1
|
Huang Y, Zhong W, Varga KE, Benkő Z, Pócsi I, Yang C, Molnár I. Promoting the glycosylation of drug-like natural products in a Saccharomyces cerevisiae chassis by deletion of endogenous glycosidases. BIORESOURCE TECHNOLOGY 2025; 422:132258. [PMID: 39971105 DOI: 10.1016/j.biortech.2025.132258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Glycosylation is an effective strategy to improve the absorption, distribution, metabolism, excretion, and toxicity of natural product (NP) pharmacophores. While heterologous production of broad-spectrum fungal glucosyltransferases such as BbGT86 of Beauveria bassiana yields varied phenolic glucoconjugates in S. cerevisiae, endogenous yeast glycosidases diminish the conversion yields and limit the structural diversity of the products. We set out to improve the efficiency and broaden the regiospecificity of the glucosylation of NPs or their unnatural product analogues (uNPs). Using yeast strains deficient in exoglycanases EXG1 or SPR1, we evaluated total biosynthetic and biocatalytic synthetic biology platforms to produce glycoconjugates from polyketides of the benzenediol lactone family, and polyphenols of the phenylpropanoid class. We show that for 13 out of the 18 aglycons tested, exoglycanase deletions improve glucoside yields and/or alter glucoconjugate regioisomer distributions, while macrolactone glycoconjugates with an aryl methylene ketone moiety are impervious to hydrolysis by EXG1. We demonstrate that elimination of EXG1 or biosynthetic methylation of glucosides are efficient alternative strategies to differentially modulate glycoside regioisomer profiles for future pharmaceutical, nutraceutical or crop protection applications.
Collapse
Affiliation(s)
- Yingying Huang
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States; Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Weimao Zhong
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States
| | - Kinga E Varga
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsigmond Benkő
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Chenglong Yang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - István Molnár
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States; VTT Technical Research Centre of Finland, Espoo, Finland.
| |
Collapse
|
2
|
Yan D, Matsuda Y. Methyltransferase Domain-Focused Genome Mining for Fungal Polyketide Synthases. SMALL METHODS 2024; 8:e2400107. [PMID: 38644685 PMCID: PMC11579551 DOI: 10.1002/smtd.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Indexed: 04/23/2024]
Abstract
A comparison of substrate-binding site amino acid residues in the C-methyltransferase (MT) domains of fungal nonreducing polyketide synthases (NR-PKSs) suggests that these residues are correlated with the methylation modes used by the PKSs. A PKS, designated as AsbPKS, with substrate-binding site residues distinct from those of other known PKSs is focused on. The characterization of AsbPKS revealed that it yields an isocoumarin derivative, anhydrosclerotinin B (1), the biosynthesis of which involves a previously unreported methylation pattern. This study demonstrates the utility of MT domain-focused genome mining for the discovery of PKSs with new functions.
Collapse
Affiliation(s)
- Dexiu Yan
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong Kong SARChina
| | - Yudai Matsuda
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong Kong SARChina
| |
Collapse
|
3
|
Yang H, Shang Z, Chen Y, Li F, Li K, Zhu H, Peng M, Yang J, Cai C, Ju J. Metabologenomics-Inspired Discovery and Combinatorial Biosynthesis-Based Diversification of Fungal O-Glycosylated Depsides. Org Lett 2024; 26:8317-8322. [PMID: 39303077 DOI: 10.1021/acs.orglett.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Through metabologenomics mining, we prioritized Exophiala xenobiotica SDU 039, a deep-sea sediment-derived fungus producing O-glycosylated depsides (1-9), including seven new species with varying aliphatic chains. Heterologous expression validated the exo gene cluster, and in vitro enzyme assays elucidated the function of glycosyltransferase ExoC. The chemical diversity of O-glycosylated depsides is expanded by combinatorial biosynthesis using homologues depside biosynthetic genes and in vitro transformation with ExoC and different sugars as substrate.
Collapse
Affiliation(s)
- Hu Yang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhuo Shang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yingying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Feng Li
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kunlong Li
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongjie Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ming Peng
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Cunlei Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
4
|
Li F, Lin Z, Schmidt EW. Molecular basis of pigment structural diversity in echinoderms. iScience 2024; 27:110834. [PMID: 39310768 PMCID: PMC11414698 DOI: 10.1016/j.isci.2024.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
The varied pigments found in animals play both ecological and physiological roles. Virtually all echinoderms contain putative pigment biosynthetic enzymes, the polyketide synthases (PKSs). Among these, crinoids have complex pigments found both today and in ancient fossils. Here, we characterize a key pigment biosynthetic enzyme, CrPKS from the crinoid Anneissia japonica. We show that CrPKS produces 14-carbon aromatic pigment precursors. Despite making a compound previously found in fungi, the crinoid enzyme operates by different biochemical principles, helping to explain the diverse animal PKSs found throughout the metazoan (animal) kingdom. Unlike SpPks1 from sea urchins that had strict starter unit selectivity, CrPKS also incorporated starter units butyryl- or ethylmalonyl-CoA to synthesize a crinoid pigment precursor with a saturated side chain. By performing biochemical experiments, we show how changes in the echinoderm pigment biosynthetic enzymes unveil the vast variety of colors found in animals today.
Collapse
Affiliation(s)
- Feng Li
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Xie L, Liu Y, Zhang Y, Chen K, Yue Q, Wang C, Dun B, Xu Y, Zhang L. The divergence of DHN-derived melanin pathways in Metarhizium robertsii. World J Microbiol Biotechnol 2024; 40:323. [PMID: 39292329 DOI: 10.1007/s11274-024-04134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
The important role of dihydroxynaphthalene-(DHN) melanin in enhancing fungal stress resistance and its importance in fungal development and pathogenicity are well-established. This melanin also aids biocontrol fungi in surviving in the environment and effectively infecting insects. However, the biosynthetic origin of melanin in the biocontrol agents, Metarhizium spp., has remained elusive due to the complexity resulting from the divergence of two DHN-like biosynthetic pathways. Through the heterologous expression of biosynthetic enzymes from these two pathways in baker's yeast Saccharomyces cerevisiae, we have confirmed the presence of DHN biosynthesis in M. roberstii, and discovered a novel naphthopyrone intermediate, 8, that can produce a different type of pigment. These two pigment biosynthetic pathways differ in terms of polyketide intermediate structures and subsequent modification steps. Stress resistance studies using recombinant yeast cells have demonstrated that both DHN and its intermediates confer resistance against UV light prior to polymerization; a similar result was observed for its naphthopyrone counterpart. This study contributes to the understanding of the intricate and diverse biosynthetic mechanisms of fungal melanin and has the potential to enhance the application efficiency of biocontrol fungi such as Metarhizium spp. in agriculture.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yujie Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Kang Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Baoqing Dun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
6
|
Liu Q, Gao S, Fang J, Gong Y, Zheng Y, Xu Y, Zhang D, Wei J, Liao L, Yao M, Wang W, Han X, Chen F, Molnár I, Yang X. Novel fungal diphenyl ether biosynthetic gene clusters encode a promiscuous oxidase for elevated antibacterial activities. Chem Sci 2024:d4sc01435a. [PMID: 39144458 PMCID: PMC11320064 DOI: 10.1039/d4sc01435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Diphenyl ethers (DPEs) are produced by filamentous fungi using polyketide synthases (PKSs) directly, or via Cu oxidase-catalyzed oxidative rearrangements of benzophenone intermediates. Here, we use heterologous expression to reveal a third route towards DPEs in Preussia isomera that relies on an oxidative multienzyme cascade to convert a PKS-generated, ester-linked didepside to depsidones and further to DPEs, and apply comparative genomics to identify conserved biosynthetic gene clusters for this pathway in multiple fungi. The distribution of DPE products is modulated by the expression chassis upon pathway reconstitution. Among the post-PKS enzymes, the DpeH tyrosinase shows considerable substrate promiscuity towards synthetic DPE analogues. By creating hybrid enzymes with a DpeH orthologue from Aspergillus nidulans, we identify the C-terminal region of DpeH to alter substrate recognition. Our work highlights an evolutionarily conserved way to produce DPEs, and provides enzymatic tools to generate DPE analogues with broad spectrum antibiotic activity against multidrug-resistant human pathogens.
Collapse
Affiliation(s)
- Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Shuaibiao Gao
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Jin Fang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Yifu Gong
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Yiling Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Yao Xu
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Dan Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Jiayuan Wei
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Liangxiu Liao
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Ming Yao
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Wenjing Wang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Xiaole Han
- School of Chemistry and Materials Science, South-Central Minzu University Wuhan 430074 P.R. China
| | - Fusheng Chen
- School of Life Sciences, Guizhou Normal University Guiyang 550025 P.R. China
- College of Food Science and Technology, Huazhong Agricultural University Wuhan 430070 P.R. China
| | - István Molnár
- VTT Technical Research Centre of Finland FI-02044 VTT Espoo Finland
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| |
Collapse
|
7
|
Skellam E, Rajendran S, Li L. Combinatorial biosynthesis for the engineering of novel fungal natural products. Commun Chem 2024; 7:89. [PMID: 38637654 PMCID: PMC11026467 DOI: 10.1038/s42004-024-01172-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Natural products are small molecules synthesized by fungi, bacteria and plants, which historically have had a profound effect on human health and quality of life. These natural products have evolved over millions of years resulting in specific biological functions that may be of interest for pharmaceutical, agricultural, or nutraceutical use. Often natural products need to be structurally modified to make them suitable for specific applications. Combinatorial biosynthesis is a method to alter the composition of enzymes needed to synthesize a specific natural product resulting in structurally diversified molecules. In this review we discuss different approaches for combinatorial biosynthesis of natural products via engineering fungal enzymes and biosynthetic pathways. We highlight the biosynthetic knowledge gained from these studies and provide examples of new-to-nature bioactive molecules, including molecules synthesized using combinations of fungal and non-fungal enzymes.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
| | - Sanjeevan Rajendran
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Lei Li
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| |
Collapse
|
8
|
Li L, Zhong W, Liu H, Espinosa-Artiles P, Xu YM, Wang C, Robles JMV, Paz TA, Inácio MC, Chen F, Xu Y, Gunatilaka AAL, Molnár I. Biosynthesis of Cytosporones in Leotiomycetous Filamentous Fungi. J Am Chem Soc 2024; 146:6189-6198. [PMID: 38386630 PMCID: PMC11106036 DOI: 10.1021/jacs.3c14066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Polyketides with the isochroman-3-one pharmacophore are rare among fungal natural products as their biosynthesis requires an unorthodox S-type aromatic ring cyclization. Genome mining uncovered a conserved gene cluster in select leotiomycetous fungi that encodes the biosynthesis of cytosporones, including isochroman-3-one congeners. Combinatorial biosynthesis in total biosynthetic and biocatalytic formats in Saccharomyces cerevisiae and in vitro reconstitution of key reactions with purified enzymes revealed how cytosporone structural and bioactivity diversity is generated. The S-type acyl dihydroxyphenylacetic acid (ADA) core of cytosporones is assembled by a collaborating polyketide synthase pair. Thioesterase domain-catalyzed transesterification releases ADA esters, some of which are known Nur77 modulators. Alternatively, hydrolytic release allows C6 hydroxylation by a flavin-dependent monooxygenase, yielding a trihydroxybenzene moiety. Reduction of the C9 carbonyl by a short chain dehydrogenase/reductase initiates isochroman-3-one formation, affording cytosporones with cytotoxic and antimicrobial activity. Enoyl di- or trihydroxyphenylacetic acids are generated as shunt products, while isocroman-3,4-diones are formed by autoxidation. The cytosporone pathway offers novel polyketide biosynthetic enzymes for combinatorial synthetic biology to advance the production of "unnatural" natural products for drug discovery.
Collapse
Affiliation(s)
- Li Li
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- College of Life Science, Yangtze University, Jingzhou 434025, P. R. China
| | - Weimao Zhong
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Hang Liu
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Patricia Espinosa-Artiles
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Ya-ming Xu
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Chen Wang
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jose Manuel Verdugo Robles
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Tiago Antunes Paz
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Marielle Cascaes Inácio
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Fusheng Chen
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, P. R. China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- VTT Technical Research Center of Finland Ltd., Espoo 02150, Finland
| |
Collapse
|
9
|
Wang J, Deng Z, Liang J, Wang Z. Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Nat Prod Rep 2023; 40:1498-1520. [PMID: 37581222 DOI: 10.1039/d3np00015j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Time span of literature covered: up to mid-2023Iterative type I polyketide synthases (iPKSs) are outstanding natural chemists: megaenzymes that repeatedly utilize their catalytic domains to synthesize complex natural products with diverse bioactivities. Perhaps the most fascinating but least understood question about type I iPKSs is how they perform the iterative yet programmed reactions in which the usage of domain combinations varies during the synthetic cycle. The programmed patterns are fulfilled by multiple factors, and strongly influence the complexity of the resulting natural products. This article reviews selected reports on the structural enzymology of iPKSs, focusing on the individual domain structures followed by highlighting the representative programming activities that each domain may contribute.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Li Y, Lin P, Lu X, Yan H, Wei H, Liu C, Liu X, Yang Y, Molnár I, Bai Z. Plasmid Copy Number Engineering Accelerates Fungal Polyketide Discovery upon Unnatural Polyketide Biosynthesis. ACS Synth Biol 2023; 12:2226-2235. [PMID: 37463503 DOI: 10.1021/acssynbio.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Saccharomyces cerevisiae has been extensively used as a convenient synthetic biology chassis to reconstitute fungal polyketide biosynthetic pathways. Despite progress in refactoring these pathways for expression and optimization of the yeast production host by metabolic engineering, product yields often remain unsatisfactory. Such problems are especially acute when synthetic biological production is used for bioprospecting via genome mining or when chimeric fungal polyketide synthases (PKSs) are employed to produce novel bioactive compounds. In this work, we demonstrate that empirically balancing the expression levels of the two collaborating PKS subunits that afford benzenediol lactone (BDL)-type fungal polyketides is a facile strategy to improve the product yields. This is accomplished by systematically and independently altering the copy numbers of the two plasmids that express these PKS subunits. We applied this plasmid copy number engineering strategy to two orphan PKSs from genome mining where the yields of the presumed BDL products in S. cerevisiae were far too low for product isolation. This optimization resulted in product yield improvements of up to 10-fold, allowing for the successful isolation and structure elucidation of new BDL analogues. Heterocombinations of these PKS subunits from genome mining with those from previously identified BDL pathways led to the combinatorial biosynthesis of several additional novel BDL-type polyketides.
Collapse
Affiliation(s)
- Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Pingxin Lin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xuan Lu
- School of Life Science and Biotechnology, Dalian University, Dalian 116622, China
| | - Hao Yan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Huan Wei
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Chunli Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona 85706, United States
- VTT Technical Research Centre of Finland Ltd., Espoo 02044, Finland
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Liu Q, Zhang D, Gao S, Cai X, Yao M, Xu Y, Gong Y, Zheng K, Mao Y, Yang L, Yang D, Molnár I, Yang X. Didepside Formation by the Nonreducing Polyketide Synthase Preu6 of Preussia isomera Requires Interaction of Starter Acyl Transferase and Thioesterase Domains. Angew Chem Int Ed Engl 2023; 62:e202214379. [PMID: 36484777 DOI: 10.1002/anie.202214379] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
Orsellinic acid (OA) derivatives are produced by filamentous fungi using nonreducing polyketide synthases (nrPKSs). The chain-releasing thioesterase (TE) domains of such nrPKSs were proposed to also catalyze dimerization to yield didepsides, such as lecanoric acid. Here, we use combinatorial domain exchanges, domain dissections and reconstitutions to reveal that the TE domain of the lecanoric acid synthase Preu6 of Preussia isomera must collaborate with the starter acyl transferase (SAT) domain from the same nrPKS. We show that artificial SAT-TE fusion proteins are highly effective catalysts and reprogram the ketide homologation chassis to form didepsides. We also demonstrate that dissected SAT and TE domains of Preu6 physically interact, and SAT and TE domains of OA-synthesizing nrPKSs may co-evolve. Our work highlights an unexpected domain-domain interaction in nrPKSs that must be considered for the combinatorial biosynthesis of unnatural didepsides, depsidones, and diphenyl ethers.
Collapse
Affiliation(s)
- Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Dan Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Shuaibiao Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Xianhua Cai
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Ming Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yao Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yifu Gong
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Ke Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yigui Mao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Liyan Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, No.98 Daling Road, Nanning, 530007, P. R. China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, No.98 Daling Road, Nanning, 530007, P. R. China
| | - István Molnár
- VTT Technical Research Centre of Finland, Division of Industrial Biotechnology and Food Solutions, Tietotie 2, Espoo, 02150, Finland
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
12
|
Cox RJ. Curiouser and curiouser: progress in understanding the programming of iterative highly-reducing polyketide synthases. Nat Prod Rep 2023; 40:9-27. [PMID: 35543313 DOI: 10.1039/d2np00007e] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 1996-2022Investigations over the last 2 decades have begun to reveal how fungal iterative highly-reducing polyketide synthases are programmed. Both in vitro and in vivo experiments have revealed the interplay of intrinsic and extrinsic selectivity of the component catalytic domains of these systems. Structural biology has begun to provide high resolution structures of hr-PKS that can be used as the basis for their engineering and reprogramming, but progress to-date remains rudimentary. However, significant opportunities exist for translating the current level of understanding into the ability to rationally re-engineer these highly efficient systems for the production of important biologically active compounds through biotechnology.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany.
| |
Collapse
|
13
|
Yang L, Zhang P, Wang Y, Hu G, Guo W, Gu X, Pu L. Plant synthetic epigenomic engineering for crop improvement. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2191-2204. [PMID: 35851940 DOI: 10.1007/s11427-021-2131-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Efforts have been directed to redesign crops with increased yield, stress adaptability, and nutritional value through synthetic biology-the application of engineering principles to biology. A recent expansion in our understanding of how epigenetic mechanisms regulate plant development and stress responses has unveiled a new set of resources that can be harnessed to develop improved crops, thus heralding the promise of "synthetic epigenetics." In this review, we summarize the latest advances in epigenetic regulation and highlight how innovative sequencing techniques, epigenetic editing, and deep learning-driven predictive tools can rapidly extend these insights. We also proposed the future directions of synthetic epigenetics for the development of engineered smart crops that can actively monitor and respond to internal and external cues throughout their life cycles.
Collapse
Affiliation(s)
- Liwen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pingxian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yifan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guihua Hu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
14
|
Chen L, Wei X, Matsuda Y. Depside Bond Formation by the Starter-Unit Acyltransferase Domain of a Fungal Polyketide Synthase. J Am Chem Soc 2022; 144:19225-19230. [PMID: 36223511 DOI: 10.1021/jacs.2c08585] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Depsides are polyphenolic molecules comprising two or more phenolic acid derivatives linked by an ester bond, which is called a depside bond in these molecules. Despite more than a century of intensive research on depsides, the biosynthetic mechanism of depside bond formation remains unclear. In this study, we discovered a polyketide synthase, DrcA, from the fungus Aspergillus duricaulis CBS 481.65 and found that DrcA synthesizes CJ-20,557 (1), a heterodimeric depside composed of 3-methylorsellinic acid and 3,5-dimethylorsellinic acid. Moreover, we determined that depside bond formation is catalyzed by the starter-unit acyltransferase (SAT) domain of DrcA. Remarkably, this is a previously undescribed form of SAT domain chemistry. Further investigation revealed that 1 is transformed into duricamidepside (2), a depside-amino acid conjugate, by the single-module nonribosomal peptide synthetase DrcB.
Collapse
Affiliation(s)
- Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
15
|
Yan H, Fu Z, Lin P, Gu Y, Cao J, Li Y. Inhibition of human glioblastoma multiforme cells by 10,11-dehydrocurvularin through the MMP-2 and PI3K/AKT signaling pathways. Eur J Pharmacol 2022; 936:175348. [DOI: 10.1016/j.ejphar.2022.175348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022]
|
16
|
Liu Q, Zhang D, Xu Y, Gao S, Gong Y, Cai X, Yao M, Yang X. Cloning and Functional Characterization of the Polyketide Synthases Based on Genome Mining of Preussia isomera XL-1326. Front Microbiol 2022; 13:819086. [PMID: 35602042 PMCID: PMC9116485 DOI: 10.3389/fmicb.2022.819086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Fungal polyketides (PKs) are one of the largest families of structurally diverse bioactive natural products biosynthesized by multidomain megasynthases, in which thioesterase (TE) domains act as nonequivalent decision gates determining both the shape and the yield of the polyketide intermediate. The endophytic fungus Preussia isomera XL-1326 was discovered to have an excellent capacity for secreting diverse bioactive PKs, i.e., the hot enantiomers (±)-preuisolactone A with antibacterial activity, the single-spiro minimoidione B with α-glucosidase inhibition activity, and the uncommon heptaketide setosol with antifungal activity, which drive us to illustrate how the unique PKs are biosynthesized. In this study, we first reported the genome sequence information of P. isomera. Based on genome mining, we discovered nine transcriptionally active genes encoding polyketide synthases (PKSs), Preu1–Preu9, of which those of Preu3, Preu4, and Preu6 were cloned and functionally characterized due to possessing complete sets of synthetic and release domains. Through heterologous expression in Saccharomyces cerevisiae, Preu3 and Preu6 could release high yields of orsellinic acid (OA) derivatives [3-methylorsellinic acid (3-MOA) and lecanoric acid, respectively]. Correspondingly, we found that Preu3 and Preu6 were clustered into OA derivative synthase groups by phylogenetic analysis. Next, with TE domain swapping, we constructed a novel “non-native” PKS, Preu6-TEPreu3, which shared a very low identity with OA synthase, OrsA, from Aspergillus nidulans but could produce a large amount of OA. In addition, with the use of Preu6-TEPreu3, we synthesized methyl 3-methylorsellinate (synthetic oak moss of great economic value) from 3-MOA as the substrate, and interestingly, 3-MOA exhibited remarkable antibacterial activities, while methyl 3-methylorsellinate displayed broad-spectrum antifungal activity. Taken together, we identified two novel PKSs to biosynthesize 3-MOA and lecanoric acid, respectively, with information on such kinds of PKSs rarely reported, and constructed one novel “non-native” PKS to largely biosynthesize OA. This work is our first step to explore the biosynthesis of the PKs in P. isomera, and it also provides a new platform for high-level environment-friendly production of OA derivatives and the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Qingpei Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Dan Zhang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Yao Xu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shuaibiao Gao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Yifu Gong
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xianhua Cai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Ming Yao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
17
|
Tao H, Mori T, Wei X, Matsuda Y, Abe I. One Polyketide Synthase, Two Distinct Products: Trans-Acting Enzyme-Controlled Product Divergence in Calbistrin Biosynthesis. Angew Chem Int Ed Engl 2021; 60:8851-8858. [PMID: 33480463 DOI: 10.1002/anie.202016525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Indexed: 12/17/2022]
Abstract
Calbistrins are fungal polyketides consisting of the characteristic decalin and polyene moieties. Although the biosynthetic gene cluster of calbistrin A was recently identified, the pathway of calbistrin A biosynthesis has largely remained uninvestigated. Herein, we investigated the mechanism by which the backbone structures of calbistrins are formed, by heterologous and in vitro reconstitution of the biosynthesis and a structural biological study. Intriguingly, our analyses revealed that the decalin and polyene portions of calbistrins are synthesized by the single polyketide synthase (PKS) CalA, with the aid of the trans-acting enoylreductase CalK and the trans-acting C-methyltransferase CalH, respectively. We also determined that the esterification of the two polyketide parts is catalyzed by the acyltransferase CalD. Our study has uncovered a novel dual-functional PKS and thus broadened our understanding of how fungi synthesize diverse polyketide natural products.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.,PRESTO (Japan) Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
18
|
Tao H, Mori T, Wei X, Matsuda Y, Abe I. One Polyketide Synthase, Two Distinct Products:
Trans
‐Acting Enzyme‐Controlled Product Divergence in Calbistrin Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Yayoi 1-1-1, Bunkyo-ku Tokyo 113-8657 Japan
- PRESTO (Japan) Science and Technology Agency Kawaguchi Saitama 332-0012 Japan
| | - Xingxing Wei
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR China
| | - Yudai Matsuda
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Yayoi 1-1-1, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
19
|
Xie L, Xiao D, Wang X, Wang C, Bai J, Yue Q, Yue H, Li Y, Molnár I, Xu Y, Zhang L. Combinatorial Biosynthesis of Sulfated Benzenediol Lactones with a Phenolic Sulfotransferase from Fusarium graminearum PH-1. mSphere 2020; 5:e00949-20. [PMID: 33239367 PMCID: PMC7690957 DOI: 10.1128/msphere.00949-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Total biosynthesis or whole-cell biocatalytic production of sulfated small molecules relies on the discovery and implementation of appropriate sulfotransferase enzymes. Although fungi are prominent biocatalysts and have been used to sulfate drug-like phenolics, no gene encoding a sulfotransferase enzyme has been functionally characterized from these organisms. Here, we identify a phenolic sulfotransferase, FgSULT1, by genome mining from the plant-pathogenic fungus Fusarium graminearum PH-1. We expressed FgSULT1 in a Saccharomyces cerevisiae chassis to modify a broad range of benzenediol lactones and their nonmacrocyclic congeners, together with an anthraquinone, with the resulting unnatural natural product (uNP) sulfates displaying increased solubility. FgSULT1 shares low similarity with known animal and plant sulfotransferases. Instead, it forms a sulfotransferase family with putative bacterial and fungal enzymes for phase II detoxification of xenobiotics and allelochemicals. Among fungi, putative FgSULT1 homologues are encoded in the genomes of Fusarium spp. and a few other genera in nonsyntenic regions, some of which may be related to catabolic sulfur recycling. Computational structure modeling combined with site-directed mutagenesis revealed that FgSULT1 retains the key catalytic residues and the typical fold of characterized animal and plant sulfotransferases. Our work opens the way for the discovery of hitherto unknown fungal sulfotransferases and provides a synthetic biological and enzymatic platform that can be adapted to produce bioactive sulfates, together with sulfate ester standards and probes for masked mycotoxins, precarcinogenic toxins, and xenobiotics.IMPORTANCE Sulfation is an expedient strategy to increase the solubility, bioavailability, and bioactivity of nutraceuticals and clinically important drugs. However, chemical or biological synthesis of sulfoconjugates is challenging. Genome mining, heterologous expression, homology structural modeling, and site-directed mutagenesis identified FgSULT1 of Fusarium graminearum PH-1 as a cytosolic sulfotransferase with the typical fold and active site architecture of characterized animal and plant sulfotransferases, despite low sequence similarity. FgSULT1 homologues are sparse in fungi but form a distinct clade with bacterial sulfotransferases. This study extends the functionally characterized sulfotransferase superfamily to the kingdom Fungi and demonstrates total biosynthetic and biocatalytic synthetic biological platforms to produce unnatural natural product (uNP) sulfoconjugates. Such uNP sulfates may be utilized for drug discovery in human and veterinary medicine and crop protection. Our synthetic biological methods may also be adapted to generate masked mycotoxin standards for food safety and environmental monitoring applications and to expose precarcinogenic xenobiotics.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Dongliang Xiao
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaojing Wang
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jing Bai
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province, People's Republic of China
| | - Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Haitao Yue
- Department of Biology and Biotechnology, Xinjiang University, Urumqi, People's Republic of China
| | - Ye Li
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
- National Engineering Lab for Cereal Fermentation Technology, Jiangnan University, Wuxi, People's Republic of China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|