1
|
Zhang Y, Sun Y, Li H, Dong H, Dou M, Li T, Liu J, Kong J, Li Y. Chiral Competition Reflected by Circularly Polarized Luminescence Signal Inversion in Supramolecular Assembly of Pyrene-Amino Acid Derivatives and γ-Cyclodextrin. Chemistry 2025; 31:e202500804. [PMID: 40064602 DOI: 10.1002/chem.202500804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Chiral competition between carbohydrates and amino acids is crucial for understanding homochirality emergence in biological systems. In this study, the chiral competitive effect between carbohydrates and amino acids through the host-guest complex formation was investigated by employing amino acid modified pyrene derivatives and naturally occurring γ-cyclodextrin (γ-CD) as chiral sources, the circularly polarized luminance (CPL) as indicator. Supramolecular complexes of achiral 1-pyrenebutyric acid and L-amino acid-pyrene derivatives with γ-CD exhibited positive CPL signals, with chirality derived from γ-CD's stereochirality. In contrast, supramolecular complexes formed by D-amino acid-pyrene derivatives with γ-CD showed a negative CPL signal, reflecting chiral competition between D-amino acids and D-glucose in γ-CD. The observed CPL signal inversion confirmed that the amino acids stood out as the dominant chiral source in chiral competition with carbohydrates. Mechanism exploration showed that the depth of insertion and stacking arrangement of the guest molecules within the γ-CD cavity played an essential role for the CPL inversion. Interestingly, chiral competition only occurred between D-amino acids and D-carbohydrates, while cooperation was observed between L-amino acids and D-carbohydrates, which were consistent with the natural chirality bias. This work provides new insights into homochirality emergence and the design of functional chiral materials.
Collapse
Affiliation(s)
- Yijun Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yihuan Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Huajing Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Huanhuan Dong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Min Dou
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ting Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jian Kong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
2
|
Feng H, Lan X, Feng Z, Chen S, Zhang L, Gao H, Han C, Chen X, Jiang Q, Meng Z, Lei Y. An Alloy Engineering Strategy toward Helical Microstructures of Achiral π-Conjugated Molecules for Circularly Polarized Luminescence. J Am Chem Soc 2025; 147:9250-9260. [PMID: 40043148 DOI: 10.1021/jacs.4c14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Helical assembly has been demonstrated to efficiently facilitate the circularly polarized luminescence (CPL) performances, but the synthesis of micro- and nanohelices from rigid achiral π-conjugated compounds remains challenging due to the absence of bilayer structures or complementary hydrogen-bonding interactions. Here, we develop an alloying strategy for the realization of helical microstructures from achiral anthracene/anthracene derivatives with x-/x-axis modification or anthracene/tetracene derivatives with x-/y-axis modification via solution coassembly. Interestingly, two anthracene derivatives bearing asymmetric phenyl/phenylethynyl groups and symmetric phenylethynyl groups can assemble into spiral microribbons with a fractal branching pattern. Using such an alloying strategy, color-tailorable ternary spiral microtubules/microribbons referring to high-efficiency energy transfer processes are achievable. Molecular dynamics simulations reveal that the Von Mises stress produced by symmetry differences of two components induces symmetry breaking of alloy structures associated with twisting. Additionally, the contents of the guest and H2O also play a vital role in the formation of intricate helical microstructures. Single binary and ternary spiral microribbons present considerable CPL properties with a dissymmetric factor ('glum') of more than 0.01. The present work provides new insights into the formation of helical microcrystals with complex topologies and new optoelectronic functions.
Collapse
Affiliation(s)
- Haina Feng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaohui Lan
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Zuofang Feng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sibing Chen
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Lulu Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Huixing Gao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Chaoyi Han
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Xing Chen
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Quanbin Jiang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhengong Meng
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211800, P. R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| | - Yilong Lei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
3
|
Yoshimori S, Jin RH. Chirooptical 2,2'-Dimethoxybiphenyl Crystals Generated From Suzuki-Miyaura Coupling Reaction Catalyzed by Pd-Loaded Chiral Silica. Chirality 2025; 37:e70026. [PMID: 39933902 DOI: 10.1002/chir.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
In this work, we report a one-pot approach that combines crystal ripening with the Suzuki-Miyaura coupling reaction. We investigated the reaction between 2-methoxyphenyl bromide and 2-methoxyphenylboronic acid, catalyzed by a series of Pd-loaded chiral optical (D- or L-) and racemic (DL-) silica/polyethyleneimine (PEI) systems, which produced crystalline 2,2'-dimethoxybiphenyl (DMB). The silica used as a catalyst was prepared using our previously established method, in which chirality was imparted to the silica through catalytic templates composed of polyethyleneimine (PEI) and tartaric acid. Both enantiopure (D- or L-; 100% ee) and racemic (DL-; 0% ee) tartaric acid-mediated silica, after tartaric acid removal and palladium (Pd) loading, exhibited similar catalytic activities, leading to the quantitative precipitation of 2,2'-dimethoxybiphenyl in a water/ethanol (1:1 by volume) medium. Interestingly, the 2,2'-dimethoxybiphenyl crystals formed and ripened in the presence of Pd-loaded chiral D- and L-silica/PEI exhibited octahedral morphology and displayed remarkable chiroptical activity with a mirror-image relationship. This represents a novel example of using chiral Pd-loaded silica to synthesize axially chiral biphenyl in crystalline form.
Collapse
Affiliation(s)
- Shunpei Yoshimori
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, Yokohama, Japan
| | - Ren-Hua Jin
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, Yokohama, Japan
| |
Collapse
|
4
|
Zou X, Gan N, Gao Y, Gu L, Huang W. Organic Circularly Polarized Room-Temperature Phosphorescence: Strategies, Applications and Challenges. Angew Chem Int Ed Engl 2025; 64:e202417906. [PMID: 39548951 DOI: 10.1002/anie.202417906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 11/18/2024]
Abstract
Organic circularly polarized luminescence (CPL) plays crucial roles in chemistry and biology for the potential in chiral recognition, asymmetric catalysis, 3D displays, and biological probes. The long-lived luminescence, large Stokes shift, and unique chiroptical properties make organic circularly polarized room-temperature phosphorescence (CPP) a new research hotspot in recent years. Nevertheless, achieving high-performance organic CPP is still challenging due to the sensitivity and complexity of integrating triplet excitons and polarization within organic materials. This review summarizes the latest advances in organic CPP, ranging from design strategies and photophysical properties to underlying luminescence mechanisms and potential applications. Specifically, the design strategies for generating CPP are systemically categorized and discussed according to the interactions between chiral units and chromophores. The applications of organic CPP in organic light-emitting diodes, sensing, chiral recognition, afterglow displays, and information encryption are also illustrated. In addition, we present the current challenges and perspectives on developing organic CPP. We expect this review to provide some instructive design principles to fabricate high-performance organic CPP materials, offering an in-depth understanding of the luminescence mechanism and paving the way toward diverse practical applications.
Collapse
Affiliation(s)
- Xin Zou
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Nan Gan
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yaru Gao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore, 117543
| | - Long Gu
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
5
|
Ren S, Liu ZF, Li P, Liu H, Lu M, Wang K, Yao J, Dong H, Yang QZ, Zhao YS. Circularly Polarized Lasing from Helical Superstructures of Chiral Organic Molecules. Angew Chem Int Ed Engl 2025; 64:e202415092. [PMID: 39290153 DOI: 10.1002/anie.202415092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
Chiral supramolecular aggregates have the potential to explore circularly polarized lasing with large dissymmetry factors. However, the controllable assembly of chiral superstructures towards deterministic circularly polarized laser emission remains elusive. Here, we design a pair of chiral organic molecules capable of stacking into a pair of definite helical superstructures in microcrystals, which enables circularly polarized lasing with deterministic chirality and high dissymmetry factors. The microcrystals function as optical cavities and gain media simultaneously for laser oscillations, while the supramolecular helices endow the laser emission with strong and opposite chirality. As a result, the microcrystals of two enantiomers allow for circularly polarized laser emission with opposite chirality and high dissymmetry factors up to ~1.0. This work demonstrates the chiral supramolecular assemblies as an excellent platform for high-performance circularly polarized lasers.
Collapse
Affiliation(s)
- Shizhe Ren
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Penghao Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haidi Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaosen Lu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yong Sheng Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Cadeddu S, van den Bersselaar BWL, de Waal B, Cordier M, Vanthuyne N, Meskers SCJ, Vantomme G, Crassous J. Engineering circularly polarized light emission in nanostructured oligodimethylsiloxane-helicene chiral materials. NANOSCALE 2024; 16:21351-21359. [PMID: 39474743 DOI: 10.1039/d4nr03389b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chiroptical properties in the bulk state can be tuned by controlling the formation of chiral ordered nanostructures. Here, we present a series of discrete oligodimethylsiloxane-helicene-pyrene block molecules with varying oDMS lengths and study the nanostructures formed in both bulk and solution, including their chiroptical properties. In bulk, ordered 2D nanostructures self-assemble, driven by phase segregation induced by the siloxane oligomers, with clear differences in the properties of the racemic and enantiopure versions. Moreover, intermolecular pyrene interactions lead to excimer emission. As a result, up to a 5-fold increase in circularly polarized luminescence is observed in the solid state as compared to the solution, accompanied by a clear influence of the pyrene excimer emission on the overall emission process. Interestingly, in the ordered lamellar packing achieved from long oDMS units, the excimer emission shows very little net circular polarization, while in the disordered state achieved from shorter oDMS units, this excimer emission displays a significant degree of circular polarization. These results demonstrate that functionalizing chiroptical building blocks with discrete oligodimethylsiloxane chains is a versatile strategy to control photophysical properties and modulate chiroptical emission in bulk. This approach advances the integration of chiroptical materials into devices, enabling diverse applications ranging from optoelectronics to communication technologies.
Collapse
Affiliation(s)
- Stefano Cadeddu
- Institut des Sciences Chimiques de Rennes, Univ Rennes, UMR CNRS 6226, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Bas de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Marie Cordier
- Institut des Sciences Chimiques de Rennes, Univ Rennes, UMR CNRS 6226, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | | | - Stefan C J Meskers
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, Univ Rennes, UMR CNRS 6226, Campus de Beaulieu, 35042 Rennes Cedex, France.
| |
Collapse
|
7
|
Xu YX, Liang YQ, Liu WM, Fang HK, Li HK, Ji SJ, Cai ZJ. Pd-Catalyzed Dual C-H Activation/Cyclization: Convergent and Divergent Synthesis of 1-Azahelicenes. Org Lett 2024; 26:9005-9010. [PMID: 39412763 DOI: 10.1021/acs.orglett.4c03136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Herein, we report a convergent synthesis of 1-azahelicenes using easily available quinoline derivatives and cyclic diaryliodonium salts as starting materials. This reaction undergoes a palladium-catalyzed dual C-H activation/cyclization process to give facile access to a wide range of 1-aza[5]helicenes and 1-aza[6]helicenes with abundant functional groups (including F, Cl, Br, I, CF3, SeR, SR, and heteroaryl) in moderate to excellent yields, thereby providing new opportunities to fine-tune the properties of the helicene backbone. In addition, the obtained products could be further transformed into helicene-based Lewis base catalysts and redox switch materials easily. Notably, one selected 1-azahelicene shined bright yellow light by aggregation. These features enlarge the chemical space of 1-azahelicenes and inspire further utilization in other areas of research.
Collapse
Affiliation(s)
- Yi-Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yu-Qing Liang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Wei-Ming Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Hui-Kang Fang
- Laboratory of Advanced Optoelectronic Materials, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Hong-Kun Li
- Laboratory of Advanced Optoelectronic Materials, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Jin K, Xiao Z, Xie H, Shen X, Wang J, Chen X, Wang Z, Zhao Z, Yan K, Ding Y, Ding L. Tether-entangled conjugated helices. Chem Sci 2024; 15:d4sc04796f. [PMID: 39355229 PMCID: PMC11440437 DOI: 10.1039/d4sc04796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
A new design concept, tether-entangled conjugated helices (TECHs), is introduced for helical polyaromatic molecules. TECHs consist of a linear polyaromatic ladder backbone and periodically entangling tethers with the same planar chirality. By limiting the length of tether, all tethers synchronously bend and twist the backbone with the same manner, and change it into a helical ribbon with a determinate helical chirality. The 3D helical features are customizable via modular synthesis by using two types of synthons, the planar chiral tethering unit (C 2 symmetry) and the docking unit (C 2h symmetry), and no post chiral resolution is needed. Moreover, TECHs possess persistent chiral properties due to the covalent locking of helical configuration by tethers. Concave-type and convex-type oligomeric TECHs are prepared as a proof-of-concept. Unconventional double-helix π-dimers are observed in the single crystals of concave-type TECHs. Theoretical studies indicate the smaller binding energies in double-helix π-dimers than conventional planar π-dimers. A concentration-depend emission is found for concave-type TECHs, probably due to the formation of double-helix π-dimers in the excited state. All TECHs show strong circularly polarized luminescence (CPL) with dissymmetric factors (|g lum|) generally over 10-3. Among them, the (P)-T4-tBu shows the highest |g lum| of 1.0 × 10-2 and a high CPL brightness of 316 M-1 cm-1.
Collapse
Affiliation(s)
- Ke Jin
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zuo Xiao
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huidong Xie
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066004 China
| | - Jizheng Wang
- Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing 101400 China
| | - Zhijie Wang
- Institute of Semiconductors, Chinese Academy of Sciencess Beijing 100083 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Keyou Yan
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China
| | - Yong Ding
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University Beijing 102206 China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Zhang G, Zhang J, Tao Y, Gan F, Lin G, Liang J, Shen C, Zhang Y, Qiu H. Facile fabrication of recyclable robust noncovalent porous crystals from low-symmetry helicene derivative. Nat Commun 2024; 15:5469. [PMID: 38937477 PMCID: PMC11211482 DOI: 10.1038/s41467-024-49865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Porous frameworks constructed via noncovalent interactions show wide potential in molecular separation and gas adsorption. However, it remains a major challenge to prepare these materials from low-symmetry molecular building blocks. Herein, we report a facile strategy to fabricate noncovalent porous crystals through modular self-assembly of a low-symmetry helicene racemate. The P and M enantiomers in the racemate first stack into right- and left-handed triangular prisms, respectively, and subsequently the two types of prisms alternatively stack together into a hexagonal network with one-dimensional channels with a diameter of 14.5 Å. Remarkably, the framework reveals high stability upon heating to 275 °C, majorly due to the abundant π-interactions between the complementarily engaged helicene building blocks. Such porous framework can be readily prepared by fast rotary evaporation, and is easy to recycle and repeatedly reform. The refined porous structure and enriched π-conjugation also favor the selective adsorption of a series of small molecules.
Collapse
Affiliation(s)
- Guoli Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Tao
- Shanghai Key Laboratory of High Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Geyu Lin
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yuebiao Zhang
- Shanghai Key Laboratory of High Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Li C, Wei Y, Zhang Y, Luo Z, Liu Y, He M, Quan Z. Efficient Ultraviolet Circularly Polarized Luminescence in Zero-Dimensional Hybrid Cerium Bromides. Angew Chem Int Ed Engl 2024; 63:e202403727. [PMID: 38632082 DOI: 10.1002/anie.202403727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Ultraviolet circularly polarized luminescence (UV-CPL) with high photon energy shows great potential in polarized light sources and stereoselective photopolymerization. However, developing luminescent materials with high UV-CPL performance remains challenging. Here, we report a pair of rare earth Ce3+-based zero-dimensional (0D) chiral hybrid metal halides (HMHs), R/S-(C14H24N2)2CeBr7, which exhibits characteristic UV emissions derived from the Ce 5d-4f transition. The compounds show simultaneously high photoluminescent quantum yields of (32-39)% and large luminescent dissymmetry factor (|glum|) values of (1.3-1.5)×10-2. Thus, the figures of merits of R/S-(C14H24N2)2CeBr7 are calculated to be (4.5-5.8)×10-3, which are superior to the reported UV-CPL emissive materials. Additionally, nearly 91 % of their PL intensities at 300 K can be well preserved at 380 K (LED operating temperature) without phase transition or decomposition, demonstrating the excellent structural and optical thermal stabilities of R/S-(C14H24N2)2CeBr7. Based on these enantiomers, the fabricated UV-emitting CP-LEDs exhibit high polarization degrees of ±1.0 %. Notably, the UV-CPL generated from the devices can significantly trigger the enantioselective photopolymerization of diacetylene with remarkable stereoselectivity, and consequently yield polymerized products with the anisotropy factors of circular dichroism (gCD) up to ±3.9×10-2, outperforming other UV-CPL materials and demonstrating their great potential as UV-polarized light sources.
Collapse
Affiliation(s)
- Chen Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yi Wei
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yan Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhishan Luo
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yulian Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Meiying He
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
11
|
Jiang P, Mikherdov AS, Ito H, Jin M. Crystallization-Induced Chirality Transfer in Conformationally Flexible Azahelicene Au(I) Complexes with Circularly Polarized Luminescence Activation. J Am Chem Soc 2024; 146:12463-12472. [PMID: 38626915 DOI: 10.1021/jacs.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Flexible and twisted annulated π-systems exhibit numerous unique and desirable features, owing to their ability to display chirality. However, preventing their racemization due to the dynamic nature of their chirality remains a challenge. One promising approach to stabilize homochirality in such systems is chirality transfer from a chiral auxiliary to a moiety displaying dynamic chirality. Herein, we introduce a new approach for dynamic chirality stabilization in conformationally flexible azahelicene species via crystallization-induced intermolecular chirality transfer in Au(I) complexes featuring azahelicene (dibenzo[c,g]carbazole and benzo[c]carbazole) and enantio-pure chiral N-heterocyclic carbene (NHC) ligands with a complementary tailored shape. Crystallization of these azahelicene Au(I) complexes not only suppresses the dynamic chirality of the dibenzocarbazole species but also stabilizes their homochirality through the intermolecular conjunction between the chiral NHC and dibenzocarbazole ligands. In the Au(I) benzocarbazole complexes, the intermolecular conjunction and chirality transfer in the crystals induce chirality in the initially achiral benzocarbazole ligand. Furthermore, the crystallization of the studied complexes activates their circularly polarized luminescence (CPL) properties, which were suppressed in solution. Importantly, chirality transfer leads to significant CPL enhancement; the complexes that feature chirality transfer within the crystal structure exhibit luminescence dissymmetry factors 5 to 10 times higher than those of the complexes without chirality transfer.
Collapse
Affiliation(s)
- Pingyu Jiang
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Alexander S Mikherdov
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Mingoo Jin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
12
|
Yang YH, He R, Qin Y, Zhang L. Metal-ion-triggered symmetry breaking of completely achiral azobenzene amphiphiles in water. NANOSCALE 2024. [PMID: 38639490 DOI: 10.1039/d3nr06668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Achieving control over symmetry breaking of completely achiral components in the aqueous phase is a significant challenge in supramolecular chemistry. Herein, we demonstrate that it is possible to construct chiral nanoassemblies by introducing metal ions (Zn2+, Fe3+, Al3+, Cu2+, and Ca2+) into completely achiral azobenzene amphiphiles with key structural factors in the pure aqueous phase. It is found that the coordination interactions, π-π stacking, hydrophilic and hydrophobic interactions, hydrogen bonding, and electrostatic interactions are crucial to the metal-ion-induced symmetry breaking of completely achiral building blocks. This study may provide an intriguing model system for constructing chiral assemblies based on completely achiral molecules.
Collapse
Affiliation(s)
- Yun-Han Yang
- PCFM Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Ran He
- PCFM Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yang Qin
- PCFM Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Ling Zhang
- PCFM Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
13
|
Qu C, Xu Y, Wang Y, Nie Y, Ye K, Zhang H, Zhang Z. Bridging of Cove Regions: A Strategy for Realizing Persistently Chiral Double Heterohelicenes with Attractive Luminescent Properties. Angew Chem Int Ed Engl 2024; 63:e202400661. [PMID: 38333930 DOI: 10.1002/anie.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
The racemization of chiral organic compounds is a common chemical phenomenon. However, it often poses configurational-stability issues to the application of this class of compounds. Achieving chiral organic compounds without the risk of racemization is fascinating, but it is challenging due to a lack of strategies. Here, we reveal the cove-regions bridging strategy for achieving persistently chiral multi-helicenes (incapable of racemization), based on the synthesized proof-of-concept double hetero[4]helicenes featuring macrocycle structures with a small 3D cavity. Additionally, we demonstrate that the strategy is also effective in tuning the electronic structures of multi-helicenes, resulting in a conversion from luminescence silence into thermally activated delayed fluorescence (TADF) for the present system. Furthermore, red circularly polarized TADF based on small double [4]helicene systems is achieved for the first time using this strategy. The disclosed cove-regions bridging strategy provides an opportunity to modulate the electronic structures and luminescent properties of multi-helicenes without concern for racemization, thus significantly enhancing the structural and property diversity of multi-helicenes for various applications.
Collapse
Affiliation(s)
- Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Yufang Nie
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
14
|
Gan F, Zhang G, Liang J, Shen C, Qiu H. π-Extended Diaza[7]helicenes with Dual Negatively Curved Heptagons: Extensive Synthesis and Spontaneous Resolution into Strippable Homochiral Lamellae with Helical Symmetry. Angew Chem Int Ed Engl 2024; 63:e202320076. [PMID: 38230611 DOI: 10.1002/anie.202320076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
We report a unique category of π-extended diaza[7]helicenes with double negative curvatures. This is achieved by two-fold regioselective heptagonal cyclization of the oligoarylene-carbazole precursors through either intramolecular C-H arylation or Scholl reaction. The fusion of two heptagonal rings in the helical skeleton dramatically increases the intramolecular strain and forces the two terminal carbazole moieties to stack in a compressed fashion. The presence of the deformable negatively curved heptagonal rings endows the resulting diaza[7]helicenes with dynamic chiral skeletons, aggregation-induced emission feature and relatively low racemization barrier of ca. 25.6 kcal mol-1 . Further π-extension on the carbazole moieties subsequently leads to a more sophisticated C2 -symmetric homochiral triple helicene. Notably, these π-extended diaza[7]helicenes show structure-dependent stacking upon crystallization, switching from heterochiral packing to intra-layer homochiral stacking. Interestingly, the C2 -symmetric triple helicene molecules spontaneously resolve into a homochiral lamellar structure with 31 helix symmetry. Upon ultrasonication in a nonsolvent, the crystals can be readily exfoliated into large-area ultrathin nanosheets with height of ca. 4.4 nm corresponding to two layers of stacked triple helicene molecules and relatively thicker nanosheets constituted by even-numbered molecular lamellae. Moreover, regular hexagonal thin platelets with size larger than 30 μm can be readily fabricated by flash aggregation.
Collapse
Affiliation(s)
- Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Liu ZF, Ye XY, Chen L, Niu LY, Jin WJ, Zhang S, Yang QZ. Spontaneous Symmetry Breaking of Achiral Molecules Leading to the Formation of Homochiral Superstructures that Exhibit Mechanoluminescence. Angew Chem Int Ed Engl 2024; 63:e202318856. [PMID: 38169084 DOI: 10.1002/anie.202318856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Chirality, with its intrinsic symmetry-breaking feature, is frequently utilized in the creation of acentric crystalline functional materials that exhibit intriguing optoelectronic properties. On the other hand, the development of chiral crystals from achiral molecules offers a solution that bypasses the need for enantiopure motifs, presenting a promising alternative and thereby expanding the possibilities of the self-assembly toolkit. Nevertheless, the rational design of achiral molecules that prefer spontaneous symmetry breaking during crystallization has so far been obscure. In this study, we present a series of six achiral molecules, demonstrating that when these conformationally flexible molecules adopt a cis-conformation and engage in multiple non-covalent interactions along a helical path, they collectively self-assemble into chiral superstructures consisting of single-handed supramolecular columns. When these homochiral supramolecular columns align in parallel, they form polar crystals that exhibit intense luminescence upon grinding or scraping. We therefore demonstrate our molecular design strategy could significantly increase the likelihood of symmetry breaking in achiral molecular synthons during self-assembly, offering a facile access to novel chiral crystalline materials with unique optoelectronic properties.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xin-Yi Ye
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lihua Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wei Jun Jin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
16
|
Shaik MAS, Samanta D, Sharma AK, Shaw M, Prodhan S, Basu R, Mondal I, Singh S, Dutta PK, Pathak A. White light emission from helically stacked humin-mimic based H-aggregates in heteroatom free carbon dots. NANOSCALE 2023; 15:19238-19254. [PMID: 37990573 DOI: 10.1039/d3nr04802k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
White light emission (WLE), particularly from heteroatom free carbon dots (CDs), is unusual. Besides, deciphering the origin of WLE from a H-aggregated molecular fluorophore in such kinds of CDs is a challenging task due to their non-fluorescent character resulting from a forbidden transition from a lower-energy excitonic state. Therefore, rigorous investigation on their elusive excited state photophysical properties along with their steady-state optical phenomena has to be carried out to shed light on the nature of distinct emissive states formed in the CDs. Herein, for the first time, we report WLE from imperfect H-aggregates of co-facially π-π stacked humin-like structures comprising furfural monomer units as a unique molecular fluorophore in CDs, as revealed from combined spectroscopic and microscopic studies, synthesized through hydrothermal treatment of the single precursor, dextrose. H-aggregates in CDs show a broad range of excitation-dependent emission spectra with color coordinates close to pure white light, i.e., CIE (0.35, 0.37) and a color temperature of 6000 K. Imperfect orientation between the transition dipole moments of adjacent monomer units in the H-aggregate's molecular arrangement is expected to cause ground state symmetry breaking, as confirmed by Circular Dichroism (CD) studies, which established helically stacked nature in molecular aggregates and produced significant oscillatory strength at lower energy excitonic states to enable fluorescence. TRES and TAS investigations have been performed to minimise the intricacies associated with excited state photophysics, which is regarded as an essential step in gaining a grasp on emissive states. Based on the observation of two isoemissive spots in the time-resolved area normalized emission spectra (TRANES), the existence of three oligomeric species in the excited state equilibrium of the pure/hybrid H-aggregates has been established. The exciton dynamics through electron relaxation from the higher to the lower excitonic states, charge transfer (CT) states, and surface trap mediated emission in excimer states of H-aggregates have also been endorsed as three distinct emissive states from femtosecond transient absorption spectroscopy (TAS) studies corroborating with their steady-state absorption and emission behavior. The results would demonstrate the usage of CDs as a cutting-edge fluorescent material for creating aggregate-induced white light emission.
Collapse
Affiliation(s)
- Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Ankit Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Manisha Shaw
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Sayan Prodhan
- Department of Physics, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Rajarshi Basu
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Imran Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Shailab Singh
- Department of Physics, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Prasanta Kumar Dutta
- Department of Physics, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
17
|
Yang B, Yan S, Li C, Ma H, Feng F, Zhang Y, Huang W. Mn(iii)-mediated C-P bond activation of diphosphines: toward a highly emissive phosphahelicene cation scaffold and modulated circularly polarized luminescence. Chem Sci 2023; 14:10446-10457. [PMID: 37799992 PMCID: PMC10548521 DOI: 10.1039/d3sc03201a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023] Open
Abstract
Transition metal mediated C-X (X = H, halogen) bond activation provides an impressive protocol for building polyaromatic hydrocarbons (PAHs) in C-C bond coupling and annulation; however, mimicking both the reaction model and Lewis acid mediator simultaneously in a hetero-PAH system for selective C-P bond cleavage faces unsolved challenges. At present, developing the C-P bond activation protocol of the phosphonic backbone using noble-metal complexes is a predominant passway for the construction of phosphine catalysts and P-center redox-dependent photoelectric semiconductors, but non-noble metal triggered methods are still elusive. Herein, we report Mn(iii)-mediated C-P bond activation and intramolecular cyclization of diphosphines by a redox-directed radical phosphonium process, generating phosphahelicene cations or phosphoniums with nice regioselectivity and substrate universality under mild conditions. Experiments and theoretical calculations revealed the existence of the unusual radical mechanism and electron-deficient character of novel phosphahelicenes. These rigid quaternary bonding skeletons facilitated versatile fluorescence with good tunability and excellent efficiency. Moreover, the enantiomerically enriched crystals of phosphahelicenes emitted intense circularly polarized luminescence (CPL). Notably, the modulated CPL of racemic phosphahelicenes was induced by chiral transmission in the cholesteric mesophase, showing ultrahigh asymmetry factors of CPL (+0.51, -0.48). Our findings provide a new approach for the design of emissive phosphahelicenes towards chiral emitters and synthesized precursors.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610000 P. R. China
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 51805 P. R. China
| |
Collapse
|
18
|
Bao ST, Jiang H, Jin Z, Nuckolls C. Fusing perylene diimide with helicenes. Chirality 2023; 35:656-672. [PMID: 36941527 DOI: 10.1002/chir.23561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Incorporating perylene diimide (PDI) units into helicene structures has become a useful strategy for giving access to non-planar electron acceptors as well as a method of creating molecules with unique and intriguing chiroptical properties. This minireview describes this fusion of PDIs with helicenes.
Collapse
Affiliation(s)
- Si Tong Bao
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Haoyu Jiang
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Zexin Jin
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York, USA
| |
Collapse
|
19
|
Xiao C, Li C, Huang K, Duan P, Wang Y. Cascade energy transfer boosted near-infrared circularly polarized luminescence of nanofibers from an exclusively achiral system. NANOSCALE 2023. [PMID: 37334660 DOI: 10.1039/d3nr01515g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We constructed chiral supramolecular nanofibers for light harvesting based on symmetry-breaking, and these can generate near-infrared circularly polarized luminescence (CPL) with high dissymmetry factor (glum) through a synergistic energy transfer and chirality transfer process. Firstly, the achiral molecule BTABA was assembled into a symmetry-breaking assembly using a seeded vortex strategy. Subsequently, the chiral assembly can endow the two achiral acceptors, Nile Red (NR) and Cyanine 7 (CY7), with supramolecular chirality, as well as chiroptical properties. CY7 can reach an excited state and emit near-infrared light through a cascade energy transfer process from BTABA to NR and then to CY7, but cannot directly acquire energy from the excited BTABA. Significantly, the near-infrared CPL of CY7 can be obtained with a boosted glum value of 0.03. This work will provide a deep insight into the preparation of materials with near-infrared CPL activity from an exclusively achiral system.
Collapse
Affiliation(s)
- Chen Xiao
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164, P. R. China.
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Chengxi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kang Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yafei Wang
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164, P. R. China.
| |
Collapse
|
20
|
Walsh MP, Barclay JA, Begg CS, Xuan J, Kitching MO. Conglomerate Crystallization in the Cambridge Structural Database (2020-2021). CRYSTAL GROWTH & DESIGN 2023; 23:2837-2844. [PMID: 37038395 PMCID: PMC10080650 DOI: 10.1021/acs.cgd.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Conglomerate crystals are materials capable of undergoing spontaneous resolution and were responsible for the discovery of molecular chirality. Their relevance to modern chemical and crystallographic sciences has been hindered by the difficulty in identifying and searching materials with this characteristic ability to spontaneously bias their own enantioenrichment. With the release of the November 2021 distribution of the Cambridge Structural Database (CSD) (version 5.43), a fresh quantity of chiral conglomerate crystals is expected to have been published in the CSD without identification. Indeed, no crystals in the CSD have been identified as a spontaneously resolving conglomerate crystal in their crystallographic information file since the 2019 release, despite the deposition of over 108,000 new crystal structures into the database over the same time period. A manual inspection of crystals deposited between 2020 and 2021 was conducted to identify 343 new chiral materials which exhibit conglomerate crystallization behavior. It is hoped that the continued manual curation of this list will aid those in the crystallographic and synthetic communities to study and exploit this spontaneous enantioenrichment behavior.
Collapse
Affiliation(s)
- Mark P. Walsh
- Process
Research and Development, Carbogen Amcis
Ltd., 303 Clayton Lane, Manchester, M11 4SX, U.K.
| | - James A. Barclay
- Department
of Chemistry, Durham University, Lower Mount Joy, South Rd., Durham, DH1 3LE, U.K.
| | - Callum S. Begg
- Department
of Chemistry, Durham University, Lower Mount Joy, South Rd., Durham, DH1 3LE, U.K.
| | - Jinyi Xuan
- Department
of Chemistry, Durham University, Lower Mount Joy, South Rd., Durham, DH1 3LE, U.K.
| | - Matthew O. Kitching
- Department
of Chemistry, Durham University, Lower Mount Joy, South Rd., Durham, DH1 3LE, U.K.
| |
Collapse
|
21
|
Zong Y, Xu SM, Shi W, Lu C. Chiral Hierarchical Architecture Induced by Confinement-Assisted Living Supramolecular Polymerization of Simple Achiral Molecules. ACS NANO 2023; 17:3838-3846. [PMID: 36779509 DOI: 10.1021/acsnano.2c12063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chiral supramolecular assembly (CSA) based on achiral molecules has provided important clues to understand the origin of biological chirality. However, a simple achiral monomer faces the challenge of chiral stacking with the absence of a chiral resource. The difficulty is that simple achiral monomer lacks steric repulsion to provide asymmetry during hierarchical assembly, which is a prerequisite for chiral stacking with an angle. Moreover, during chiral stacking of achiral molecules or units, the right-handed and left-handed chiral supramolecular isomers (CSIs) are equally formed due to the mirror-imaged conformation, which leads to chirality silence. Here, with the benefit of two-dimensional confinement space of layered double hydroxide (LDH), simple achiral molecules can be arranged to staggered bilayer arrays by imprinting the topological structure of LDH. Once LDH is removed, these staggered arrays can form asymmetric living seeds, which can further elongate to living units with the advantage of living supramolecular polymerization (LSP) by following off-pathway. Due to the asymmetry of living units, the possible chiral stacking outcomes, CSIs, are not mirror-imaged. With the increase of the molecular number in living units, the energy difference between CSIs can be amplified by self-replication of LSP, leading to handedness preference. Thus, the detectable CSA is mainly derived from the CSI with energetically favored hierarchical structure. Thus, our strategy breaks the stereotype that the complex molecular structure and symmetry breaking mechanism are necessary for the formation of detectable CSA by achiral molecules.
Collapse
Affiliation(s)
- Yingtong Zong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, 341000 Ganzhou, Jiangxi, P. R. China
| | - Si-Min Xu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, 341000 Ganzhou, Jiangxi, P. R. China
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 450001 Zhengzhou, P. R. China
| |
Collapse
|
22
|
Sang Y, Zhu Q, Zhou X, Jiang Y, Zhang L, Liu M. Ultrasound-Directed Symmetry Breaking and Spin Filtering of Supramolecular Assemblies from only Achiral Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202215867. [PMID: 36522559 DOI: 10.1002/anie.202215867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Herein we describe the self-assembly of an achiral molecule into macroscopic helicity as well as the emergent chiral-selective spin-filtering effect. It was found that a benzene-1,3,5-tricarboxamide (BTA) motif with an aminopyridine group in each arm could coordinate with AgI and self-assemble into nanospheres. Upon sonication, symmetry breaking occurred and the nanospheres transferred into helical nanofibers with strong CD signals. Although the sign of the CD signals appeared randomly, it could be controlled by using the as-made chiral assemblies as a seed. Furthermore, it was found that the charge transport of the helical nanofibers was highly selective with a spin-polarization transport of up to 45 %, although the chiral nanofibers are composed exclusively from achiral building blocks. This work demonstrates symmetry breaking under sonication and the chiral-selective spin-filtering effect.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qirong Zhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Xiaoqin Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
23
|
Puneet P, Shao SW, Ho RM. Induced Circular Dichroism and Circularly Polarized Luminescence for Block Copolymers with Chiral Communications. Macromol Rapid Commun 2023; 44:e2200369. [PMID: 35836097 DOI: 10.1002/marc.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/28/2022] [Indexed: 01/11/2023]
Abstract
Many sophisticated chiral materials are found in living organisms, giving specific functions and required complexity. Owing to the remarkable optical properties of chiral materials, they have drawn significant attention for the development of synthetic materials to give optical activities for appealing applications. In contrast to a top-down approach, the bottom-up approach from self-assembled systems with chiral host-achiral guest and achiral guest-chiral host for induced circular dichroism and induced circularly polarized luminescence has greatly emerged because of its cost-effective advantage with easy fabrication for mesoscale assembly. Self-assembled hierarchical textures with chiral sense indeed give significant amplification of the dissymmetry factors of absorption and luminescence (gabs and glum ), resulting from the formation of well-ordered superstructures and phases with the building of chromophores and luminophores. By taking advantage of the microphase separation of block copolymers via self-assembly, a variety of well-defined chiral nanostructures can be formed as tertiary superstructures that can be further extended to quaternary phases in bulk or thin film. In this article, a conceptual perspective is presented to utilize the self-assembly of chiral block copolymers with chiral communications, giving quaternary phases with well-ordered textures at the nanoscale for significant enhancement of dissymmetry factors.
Collapse
Affiliation(s)
- Puhup Puneet
- Department of Chemical Engineering, National Tsing Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, Republic of China
| | - Sheng-Wei Shao
- Department of Chemical Engineering, National Tsing Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, Republic of China
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, Republic of China
| |
Collapse
|
24
|
Li J, Zhang J, Wang J, Wang D, Yan Y, Huang J, Tang BZ. Insights into Self-Assembly of Nonplanar Molecules with Aggregation-Induced Emission Characteristics. ACS NANO 2022; 16:20559-20566. [PMID: 36383407 DOI: 10.1021/acsnano.2c07263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Utilizing nonplanar conjugated molecules as building blocks facilitates the development of self-assembly but is fundamentally challenging. To study the self-assembly behavior, we herein demonstrate the self-assembly process of a nonplanar conjugated molecule with aggregation-induced emission (AIE) feature from an isolated molecule to an irregular cluster to a well-defined vesicle driven by amphiphiles. The superhigh aggregation-sensitive emission affords more precise and detailed information about the self-assembly process than traditional dyes. Meanwhile, the arrangements of the AIE-active molecule change from disordered to well-organized forms by reducing the twisted configuration during the transformation process, and the strong hydrophobicity of amphiphiles is crucial for such configuration and morphology transformations. Owing to the thermophilic bacteria-mimetic membranes, the obtained vesicles exhibit a property of superhigh thermal stability. They also display promising light-harvesting applications. This work not only deciphers the self-assembly of AIE molecules but also provides a strategy for nonplanar molecules to build well-organized self-assemblies.
Collapse
Affiliation(s)
- Jie Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jianyu Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianxing Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
25
|
Li Q, Lu X, Lv Z, Zhu B, Lu Q. Full-Color and Switchable Circularly Polarized Light from a Macroscopic Chiral Dendritic Film through a Solid-State Supramolecular Assembly. ACS NANO 2022; 16:18863-18872. [PMID: 36346796 DOI: 10.1021/acsnano.2c07768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral materials displaying chirality across multiple length scales have attracted increasing interest due to their potential applications in diverse fields. Herein, we report an efficient approach for the construction of macroscopic crystal dendrites with hierarchical chirality based on an in situ solid assembly in a block copolymer film. Chiral fluorescent crystals are formed by enantiopure d-/l-dibenzoyl tartaric acid and pyrenecarboxylic acid in a poly(1,4-butadiene)-b-poly(ethylene oxide) film. The chiro-optical activity of the crystalline dendrites can be greatly amplified in the absorption and scattering regions and goes along with the dimension of dendrites. Notably, the chiral dendrites exhibited strong circularly polarized luminescence emission with a high dissymmetric factor (0.03). The enhancement of the quantum yield of the chiral film was up to 28%, which was 14 times higher that of the corresponding fluorescent molecules. The circularly polarized emission bands of the films can be fine-tuned by contriving the emissive bands of fluorescent molecules. More importantly, the chiral signals are able to be wiped when the fluorescent group photodimerizes under UV irradiation. This work provides an efficient way to develop functional materials through solid self-assembly.
Collapse
Affiliation(s)
- Qingxiang Li
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Zhiguo Lv
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Bangshang Zhu
- Institute of Analytic Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| |
Collapse
|
26
|
Hiroto S, Wakita M, Chujo M. A Strategy for Polar Crystals with Dipolar Heterohelicenes. Chem Asian J 2022; 17:e202200808. [PMID: 36065075 DOI: 10.1002/asia.202200808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/03/2022] [Indexed: 11/03/2022]
Abstract
Polar crystals have attracted interest for the applications to polar materials with piezo- and pyroelectricity, and second harmonic generation. Despite their potential utility for flexible polar materials, a strategy for ordering polar helicenes have remained elusive. Here, we demonstrate creation of polar crystal with unsymmetrically substituted aza[5]helicenes tuned by substituents. The usymmetric aza[5]helicenes have been prepared through regioselective monoprotiodesilylations. We disclosed triisopropylsilyl-substituted derivatives show 1D chain columnar packings. In particular, enantiopure crystals showed spontaneous polarization. Optical and single-crystal X-ray diffraction experiments with other derivatives, as well as theoretical calculations, revealed that the presence of triisopropylsilyl or electron-withdrawing aryl substituents is essential for forming the 1D chain columnar structure. Hirshfeld surface analyses further showed that CH-π interactions between 1D chain columns regulate the polar assembly. Finally, we determined the polarizability of the nitro derivative by ab initio calculation to be 4.53 µC/cm 2 . This value corroborates the first example of a spontaneously polar crystal of helicenes. We believe that this study will contribute to the development of polar materials from organic molecules.
Collapse
Affiliation(s)
- Satoru Hiroto
- Kyoto University, Graduate School of Human and Environmental Studies, Yoshidanihonmatsu-cho, Sakyo-ku, 6068501, Kyoto, JAPAN
| | - Mana Wakita
- Kyoto University, Graduate School of Human and Environmental Studies, JAPAN
| | - Moeko Chujo
- Kyoto University, Graduate School of Human and Environmental Studies, JAPAN
| |
Collapse
|
27
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202208574. [DOI: 10.1002/anie.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Song
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
28
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Song
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Shuai Qiu
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Wei Tian
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|
29
|
Chen Y, Zhang Y, Li H, Li Y, Zheng W, Quan Y, Cheng Y. Dynamic Circularly Polarized Luminescence with Tunable Handedness and Intensity Enabled by Achiral Dichroic Dyes in Cholesteric Liquid Crystal Medium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202309. [PMID: 35535384 DOI: 10.1002/adma.202202309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Cholesteric liquid crystals (CLCs) are chiral supramolecular systems that self-assemble into a highly regular helical arrangement in a liquid crystal (LC) medium. Such an arrangement is highly beneficial for the chiral enlargement effect on circularly polarized luminescence (CPL) signals. Dichroic dyes with rod-like molecular structures can exhibit fluorescence anisotropy along both the long and short molecular axes owing to their transition dipole moment (TDM) vectors. In this work, a pair of donor-accepter (D-A) achiral dichroic dyes is prepared, namely, 3,4-ethylenedioxythiophene derivative (P1, whose TDM vector is parallel to the long axis of the molecule, i.e., F|| > F⊥ ) and anthraquinone derivative (N1, whose TDM vector is perpendicular to the long axis of the molecule, i.e., F|| < F⊥ ). CLCs can be fabricated by doping P1 or N1 together with chiral 1,1'-binaphthyl-derived inducers into SLC1717 medium. Dynamic CPL with tunable handedness and intensity is achieved by changing the N1:P1 mass ratio, and the luminescence dissymmetry factor (gem ) value reaches |0.71|. This work describes the first observation of dynamic CPL with tunable handedness and intensity enabled by TDM regulation of achiral dichroic dyes in a CLC medium.
Collapse
Affiliation(s)
- Yihan Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuxia Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Li
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yang Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenhua Zheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
30
|
Váňa L, Jakubec M, Sýkora J, Císařová I, Žádný J, Storch J, Církva V. Synthesis of Aza[ n]helicenes ( n = 4-7) via Photocyclodehydrochlorination of 1-Chloro- N-aryl-2-naphthamides. J Org Chem 2022; 87:7150-7166. [PMID: 35549349 DOI: 10.1021/acs.joc.2c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of aza[n]helicenes (n = 4-7) was synthesized using a photocyclodehydrochlorination of 1-chloro-N-aryl-2-naphthamides as a general synthetic procedure introducing the nitrogen atom to the third ring of the helicene framework. The effect of the nitrogen presence in the helicene skeleton on the physicochemical properties of the prepared aza[n]helicenes was studied and compared to those of the parent carbo-analogues. The insertion of a nitrogen atom into the outer edge of the helicene molecule has a severe impact on certain physicochemical properties such as optical rotation, electrostatic potentials, and intermolecular interactions. On the other hand, some other properties such as UV/vis, fluorescence, and phosphorescence spectra remained almost unaffected when compared to the parent carbohelicenes. A nitrogen atom can be also used for further derivatization, which can lead to further modification of helicene properties, as manifested here in the fluorescence changes induced by protonation.
Collapse
Affiliation(s)
| | | | | | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | | | | | | |
Collapse
|
31
|
Yin G, Namikoshi T, Teraguchi M, Kaneko T, Aoki T. Absolute asymmetric polymerizations in solution needing no physical chiral source. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1146-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Liang J, Liang J, Hao A, Xing P. Symmetry breaking-induced double-strand helices in H-bonded coassembly. NANOSCALE 2021; 13:12929-12937. [PMID: 34477776 DOI: 10.1039/d1nr02515e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Double-strand helical structures are important in information storage of biomacromolecules, while the artificial synthesis depends on chirality transfer from the molecular to supramolecular scale, and the synthesis through symmetry breaking has yet been accomplished. In this work, we present the multiple-constituent coassembly of a melamine derivative and an N-terminal aromatic amino acid into double helical nanoarchitectures via symmetry breaking. Multiple intramolecular H-bond formation between constituents played key roles in directing the formation of helical structures. Intertwining of single helices with identical helical parameters afforded double helical structures, benefiting from the uniformity and monodispersity of nanoarchitectures. With introduction of coded chiral amino acid derivatives as chiral sources, the handedness could be readily manipulated with exclusive correlation to the absolute chirality of amino acids. Molecular flexibility of the melamine derivative facilitates the propeller-shaped complex formation to afford helical columnar coassemblies and double helical structures. This work presents a rational control over the emergence and properties of double helical structures in multiple-constituent coassemblies through symmetry breaking, which provides an alternative method towards the synthesis of topological chiral composites and chiroptical materials.
Collapse
Affiliation(s)
- Juncong Liang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | | | | | | |
Collapse
|
34
|
Huang CR, Li Y, Xie Y, Du Y, Peng H, Zeng YL, Liu JC, Xiong RG. The First High-Temperature Supramolecular Radical Ferroics. Angew Chem Int Ed Engl 2021; 60:16668-16673. [PMID: 33982370 DOI: 10.1002/anie.202105744] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/09/2022]
Abstract
Organic radical ferroics such as TEMPO have attracted widespread interest. However, the relatively low Curie temperature of 287 K and melting point of 311 K severely hinder its application potential. Despite extensive interest, high-temperature radical ferroics have not yet been found. Here, taking advantage of chemical design and supramolecular radical chemistry, we designed two high-temperature organic supramolecular radical ferroics [(NH3 -TEMPO)([18]crown-6)](ReO4 ) (1) and [(NH3 -TEMPO)([18]crown-6)](ClO4 ) (2), which can retain ferroelectricity up to 413 K and 450 K, respectively. To our knowledge, they are both the first supramolecular radical ferroics and unprecedented high-temperature radical ferroics, where the supramolecular component is vital for the stabilization of the radical and extending the working temperature window. Both also have paramagnetism, non-interacting spin moments, and excellent piezoelectric and electrostrictive behaviors comparable to that of LiNbO3 .
Collapse
Affiliation(s)
- Chao-Ran Huang
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Yibao Li
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Yongfa Xie
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ye Du
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
35
|
Huang C, Li Y, Xie Y, Du Y, Peng H, Zeng Y, Liu J, Xiong R. The First High‐Temperature Supramolecular Radical Ferroics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao‐Ran Huang
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province College of Chemistry and Chemical Engineering Gannan Normal University Ganzhou 341000 P. R. China
| | - Yibao Li
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province College of Chemistry and Chemical Engineering Gannan Normal University Ganzhou 341000 P. R. China
| | - Yongfa Xie
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Ye Du
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Hang Peng
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Yu‐Ling Zeng
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Jun‐Chao Liu
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
36
|
Yang B, Zou G, Zhang S, Ni H, Wang H, Xu W, Yang C, Zhang H, Yu W, Luo K. Biased Symmetry Breaking and Chiral Control by Self-Replicating in Achiral Tetradentate Platinum (II) Complexes. Angew Chem Int Ed Engl 2021; 60:10531-10536. [PMID: 33682280 DOI: 10.1002/anie.202101709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Indexed: 01/03/2023]
Abstract
Obtaining homochirality from biased symmetry-breaking of self-assembly in achiral molecules remains a great challenge due to the lack of ingenious strategies and controlling their handedness. Here, we report the first case of biased symmetry breaking from achiral platinum (II) liquid crystals which self-organize into an enantiomerically enriched single domain without selection of handedness in twist grain boundary TGB [ *] phase. Most importantly, the chiral control of self-organization can be achieved by using above the homochiral liquid crystal films with determined handedness (P or M) as a template. Moreover, benefiting from self-assembled superhelix, these complexes exhibit prominent circularly polarized luminescence with high |glum | up to 3.4×10-3 in the TGB [ *] mesophase. This work paves a neoteric avenue for the development of chiral self-assemblies from achiral molecules.
Collapse
Affiliation(s)
- Bo Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Guo Zou
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Shilin Zhang
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Hailiang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Haifeng Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Wei Xu
- College of Chemistry and State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610000, P. R. China
| | - Cheng Yang
- College of Chemistry and State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610000, P. R. China
| | - Hui Zhang
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Wenhao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Kaijun Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| |
Collapse
|
37
|
Deng Y, Wang M, Zhuang Y, Liu S, Huang W, Zhao Q. Circularly polarized luminescence from organic micro-/nano-structures. LIGHT, SCIENCE & APPLICATIONS 2021; 10:76. [PMID: 33840811 PMCID: PMC8039044 DOI: 10.1038/s41377-021-00516-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/16/2021] [Accepted: 03/21/2021] [Indexed: 05/17/2023]
Abstract
Circularly polarized light exhibits promising applications in future displays and photonic technologies. Circularly polarized luminescence (CPL) from chiral luminophores is an ideal approach to directly generating circularly polarized light, in which the energy loss induced by the circularly polarized filters can be reduced. Among various chiral luminophores, organic micro-/nano-structures have attracted increasing attention owing to the high quantum efficiency and luminescence dissymmetry factor. Herein, the recent progress of CPL from organic micro-/nano-structures is summarized. Firstly, the design principles of CPL-active organic micro-/nano-structures are expounded from the construction of micro-/nano-structure and the introduction of chirality. Based on these design principles, several typical organic micro-/nano-structures with CPL activity are introduced in detail, including self-assembly of small molecules, self-assembly of π-conjugated polymers, and self-assembly on micro-/nanoscale architectures. Subsequently, we discuss the external stimuli that can regulate CPL performance, including solvents, pH value, metal ions, mechanical force, and temperature. We also summarize the applications of CPL-active materials in organic light-emitting diodes, optical information processing, and chemical and biological sensing. Finally, the current challenges and prospects in this emerging field are presented. It is expected that this review will provide a guide for the design of excellent CPL-active materials.
Collapse
Affiliation(s)
- Yongjing Deng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Mengzhu Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Yanling Zhuang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, 710072, Xi'an, Shaanxi, China.
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China.
- College of Electronic and Optical Engineering & College of Microelectronics, Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Yang B, Zou G, Zhang S, Ni H, Wang H, Xu W, Yang C, Zhang H, Yu W, Luo K. Biased Symmetry Breaking and Chiral Control by Self‐Replicating in Achiral Tetradentate Platinum (II) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bo Yang
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Guo Zou
- Department of Chemistry Xiamen University Xiamen 361000 P. R. China
| | - Shilin Zhang
- Department of Chemistry Xiamen University Xiamen 361000 P. R. China
| | - Hailiang Ni
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Haifeng Wang
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Wei Xu
- College of Chemistry and State Key Laboratory of Biotherapy Healthy Food Evaluation Research Center Sichuan University Chengdu 610000 P. R. China
| | - Cheng Yang
- College of Chemistry and State Key Laboratory of Biotherapy Healthy Food Evaluation Research Center Sichuan University Chengdu 610000 P. R. China
| | - Hui Zhang
- Department of Chemistry Xiamen University Xiamen 361000 P. R. China
| | - Wenhao Yu
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Kaijun Luo
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| |
Collapse
|
39
|
Zhao J, Zhang P, Qiao H, Hao A, Xing P. Supramolecular Chirality Suppresses Molecular Chirality: Selective Chiral Recognition in Hierarchically Coassembled Pyridine-Benzimidazole Conjugates with Precise ee% Detection. J Phys Chem Lett 2021; 12:2912-2921. [PMID: 33725453 DOI: 10.1021/acs.jpclett.1c00548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Incorporation of aromatic chiral species with axial, helical, or propeller chirality in surapmolecular chiral motifs would potentially facilitate the chiroptical applications such as enantiomeric excess detection, chiral sensing, and displays, which however suffer from inevitable competition between supramolecular chirality and molecular chirality and remain major challenges. Here, we show the programmable coassembly of pyridine-cored benzimidazole derivatives with intrinsic propeller chirality, which shall form binary and ternary aggregates with chiral acids as well as metal ions though H-bonds and metal-ligand coordination interactions in an orthogonal manner, to enhance and flexibly control the chiroptical properties. Solid-state X-ray structures of pyridine-benzimidazole derivatives suggested they adopted the propeller molecular chirality. Competition between molecular and supramolecular chirality and dynamic binding toward enantiomers of pyridine-benzimidazole derivatives was observed in the coassembly systems based on the chiroptical responses and molecular dynamic simulation. Compared to the intrinsic racemic assembly, coassembly systems produced chiroptical responses including the Cotton effect and circularly polarized luminescence (CPL) with relatively high dissymmetry factor (gabs up to 4.9 × 10-2, glum up to 9.6 × 10-3). Furthermore, chiroptical responses were further controlled by introducing metal ions, achieving inverted handedness and tunable dissymmetry factors. This work provides feasible strategies to efficiently regulate and enhance the chiroptical properties of intrinsic aromatics via multiple interactions, which also expressed great potential in quantitative ee% sensing for chiral acids.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Peng Zhang
- Shandong Chengchuang Lanhai Pharmaceutical Technology CO., LTD, 2350 Kaituo Road, Jinan 250101, People's Republic of China
| | - Hongwei Qiao
- Shandong Shengquan New Material Co., Ltd, Jinan 250204, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
40
|
Wang Q, Zhang WW, Zheng C, Gu Q, You SL. Enantioselective Synthesis of Azoniahelicenes by Rh-Catalyzed C–H Annulation with Alkynes. J Am Chem Soc 2020; 143:114-120. [DOI: 10.1021/jacs.0c11735] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
41
|
Yang SY, Wang YK, Peng CC, Wu ZG, Yuan S, Yu YJ, Li H, Wang TT, Li HC, Zheng YX, Jiang ZQ, Liao LS. Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. J Am Chem Soc 2020; 142:17756-17765. [DOI: 10.1021/jacs.0c08980] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ya-Kun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chen-Chen Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shuai Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - You-Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Tong-Tong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hong-Cheng Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - You-Xuan Zheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), Wujiang, Suzhou, Jiangsu 215211, China
| |
Collapse
|