002/anie.202313446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Encoded nanostructures afford an ideal platform carrying multi-channel signal components for multiplexed assay and information security. However, with the demand on exclusivity and reproducibility of coding signals, precise control on the structure and composition of nanomaterials featuring fully distinguishable signals remains challenging. By using the multiplexing capability of mass spectrometry (MS) and spatial addressability of DNA origami nanostructures, we herein propose a quality control methodology for constructing mass-encoded nanodevices (namely MNTs-TDOFs) in the scaffold of compartmented tetrahedral DNA origami frames (TDOFs), in which the arrangement and stoichiometry of four types of mass nanotags (MNTs) can be finely regulated and customized to generate characteristic MS patterns. The programmability of combinatorial MNTs and orthogonality of individual compartments allows further evolution of MNTs-TDOFs to static tagging agents and dynamic nanoprobes for labeling and sensing of multiple targets. More importantly, structure control at single TDOF level ensures the constancy of prescribed MS outputs, by which a high-capacity coding system was established for secure information encryption and decryption. In addition to the multiplexed outputs in parallel, the nanodevices could also map logic circuits with interconnected complexity and logic events of c-Met recognition and dimerization on cell surface for signaling regulation by MS interrogation.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Muftuoglu M, Andreeff M. Sample multiplexing in CyTOF: Path to optimize single-cell proteomic profiling. CELL SIGNALING 2024; 2:113-119. [PMID: 40182016 PMCID: PMC11967567 DOI: 10.46439/signaling.2.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Sample multiplexing significantly enhanced the depth of single-cell proteomic analysis in CyTOF (Cytometry by Time-Of-Flight). New polymer-based chelators have broadened the utility of metal isotopes, enabling improved tagging and simultaneous analysis of multiple samples. These approaches minimize batch effects, streamline experiments, conserve valuable samples, reduce costs, enhance throughput, and increase the accuracy of biological data, thereby facilitating novel discoveries.
Collapse
Affiliation(s)
- Muharrem Muftuoglu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Li Y, Wang B, Ahmad Khan Z, He J, Cheung E, Su W, Wang A, Jiang H, Jiang L, Ding X. Platinum-Chimeric Carrier Cells for Ultratrace Cell Analysis in Mass Cytometry. Anal Chem 2023; 95:14998-15007. [PMID: 37767956 DOI: 10.1021/acs.analchem.3c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mass cytometry by time-of-flight (CyTOF), a high-dimensional single-cell analysis platform, detects up to 50 biomarkers at single-cell resolution. However, CyTOF analysis of biological samples with a minimal number of available cells or rare cell subsets remains a major technical challenge due to the extensive loss of cells during cell recovery, staining, and acquisition. Here, we introduce a platinum-chimeric carrier cell strategy for mass cytometry profiling of ultratrace cell samples. Cisplatin can rapidly enter broken plasma membranes of dead cells and form a chimeric interaction with cellular proteins, peptides, and amino acids. Thus, 198Pt-cisplatin is adopted to tag carrier cells in the pretreatment stage. We investigated 8 cell lines that are commonly accessible in laboratories for their potential as carrier cells to preserve rare target cells for CyTOF analysis. We designed a panel of 35 protein biomarkers to evaluate the comprehensive single-cell subtype classification capability with or without the carrier cell strategy. We further demonstrated the detection and analysis of as few as 1 × 104 immune cells using our method. The proposed method thus allows CyTOF analysis on precious clinical samples with less abundant cells.
Collapse
Affiliation(s)
- Yiyang Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Boqian Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zara Ahmad Khan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Jie He
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Edwin Cheung
- Cancer Centre, University of Macau, Taipa 999078, Macau SAR
- Centre for Precision Medicine Research and Training, University of Macau, Taipa 999078, Macau SAR
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau SAR
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau SAR
| | - Wenqiong Su
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hui Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
8
|
Lee I, Tantisirivat P, Edgington-Mitchell LE. Chemical Tools to Image the Activity of PAR-Cleaving Proteases. ACS BIO & MED CHEM AU 2023; 3:295-304. [PMID: 37599791 PMCID: PMC10436261 DOI: 10.1021/acsbiomedchemau.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 08/22/2023]
Abstract
Protease-activated receptors (PARs) comprise a family of four G protein-coupled receptors (GPCRs) that have broad functions in health and disease. Unlike most GPCRs, PARs are uniquely activated by proteolytic cleavage of their extracellular N termini. To fully understand PAR activation and function in vivo, it is critical to also study the proteases that activate them. As proteases are heavily regulated at the post-translational level, measures of total protease abundance have limited utility. Measures of protease activity are instead required to inform their function. This review will introduce several classes of chemical probes that have been developed to measure the activation of PAR-cleaving proteases. Their strengths, weaknesses, and applications will be discussed, especially as applied to image protease activity at the whole organism, tissue, and cellular level.
Collapse
Affiliation(s)
- Irene
Y. Lee
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| | - Piyapa Tantisirivat
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| | - Laura E. Edgington-Mitchell
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| |
Collapse
|
9
|
Zmudzinski M, Malon O, Poręba M, Drąg M. Imaging of proteases using activity-based probes. Curr Opin Chem Biol 2023; 74:102299. [PMID: 37031620 DOI: 10.1016/j.cbpa.2023.102299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023]
Abstract
Proteases (proteolytic enzymes) are proteins that catalyze one of the most important biochemical reactions, namely the hydrolysis of the peptide bond in peptide and protein substrates. Therefore these molecular biocatalysts participate in virtually all living processes. The proper balance between intact and processed protease substrates enables to maintenance of homeostasis from a single-cell level to the whole living system. However, when the proteolytic activity is altered, this delicate balance is disturbed, which might lead to the development of a plethora of diseases. Given this, monitoring proteolytic activity is indispensable to understanding how proteases operate in disease lesions and how their altered catalytic activity might be harnessed for a better diagnosis and treatment. In this manuscript, we provide a critical review of the recent development of protease chemical probes which are small molecules that detect proteolytic activity by interacting with protease active site, individual proteases as well as complex proteolytic networks.
Collapse
Affiliation(s)
- Mikolaj Zmudzinski
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
| | - Oliwia Malon
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
| | - Marcin Poręba
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland.
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
10
|
Arnett LP, Rana R, Chung WWY, Li X, Abtahi M, Majonis D, Bassan J, Nitz M, Winnik MA. Reagents for Mass Cytometry. Chem Rev 2023; 123:1166-1205. [PMID: 36696538 DOI: 10.1021/acs.chemrev.2c00350] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mass cytometry (cytometry by time-of-flight detection [CyTOF]) is a bioanalytical technique that enables the identification and quantification of diverse features of cellular systems with single-cell resolution. In suspension mass cytometry, cells are stained with stable heavy-atom isotope-tagged reagents, and then the cells are nebulized into an inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS) instrument. In imaging mass cytometry, a pulsed laser is used to ablate ca. 1 μm2 spots of a tissue section. The plume is then transferred to the CyTOF, generating an image of biomarker expression. Similar measurements are possible with multiplexed ion bean imaging (MIBI). The unit mass resolution of the ICP-TOF-MS detector allows for multiparametric analysis of (in principle) up to 130 different parameters. Currently available reagents, however, allow simultaneous measurement of up to 50 biomarkers. As new reagents are developed, the scope of information that can be obtained by mass cytometry continues to increase, particularly due to the development of new small molecule reagents which enable monitoring of active biochemistry at the cellular level. This review summarizes the history and current state of mass cytometry reagent development and elaborates on areas where there is a need for new reagents. Additionally, this review provides guidelines on how new reagents should be tested and how the data should be presented to make them most meaningful to the mass cytometry user community.
Collapse
Affiliation(s)
- Loryn P Arnett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Rahul Rana
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Wilson Wai-Yip Chung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Xiaochong Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mahtab Abtahi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Daniel Majonis
- Standard BioTools Canada Inc. (formerly Fluidigm Canada Inc.), 1380 Rodick Road, Suite 400, Markham, OntarioL3R 4G5, Canada
| | - Jay Bassan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| |
Collapse
|
11
|
Ćwilichowska N, Świderska KW, Dobrzyń A, Drąg M, Poręba M. Diagnostic and therapeutic potential of protease inhibition. Mol Aspects Med 2022; 88:101144. [PMID: 36174281 DOI: 10.1016/j.mam.2022.101144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Proteases are enzymes that hydrolyze peptide bonds in proteins and peptides; thus, they control virtually all biological processes. Our understanding of protease function has advanced considerably from nonselective digestive enzymes to highly specialized molecular scissors that orchestrate complex signaling networks through a limited proteolysis. The catalytic activity of proteases is tightly regulated at several levels, ranging from gene expression through trafficking and maturation to posttranslational modifications. However, when this delicate balance is disturbed, many diseases develop, including cancer, inflammatory disorders, diabetes, and neurodegenerative diseases. This new understanding of the role of proteases in pathologic physiology indicates that these enzymes represent excellent molecular targets for the development of therapeutic inhibitors, as well as for the design of chemical probes to visualize their redundant activity. Recently, numerous platform technologies have been developed to identify and optimize protease substrates and inhibitors, which were further used as lead structures for the development of chemical probes and therapeutic drugs. Due to this considerable success, the clinical potential of proteases in therapeutics and diagnostics is rapidly growing and is still not completely explored. Therefore, small molecules that can selectively target aberrant protease activity are emerging in diseases cells. In this review, we describe modern trends in the design of protease drugs as well as small molecule activity-based probes to visualize selected proteases in clinical settings.
Collapse
Affiliation(s)
- Natalia Ćwilichowska
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb, Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Karolina W Świderska
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb, Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology, Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb, Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Marcin Poręba
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb, Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
12
|
Maxwell ZA, Suazo KF, Brown HM, Distefano MD, Arriaga EA. Combining Isoprenoid Probes with Antibody Markers for Mass Cytometric Analysis of Prenylation in Single Cells. Anal Chem 2022; 94:11521-11528. [PMID: 35952372 PMCID: PMC9441216 DOI: 10.1021/acs.analchem.2c01509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein prenylation is an essential post-translational modification that plays a key role in facilitating protein localization. Aberrations in protein prenylation have been indicated in multiple disease pathologies including progeria, some forms of cancer, and Alzheimer's disease. While there are single-cell methods to study prenylation, these methods cannot simultaneously assess prenylation and other cellular changes in the complex cell environment. Here, we report a novel method to monitor, at the single-cell level, prenylation and expression of autophagy markers. An isoprenoid analogue containing a terminal alkyne, substrate of prenylation enzymes, was metabolically incorporated into cells in culture. Treatment with a terbium reporter containing an azide functional group, followed by copper-catalyzed azide-alkyne cycloaddition, covalently attached terbium ions to prenylated proteins within cells. In addition, simultaneous treatment with a holmium-containing analogue of the reporter, without an azide functional group, was used to correct for non-specific retention at the single-cell level. This procedure was compatible with other mass cytometric sample preparation steps that use metal-tagged antibodies. We demonstrate that this method reports changes in levels of prenylation in competitive and inhibitor assays, while tracking autophagy molecular markers with metal-tagged antibodies. The method reported here makes it possible to track prenylation along with other molecular pathways in single cells of complex systems, which is essential to elucidate the role of this post-translational modification in disease, cell response to pharmacological treatments, and aging.
Collapse
|
13
|
Krzeszewski M, Modrzycka S, Bousquet MHE, Jacquemin D, Drąg M, Gryko DT. Green-Emitting 4,5-Diaminonaphthalimides in Activity-Based Probes for the Detection of Thrombin. Org Lett 2022; 24:5602-5607. [PMID: 35863755 PMCID: PMC9361357 DOI: 10.1021/acs.orglett.2c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The natures of electron-donating groups as well as the bridge between them determine the fate of substituted 1,8-naphthalimide molecules in the excited state. An activity-based probe constructed from a selective peptide sequence, a reactive warhead, and the brightest green-emitting fluorophore displays impressive performance for thrombin protease detection in a newly constructed series of 1,8-naphthalimides.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrezeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | | | - Denis Jacquemin
- CEISAM UMR CNRS 6230, Nantes University, Nantes 44000, France
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrezeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
14
|
Hauser S, Sommerfeld P, Wodtke J, Hauser C, Schlitterlau P, Pietzsch J, Löser R, Pietsch M, Wodtke R. Application of a Fluorescence Anisotropy-Based Assay to Quantify Transglutaminase 2 Activity in Cell Lysates. Int J Mol Sci 2022; 23:4475. [PMID: 35562866 PMCID: PMC9104438 DOI: 10.3390/ijms23094475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023] Open
Abstract
Transglutaminase 2 (TGase 2) is a multifunctional protein which is involved in various physiological and pathophysiological processes. The latter also include its participation in the development and progression of malignant neoplasms, which are often accompanied by increased protein synthesis. In addition to the elucidation of the molecular functions of TGase 2 in tumor cells, knowledge of its concentration that is available for targeting by theranostic agents is a valuable information. Herein, we describe the application of a recently developed fluorescence anisotropy (FA)-based assay for the quantitative expression profiling of TGase 2 by means of transamidase-active enzyme in cell lysates. This assay is based on the incorporation of rhodamine B-isonipecotyl-cadaverine (R-I-Cad) into N,N-dimethylated casein (DMC), which results in an increase in the FA signal over time. It was shown that this reaction is not only catalyzed by TGase 2 but also by TGases 1, 3, and 6 and factor XIIIa using recombinant proteins. Therefore, control measurements in the presence of a selective irreversible TGase 2 inhibitor were mandatory to ascertain the specific contribution of TGase 2 to the overall FA rate. To validate the assay regarding the quality of quantification, spike/recovery and linearity of dilution experiments were performed. A total of 25 cancer and 5 noncancer cell lines were characterized with this assay method in terms of their activatable TGase 2 concentration (fmol/µg protein lysate) and the results were compared to protein synthesis data obtained by Western blotting. Moreover, complementary protein quantification methods using a biotinylated irreversible TGase 2 inhibitor as an activity-based probe and a commercially available ELISA were applied to selected cell lines to further validate the results obtained by the FA-based assay. Overall, the present study demonstrates that the FA-based assay using the substrate pair R-I-Cad and DMC represents a facile, homogenous and continuous method for quantifying TGase 2 activity in cell lysates.
Collapse
Affiliation(s)
- Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| | - Paul Sommerfeld
- Institute II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany; (P.S.); (C.H.)
| | - Johanna Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| | - Christoph Hauser
- Institute II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany; (P.S.); (C.H.)
| | - Paul Schlitterlau
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische University Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische University Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany; (P.S.); (C.H.)
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| |
Collapse
|
15
|
Abstract
Mass cytometry has revolutionized immunophenotyping, particularly in exploratory settings where simultaneous breadth and depth of characterization of immune populations is needed with limited samples such as in preclinical and clinical tumor immunotherapy. Mass cytometry is also a powerful tool for single-cell immunological assays, especially for complex and simultaneous characterization of diverse intratumoral immune subsets or immunotherapeutic cell populations. Through the elimination of spectral overlap seen in optical flow cytometry by replacement of fluorescent labels with metal isotopes, mass cytometry allows, on average, robust analysis of 60 individual parameters simultaneously. This is, however, associated with significantly increased complexity in the design, execution, and interpretation of mass cytometry experiments. To address the key pitfalls associated with the fragmentation, complexity, and analysis of data in mass cytometry for immunologists who are novices to these techniques, we have developed a comprehensive resource guide. Included in this review are experiment and panel design, antibody conjugations, sample staining, sample acquisition, and data pre-processing and analysis. Where feasible multiple resources for the same process are compared, allowing researchers experienced in flow cytometry but with minimal mass cytometry expertise to develop a data-driven and streamlined project workflow. It is our hope that this manuscript will prove a useful resource for both beginning and advanced users of mass cytometry.
Collapse
Affiliation(s)
- Akshay Iyer
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anouk A. J. Hamers
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Asha B. Pillai
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Sheila and David Fuente Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
16
|
Muir RK, Guerra M, Bogyo MM. Activity-Based Diagnostics: Recent Advances in the Development of Probes for Use with Diverse Detection Modalities. ACS Chem Biol 2022; 17:281-291. [PMID: 35026106 DOI: 10.1021/acschembio.1c00753] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal enzyme expression and activity is a hallmark of many diseases. Activity-based diagnostics are a class of chemical probes that aim to leverage this dysregulated metabolic signature to produce a detectable signal specific to diseased tissue. In this Review, we highlight recent methodologies employed in activity-based diagnostics that provide exquisite signal sensitivity and specificity in complex biological systems for multiple disease states. We divide these examples based upon their unique signal readout modalities and highlight those that have advanced into clinical trials.
Collapse
Affiliation(s)
- Ryan K. Muir
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matteo Guerra
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthew M. Bogyo
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
17
|
Kupczyk W, Maślak E, Railean-Plugaru V, Pomastowski P, Jackowski M, Buszewski B. Capillary Zone Electrophoresis in Tandem with Flow Cytometry in Viability Study of Various ATCC Bacterial Strains under Antibiotic Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031833. [PMID: 35162856 PMCID: PMC8835228 DOI: 10.3390/ijerph19031833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023]
Abstract
The aim of this study was to develop an innovative method of examining bacterial survival using capillary zone electrophoresis (CZE) and flow cytometry (FC) as a reference method. For this purpose, standard strains of bacteria from the ATCC collection were used: Enterococcus faecalis ATCC 14506, Staphylococcus aureus ATCC 11632, Klebsiella pneumoniae ATCC 10031, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922, as well as seven antibiotics with different antimicrobial mechanisms of action. The ratio of live and dead cells in the tested sample in CZE measurements were calculated using our algorithm that takes into account the detection time. Results showed a high agreement between CZE and FC in the assessment of the percentage of live cells exposed to the stress factor in both antibiotic susceptibility and time-dependent assays. The applied measuring system to assess the effectiveness of antibiotic therapy in in vitro conditions is a method with great potential, and the data obtained with the use of CZE mostly correspond to the expected drug sensitivity according to EUCAST and CLSI guidelines.
Collapse
Affiliation(s)
- Wojciech Kupczyk
- Department of General, Gastroenterological, and Oncological Surgery Collegium Medicum, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (W.K.); (M.J.)
| | - Ewelina Maślak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (V.R.-P.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Str., 87-100 Toruń, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (V.R.-P.); (P.P.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (V.R.-P.); (P.P.)
| | - Marek Jackowski
- Department of General, Gastroenterological, and Oncological Surgery Collegium Medicum, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (W.K.); (M.J.)
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (V.R.-P.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Str., 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
18
|
Heinzlmeir S, Müller S. Selectivity aspects of activity-based (chemical) probes. Drug Discov Today 2021; 27:519-528. [PMID: 34728376 DOI: 10.1016/j.drudis.2021.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Selective chemical modulators are ideal tools to study the function of a protein. Yet, the poor ligandability of many proteins has hampered the development of specific chemical probes for numerous protein classes. Tools, such as covalent inhibitors and activity-based protein profiling, have enhanced our understanding of thus-far difficult-to-target proteins and have enabled correct assessment of the selectivity of small-molecule modulators. This also requires deeper knowledge of compound and target site reactivity, evaluation of binding to noncovalent targets and protein turnover. The availability of highly selective chemical probes, the evolution of activity-based probes, and the development of profiling methods will open a new era of drugging the undruggable proteome.
Collapse
Affiliation(s)
- Stephanie Heinzlmeir
- Technical University of Munich, 85354 Freising, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Susanne Müller
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strabe 15, 60438 Frankfurt am Main, Germany; Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strabe 9, 60438 Frankfurt, Germany; The Chemical Probes Portal, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
19
|
Abstract
All living organisms depend on tightly regulated cellular networks to control biological functions. Proteolysis is an important irreversible post-translational modification that regulates most, if not all, cellular processes. Proteases are a large family of enzymes that perform hydrolysis of protein substrates, leading to protein activation or degradation. The 473 known and 90 putative human proteases are divided into 5 main mechanistic groups: metalloproteases, serine proteases, cysteine proteases, threonine proteases, and aspartic acid proteases. Proteases are fundamental to all biological systems, and when dysregulated they profoundly influence disease progression. Inhibiting proteases has led to effective therapies for viral infections, cardiovascular disorders, and blood coagulation just to name a few. Between 5 and 10% of all pharmaceutical targets are proteases, despite limited knowledge about their biological roles. More than 50% of all human proteases have no known substrates. We present here a comprehensive list of all current known human proteases. We also present current and novel biochemical tools to characterize protease functions in vitro, in vivo, and ex vivo. These tools make it achievable to define both beneficial and detrimental activities of proteases in health and disease.
Collapse
Affiliation(s)
- Longxiang Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kimberly Main
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Henry Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
20
|
Howng B, Winter MB, LePage C, Popova I, Krimm M, Vasiljeva O. Novel Ex Vivo Zymography Approach for Assessment of Protease Activity in Tissues with Activatable Antibodies. Pharmaceutics 2021; 13:pharmaceutics13091390. [PMID: 34575469 PMCID: PMC8471274 DOI: 10.3390/pharmaceutics13091390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
Proteases are involved in the control of numerous physiological processes, and their dysregulation has been identified in a wide range of pathologies, including cancer. Protease activity is normally tightly regulated post-translationally and therefore cannot be accurately estimated based on mRNA or protein expression alone. While several types of zymography approaches to estimate protease activity exist, there remains a need for a robust and reliable technique to measure protease activity in biological tissues. We present a novel quantitative ex vivo zymography (QZ) technology based on Probody® therapeutics (Pb-Tx), a novel class of protease-activated cancer therapeutics that contain a substrate linker cleavable by tumor-associated proteases. This approach enables the measurement and comparison of protease activity in biological tissues via the detection of Pb-Tx activation. By exploiting substrate specificity and selectivity, cataloguing and differentiating protease activities is possible, with further refinement achieved using protease-specific inhibitors. Using the QZ assay and human tumor xenografts, patient tumor tissues, and patient plasma, we characterized protease activity in preclinical and clinical samples. The QZ assay offers the potential to increase our understanding of protease activity in tissues and inform diagnostic and therapeutic development for diseases, such as cancer, that are characterized by dysregulated proteolysis.
Collapse
|
21
|
Saidi A, Wartenberg M, Madinier JB, Ilango G, Seren S, Korkmaz B, Lecaille F, Aucagne V, Lalmanach G. Monitoring Human Neutrophil Activation by a Proteinase 3 Near-Infrared Fluorescence Substrate-Based Probe. Bioconjug Chem 2021; 32:1782-1790. [PMID: 34269060 DOI: 10.1021/acs.bioconjchem.1c00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A near-infrared fluorescent (NIRF) substrate-based probe (SBP) was conceived to monitor secreted human proteinase 3 (hPR3) activity. This probe, called pro3-SBP, is shaped by a fused peptide hairpin loop structure, which associates a hPR3 recognition domain (Val-Ala-Asp-Nva-Ala-Asp-Tyr-Gln, where Nva is norvaline) and an electrostatic zipper (consisting of complementary polyanionic (d-Glu)5 and polycationic (d-Arg)5 sequences) in close vicinity of the N- and C-terminal FRET couple (fluorescent donor, sulfoCy5.5; dark quencher, QSY21). Besides its subsequent stability, no intermolecular fluorescence quenching was detected following its complete hydrolysis by hPR3, advocating that pro3-SBP could further afford unbiased imaging. Pro3-SBP was specifically hydrolyzed by hPR3 (kcat/Km= 440 000 ± 5500 M-1·s-1) and displayed a sensitive detection threshold for hPR3 (subnanomolar concentration range), while neutrophil elastase showed a weaker potency. Conversely, pro3-SBP was not cleaved by cathepsin G. Pro3-SBP was successfully hydrolyzed by conditioned media of activated human neutrophils but not by quiescent neutrophils. Moreover, unlike unstimulated neutrophils, a strong NIRF signal was specifically detected by confocal microscopy following neutrophil ionomycin-induced degranulation. Fluorescence release was abolished in the presence of a selective hPR3 inhibitor, indicating that pro3-SBP is selectively cleaved by extracellular hPR3. Taken together, the present data support that pro3-SBP could be a convenient tool, allowing straightforward monitoring of human neutrophil activation.
Collapse
Affiliation(s)
- Ahlame Saidi
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Mylène Wartenberg
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology″, CNRS UPR 4301, Orléans 45071, France
| | - Guy Ilango
- IBiSA Electron Microscopy Platform, Université de Tours, Tours 37032, France
| | - Seda Seren
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Brice Korkmaz
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Fabien Lecaille
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Vincent Aucagne
- Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology″, CNRS UPR 4301, Orléans 45071, France
| | - Gilles Lalmanach
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| |
Collapse
|
22
|
Kasperkiewicz P. Peptidyl Activity-Based Probes for Imaging Serine Proteases. Front Chem 2021; 9:639410. [PMID: 33996745 PMCID: PMC8117214 DOI: 10.3389/fchem.2021.639410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 01/12/2023] Open
Abstract
Proteases catalyze the hydrolysis of peptide bonds. Products of this breakdown mediate signaling in an enormous number of biological processes. Serine proteases constitute the most numerous group of proteases, accounting for 40%, and they are prevalent in many physiological functions, both normal and disease-related functions, making them one of the most important enzymes in humans. The activity of proteases is controlled at the expression level by posttranslational modifications and/or endogenous inhibitors. The study of serine proteases requires specific reagents not only for detecting their activity but also for their imaging. Such tools include inhibitors or substrate-related chemical molecules that allow the detection of proteolysis and visual observation of active enzymes, thus facilitating the characterization of the activity of proteases in the complex proteome. Peptidyl activity-based probes (ABPs) have been extensively studied recently, and this review describes the basic principles in the design of peptide-based imaging agents for serine proteases, provides examples of activity-based probe applications and critically discusses their strengths, weaknesses, challenges and limitations.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
23
|
Kim HR, Tagirasa R, Yoo E. Covalent Small Molecule Immunomodulators Targeting the Protease Active Site. J Med Chem 2021; 64:5291-5322. [PMID: 33904753 DOI: 10.1021/acs.jmedchem.1c00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells of the immune system utilize multiple proteases to regulate cell functions and orchestrate innate and adaptive immune responses. Dysregulated protease activities are implicated in many immune-related disorders; thus, protease inhibitors have been actively investigated for pharmaceutical development. Although historically considered challenging with concerns about toxicity, compounds that covalently modify the protease active site represent an important class of agents, emerging not only as chemical probes but also as approved drugs. Here, we provide an overview of technologies useful for the study of proteases with the focus on recent advances in chemoproteomic methods and screening platforms. By highlighting covalent inhibitors that have been designed to target immunomodulatory proteases, we identify opportunities for the development of small molecule immunomodulators.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ravichandra Tagirasa
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
24
|
Abstract
Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as protease activities and regulation in general.
Collapse
|
25
|
Schleyer KA, Fetrow B, Zannes Fatland P, Liu J, Chaaban M, Ma B, Cui L. Dual-Mechanism Quenched Fluorogenic Probe Provides Selective and Rapid Detection of Cathepsin L Activity*. ChemMedChem 2021; 16:1082-1087. [PMID: 33295147 PMCID: PMC8202353 DOI: 10.1002/cmdc.202000823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Cathepsin L (CTL) is a cysteine protease demonstrating upregulated activity in many disease states. Overlapping substrate specificity makes selective detection of CTL activity difficult to parse from that of its close homologue CTV and the ubiquitous CTB. Current probes of CTL activity have limited applications due to either poor contrast or extra assay steps required to achieve selectivity. We have developed a fluorogenic probe, CTLAP, that displays good selectivity for CTL over CTB and CTV while exhibiting low background fluorescence attributed to dual quenching mechanisms. CTLAP achieves optimum CTL selectivity in the first 10 min of incubation, thus suggesting that it is amenable for rapid detection of CTL, even in the presence of competing cathepsins.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, UF Health Science Center, UF Health Cancer Center, University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Ben Fetrow
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Peter Zannes Fatland
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Jun Liu
- Department of Medicinal Chemistry, UF Health Science Center, UF Health Cancer Center, University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Maya Chaaban
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way 118 DLC, Tallahassee, FL 32306, USA
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way 118 DLC, Tallahassee, FL 32306, USA
| | - Lina Cui
- Department of Medicinal Chemistry, UF Health Science Center, UF Health Cancer Center, University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| |
Collapse
|
26
|
Wodtke R, Wodtke J, Hauser S, Laube M, Bauer D, Rothe R, Neuber C, Pietsch M, Kopka K, Pietzsch J, Löser R. Development of an 18F-Labeled Irreversible Inhibitor of Transglutaminase 2 as Radiometric Tool for Quantitative Expression Profiling in Cells and Tissues. J Med Chem 2021; 64:3462-3478. [PMID: 33705656 DOI: 10.1021/acs.jmedchem.1c00096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The transamidase activity of transglutaminase 2 (TGase 2) is considered to be important for several pathophysiological processes including fibrotic and neoplastic tissue growth, whereas in healthy cells this enzymatic function is predominantly latent. Methods that enable the highly sensitive detection of TGase 2, such as application of radiolabeled activity-based probes, will support the exploration of the enzyme's function in various diseases. In this context, the radiosynthesis and detailed in vitro radiopharmacological evaluation of an 18F-labeled Nε-acryloyllysine piperazide are reported. Robust and facile detection of the radiotracer-TGase 2 complex by autoradiography of thin layer plates and polyacrylamide gels after chromatographic and electrophoretic separation owing to irreversible covalent bond formation was demonstrated for the isolated protein, cell lysates, and living cells. By use of this radiotracer, quantitative data on the expression profile of activatable TGase 2 in mouse organs and selected tumors were obtained for the first time by autoradiography of tissue sections.
Collapse
Affiliation(s)
- Robert Wodtke
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Johanna Wodtke
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Sandra Hauser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Markus Laube
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - David Bauer
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Rebecca Rothe
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Christin Neuber
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Markus Pietsch
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Straße 24, 50931 Köln, Germany
| | - Klaus Kopka
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Jens Pietzsch
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Reik Löser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| |
Collapse
|
27
|
Burster T, Gärtner F, Bulach C, Zhanapiya A, Gihring A, Knippschild U. Regulation of MHC I Molecules in Glioblastoma Cells and the Sensitizing of NK Cells. Pharmaceuticals (Basel) 2021; 14:ph14030236. [PMID: 33800301 PMCID: PMC7998501 DOI: 10.3390/ph14030236] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy has been established as an important area in the therapy of malignant diseases. Immunogenicity sufficient for immune recognition and subsequent elimination can be bypassed by tumors through altered and/or reduced expression levels of major histocompatibility complex class I (MHC I) molecules. Natural killer (NK) cells can eliminate tumor cells in a MHC I antigen presentation-independent manner by an array of activating and inhibitory receptors, which are promising candidates for immunotherapy. Here we summarize the latest findings in recognizing and regulating MHC I molecules that affect NK cell surveillance of glioblastoma cells.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, 010000 Nur-Sultan, Kazakhstan;
- Correspondence: ; Tel.: +7-(7172)-70-66-75
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| | - Christiane Bulach
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, 010000 Nur-Sultan, Kazakhstan;
| | - Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| |
Collapse
|
28
|
Burster T, Gärtner F, Knippschild U, Zhanapiya A. Activity-Based Probes to Utilize the Proteolytic Activity of Cathepsin G in Biological Samples. Front Chem 2021; 9:628295. [PMID: 33732686 PMCID: PMC7959752 DOI: 10.3389/fchem.2021.628295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Neutrophils, migrating to the site of infection, are able to release serine proteases after being activated. These serine proteases comprise cathepsin G (CatG), neutrophil elastase protease 3 (PR3), and neutrophil serine protease 4 (NSP4). A disadvantage of the uncontrolled proteolytic activity of proteases is the outcome of various human diseases, including cardiovascular diseases, thrombosis, and autoimmune diseases. Activity-based probes (ABPs) are used to determine the proteolytic activity of proteases, containing a set of three essential elements: Warhead, recognition sequence, and the reporter tag for detection of the covalent enzyme activity–based probe complex. Here, we summarize the latest findings of ABP-mediated detection of proteases in both locations intracellularly and on the cell surface of cells, thereby focusing on CatG. Particularly, application of ABPs in regular flow cytometry, imaging flow cytometry, and mass cytometry by time-of-flight (CyTOF) approaches is advantageous when distinguishing between immune cell subsets. ABPs can be included in a vast panel of markers to detect proteolytic activity and determine whether proteases are properly regulated during medication. The use of ABPs as a detection tool opens the possibility to interfere with uncontrolled proteolytic activity of proteases by employing protease inhibitors.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
29
|
Hira J, Uddin MJ, Haugland MM, Lentz CS. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules 2020; 25:E4949. [PMID: 33114655 PMCID: PMC7663024 DOI: 10.3390/molecules25214949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways.
Collapse
Affiliation(s)
- Jonathan Hira
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Md. Jalal Uddin
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Marius M. Haugland
- Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| |
Collapse
|