1
|
Yang X, Zhu J, Wang Y, Wang J, Li Y, Gu Y, Lv Q, Wang L. Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries. J Colloid Interface Sci 2025; 683:926-933. [PMID: 39709767 DOI: 10.1016/j.jcis.2024.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O2) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O2 battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO2 intermediate, promoting formation of ultrathin nanosheet-like Li2O2 with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging. The mesoporous hollow nanospindles can provide abundant electron/ions transport channels to synergistically accelerate the formation and decomposition of discharge products. The Li-O2 battery based on Co@HCNs displays remarkably reduced discharge/charge polarization of 0.92 V, impressive rate performance, and stable operation for 250 cycles. This work will provide a new avenue to design advanced oxygen electrocatalysts for high-performance Li-O2 battery.
Collapse
Affiliation(s)
- Xueyun Yang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianhao Zhu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yingli Wang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Jiacun Wang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yajuan Li
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuanxiang Gu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Qingliang Lv
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
2
|
Diouf K, Diouf A, Dramé A, Guittard F, Darmanin T. Soft-Template Electropolymerization from Triphenylamine-Based Monomers: From Vertically Aligned Nanotubes to Nanomembranes. ChemistryOpen 2025:e202500050. [PMID: 40165736 DOI: 10.1002/open.202500050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
We report a bioinspired approach to tune surface nanostructures by soft-template electropolymerization in micellar condition. Monomers highly favoring π-stacking interactions are particularly interesting for depositing in one direction resulting in vertically aligned nanotubes. Here, for inducing very strong π-stacking interactions, a triphenylamine building block was selected and substituted by two substituents of different electronegativity (fluorine F and methoxy OMe). These synthons were di-substituted with various fully conjugated thiophene and carbazole derivatives. Here, all the monomers have high electrodeposition capacity except the monomers with thiophene in 3-position. Confirming previous works, electrochemical analyses in the electrodeposited films show the presence of monomers but with significant difference as a function of the used monomer. The surface structures are highly depending on the monomer structure while the depositions at constant potential lead to more ordered structures. With some of these monomers, densely packed nanotubes are created and their merger at high deposition charge, leading to nanomembranes. Their hydrophobicity and oleophobicity are also investigated and extremely various. Such materials could be used in the future in practical applications such as in oil/water separation membranes or in water-harvesting systems.
Collapse
Affiliation(s)
- Khady Diouf
- Université Cheikh Anta Diop, Faculté des Sciences et Techniques, Département de Chimie, B.P. 5005, Dakar, Sénégal
| | - Alioune Diouf
- Université Cheikh Anta Diop, Faculté des Sciences et Techniques, Département de Chimie, B.P. 5005, Dakar, Sénégal
| | - Abdoulaye Dramé
- Université Cheikh Anta Diop, Faculté des Sciences et Techniques, Département de Chimie, B.P. 5005, Dakar, Sénégal
| | | | | |
Collapse
|
3
|
Shi R, Jiao S, Yang Z, Bo Z, Jiao J, Zhao Y. Regulating Interfacial Wettability for Fast Mass Transfer in Rechargeable Metal-Based Batteries. ACS NANO 2025; 19:8462-8508. [PMID: 40009058 DOI: 10.1021/acsnano.4c17836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The interfacial wettability between electrodes and electrolytes could ensure sufficient physical contact and fast mass transfer at the gas-solid-liquid, solid-liquid, and solid-solid interfaces, which could improve the reaction kinetics and cycle stability of rechargeable metal-based batteries (RMBs). Herein, interfacial wettability engineering at multiphase interfaces is summarized from the electrolyte and electrode aspects to promote the interface reaction rate and durability of RMBs, which illustrates the revolution that is taking place in this field and thus provides inspiration for future developments in RMBs. Specifically, this review presents the principle of interfacial wettability at macro- and microscale and summarizes emerging applications concerning the interfacial wettability effect on mass transfer in RMBs. Moreover, deep insight into the future development of interfacial wettability is provided in the outlook. Therefore, this review not only provides insights into interfacial wettability engineering but also offers strategic guidance for wettability modification and optimization toward stable electrode-electrolyte interfaces for fast mass transfer in RMBs.
Collapse
Affiliation(s)
- Ruijuan Shi
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| | - Shilong Jiao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| | - Zirui Yang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| | - Zhihui Bo
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| | - Junrong Jiao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R China
| |
Collapse
|
4
|
Du D, Liu P, Tian G, Xu H, Wang X, Liu S, Fan F, Wang S, Wang C, Zeng C, Shu C. Robust oxygen adsorbent mediated oxygen redox reactions for high performance lithium-oxygen battery. J Colloid Interface Sci 2025; 678:570-577. [PMID: 39265329 DOI: 10.1016/j.jcis.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Lithium-oxygen batteries (LOBs) have been widely studied because of their ultra-high energy density (∼3500 Wh kg-1). However, the reversibility and stability of LOBs are greatly limited by the sluggish kinetics of oxygen reduction/evolution reactions (ORR/OER) and severely parasitic reactions on oxygen electrodes. Electrolyte in LOBs plays an important role in the transport of reactive oxygen species and Li+, which greatly affects the kinetics and reversibility of the charging and discharging processes of batteries. In this work, perfluorooctane (PFO) is used as the additive in 1.0 M LiTFSI/TEGDEM electrolyte for LOBs to regulate the kinetics of oxygen electrode reactions. Due to the strong adsorption ability of PE toward oxygen, the oxygen concentration inside the electrolyte is greatly increased after the addition of PE. In addition, the PE-added electrolyte also exhibits superior electrochemical stability and is capable of triggering solution-mediated Li2O2 growth pathway during the discharge process of the LOBs. Therefore, with the increased oxygen concentration and the optimized electrode/electrolyte interface, the ORR/OER kinetics on the oxygen electrode is significantly promoted, which enables the LOBs with excellent energy efficiency and cycling life. This work provides a new idea for the design of oxygen-rich and high-performance electrolyte for lithium-oxygen batteries.
Collapse
Affiliation(s)
- Dayue Du
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Pengfei Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Guilei Tian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Xinxiang Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Sheng Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Fengxia Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Shuhan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Chuan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Chenrui Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, China; State Key Laboratory of Geo-Hazard Prevention and Geo-Environment Protection, Chengdu University of Technology, Chengdu, China.
| |
Collapse
|
5
|
Yin Z, Xiong L, Su NQ. Beyond Catalysts: Exploring Discharge Product Growth and Intrinsic Overpotential in Lithium-Oxygen Batteries. J Chem Theory Comput 2024. [PMID: 39226434 DOI: 10.1021/acs.jctc.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The lithium-oxygen (Li-O2) battery, renowned for its exceptionally high theoretical energy density, is poised to revolutionize next-generation energy storage systems. However, its practical application depends on overcoming several challenges, particularly the high cathode overpotential, which significantly diminishes the battery's energy efficiency and durability. This study delves into the interactions at the cathode surface during oxygen reduction and evolution reactions (ORR/OER), extending the analysis beyond the initial reaction stages to encompass the extensive charge-discharge process. We introduce and define the concepts of intrinsic equilibrium potential and intrinsic overpotential, demonstrating that these critical parameters are predominantly influenced by the growth of discharge products, rather than the catalysts, thereby underscoring the inherent properties of the battery. This shift in focus from merely enhancing cathode catalysts to understanding and leveraging the intrinsic characteristics of the battery discharge process opens new avenues for optimizing and enhancing the performance of large-scale Li-O2 batteries. Furthermore, our findings indicate potential broader applications to other metal-oxygen systems, paving the way for the design of high-capacity, high-efficiency energy storage technologies.
Collapse
Affiliation(s)
- Zhengxuan Yin
- Center for Theoretical and Computational Chemistry, State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Lixin Xiong
- Center for Theoretical and Computational Chemistry, State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- Center for Theoretical and Computational Chemistry, State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Sun Z, Lin X, Wang C, Tan Y, Dou W, Hu A, Cui J, Fan J, Yuan R, Zheng M, Dong Q. Constructing an Interlaced Catalytic Surface via Fluorine-Doped Bimetallic Oxides for Oxygen Electrode Processes in Li-O 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404319. [PMID: 38806164 DOI: 10.1002/adma.202404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Lithium-oxygen (Li-O2) batteries, renowned for their high theoretical energy density, have garnered significant interest as prime candidates for future electric device development. However, their actual capacity is often unsatisfactory due to the passivation of active sites by solid-phase discharge products. Optimizing the growth and storage of these products is a crucial step in advancing Li-O2 batteries. Here, a fluorine-doped bimetallic cobalt-nickel oxide (CoNiO2- xFx/CC) with an interlaced catalytic surface (ICS) and a corncob-like structure is proposed as an oxygen electrode. Unlike conventional oxide electrodes with a "single adsorption catalytic mechanism," the ICS of CoNiO2- xFx/CC offers a "competitive adsorption catalytic mechanism," where oxygen sites facilitate oxygen conversion while fluorine sites contribute to the growth of Li2O2. This results in a change in Li2O2 morphology from a surface film to toroidal particles, effectively preventing the burial of active sites. Additionally, the unique open architecture aids in the capture and release of oxygen and the formation of well-contacted Li2O2/electrode interfaces, which benefits the complete decomposition of Li2O2 products. Consequently, the Li-O2 battery with a CoNiO2- xFx/CC cathode demonstrates a high specific capacity of up to 30923 mAh g-1 and a lifespan exceeding 580 cycles, surpassing most reported metal oxide-based cathodes.
Collapse
Affiliation(s)
- Zongqiang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaodong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
| | - Chutao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanyan Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenjie Dou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ajuan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiaqing Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingmin Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ruming Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingsen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
7
|
Wang WW, Yan H, Gu Y, Yan J, Mao BW. In Situ Electrochemical Atomic Force Microscopy: From Interfaces to Interphases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:103-126. [PMID: 38603469 DOI: 10.1146/annurev-anchem-061422-020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.
Collapse
Affiliation(s)
- Wei-Wei Wang
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Hao Yan
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Yu Gu
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Jiawei Yan
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Bing-Wei Mao
- 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China; ,
- 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| |
Collapse
|
8
|
Yu H, Liu D, Fu Z, Wang S, Zuo X, Feng X, Zhang Y. Dynamic Modulation of Li 2O 2 Growth in Li-O 2 Batteries through Regulating Oxygen Reduction Kinetics with Photo-Assisted Cathodes. Angew Chem Int Ed Engl 2024; 63:e202401272. [PMID: 38375744 DOI: 10.1002/anie.202401272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Widely acknowledged that the capacity of Li-O2 batteries (LOBs) should be strongly determined by growth behaviors of the discharge product of lithium peroxide (Li2O2) that follows both coexisting surface and solution pathways. However until now, it remains still challenging to achieve dynamic modulation on Li2O2 morphologies. Herein, the photo-responsive Au nanoparticles (NPs) supported on reduced oxide graphene (Au/rGO) have been utilized as cathode to manipulate oxygen reduction reaction (ORR) kinetics by aid of surface plasmon resonance (SPR) effects. Thus, we can experimentally reveal the importance of matching ORR kinetics with Li+ migration towards battery performance. Moreover, it is found that Li+ concentration polarization caused "sudden death" of LOBs is supposed to be just a form of suspended animation that could timely recover under irradiation. This work provides us an in-depth explanation on the working mechanism of LOBs from a kinetic perspective, offering valuable insights for the future battery design.
Collapse
Affiliation(s)
- Haohan Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zerui Fu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shu Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xintao Zuo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xilan Feng
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
9
|
Song LN, Zheng LJ, Wang XX, Kong DC, Wang YF, Wang Y, Wu JY, Sun Y, Xu JJ. Aprotic Lithium-Oxygen Batteries Based on Nonsolid Discharge Products. J Am Chem Soc 2024; 146:1305-1317. [PMID: 38169369 DOI: 10.1021/jacs.3c08656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Aprotic lithium-oxygen (Li-O2) batteries are considered to be a promising alternative option to lithium-ion batteries for high gravimetric energy storage devices. However, the sluggish electrochemical kinetics, the passivation, and the structural damage to the cathode caused by the solid discharge products have greatly hindered the practical application of Li-O2 batteries. Herein, the nonsolid-state discharge products of the off-stoichiometric Li1-xO2 in the electrolyte solutions are achieved by iridium (Ir) single-atom-based porous organic polymers (termed as Ir/AP-POP) as a homogeneous, soluble electrocatalyst for Li-O2 batteries. In particular, the numerous atomic active sites act as the main nucleation sites of O2-related discharge reactions, which are favorable to interacting with O2-/LiO2 intermediates in the electrolyte solutions, owing to the highly similar lattice-matching effect between the in situ-formed Ir3Li and LiO2, achieving a nonsolid LiO2 as the final discharge product in the electrolyte solutions for Li-O2 batteries. Consequently, the Li-O2 battery with a soluble Ir/AP-POP electrocatalyst exhibits an ultrahigh discharge capacity of 12.8 mAh, an ultralow overpotential of 0.03 V, and a long cyclic life of 700 h with the carbon cloth cathode. The manipulation of nonsolid discharge products in aprotic Li-O2 batteries breaks the traditional growth mode of Li2O2, bringing Li-O2 batteries closer to being a viable technology.
Collapse
Affiliation(s)
- Li-Na Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - De-Chen Kong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yi-Feng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jia-Yi Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Zuo F, Zhang H, Ding Y, Liu Y, Li Y, Liu H, Gu F, Li Q, Wang Y, Zhu Y, Li H, Yu G. Electrochemical interfacial catalysis in Co-based battery electrodes involving spin-polarized electron transfer. Proc Natl Acad Sci U S A 2023; 120:e2314362120. [PMID: 37983507 PMCID: PMC10691230 DOI: 10.1073/pnas.2314362120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023] Open
Abstract
Interfacial catalysis occurs ubiquitously in electrochemical systems, such as batteries, fuel cells, and photocatalytic devices. Frequently, in such a system, the electrode material evolves dynamically at different operating voltages, and this electrochemically driven transformation usually dictates the catalytic reactivity of the material and ultimately the electrochemical performance of the device. Despite the importance of the process, comprehension of the underlying structural and compositional evolutions of the electrode material with direct visualization and quantification is still a significant challenge. In this work, we demonstrate a protocol for studying the dynamic evolution of the electrode material under electrochemical processes by integrating microscopic and spectroscopic analyses, operando magnetometry techniques, and density functional theory calculations. The presented methodology provides a real-time picture of the chemical, physical, and electronic structures of the material and its link to the electrochemical performance. Using Co(OH)2 as a prototype battery electrode and by monitoring the Co metal center under different applied voltages, we show that before a well-known catalytic reaction proceeds, an interfacial storage process occurs at the metallic Co nanoparticles/LiOH interface due to injection of spin-polarized electrons. Subsequently, the metallic Co nanoparticles act as catalytic activation centers and promote LiOH decomposition by transferring these interfacially residing electrons. Most intriguingly, at the LiOH decomposition potential, electronic structure of the metallic Co nanoparticles involving spin-polarized electrons transfer has been shown to exhibit a dynamic variation. This work illustrates a viable approach to access key information inside interfacial catalytic processes and provides useful insights in controlling complex interfaces for wide-ranging electrochemical systems.
Collapse
Affiliation(s)
- Fengkai Zuo
- College of Physics, Qingdao University, Qingdao266071, China
| | - Hao Zhang
- College of Physics, Qingdao University, Qingdao266071, China
| | - Yu Ding
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Yongshuai Liu
- College of Physics, Qingdao University, Qingdao266071, China
| | - Yuhao Li
- College of Physics, Qingdao University, Qingdao266071, China
| | - Hengjun Liu
- College of Physics, Qingdao University, Qingdao266071, China
| | - Fangchao Gu
- College of Physics, Qingdao University, Qingdao266071, China
| | - Qiang Li
- College of Physics, Qingdao University, Qingdao266071, China
| | - Yaqun Wang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao266590, China
| | - Yue Zhu
- Max Planck Institute for Solid State Research, Stuttgart70569, Germany
| | - Hongsen Li
- College of Physics, Qingdao University, Qingdao266071, China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
11
|
Zheng LJ, Song LN, Wang XX, Liang S, Wang HF, Du XY, Xu JJ. Intrinsic Stress-strain in Barium Titanate Piezocatalysts Enabling Lithium-Oxygen Batteries with Low Overpotential and Long Life. Angew Chem Int Ed Engl 2023; 62:e202311739. [PMID: 37723129 DOI: 10.1002/anie.202311739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Rechargeable lithium-oxygen (Li-O2 ) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li2 O2 ) is employed as a microscopic pressure resource to induce the built-in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li+ ) transport during cycling. Piezopotential caused by the intrinsic stress-strain of solid Li2 O2 is capable of providing the driving force for the separation and transport of carriers, enhancing the Li+ transfer, and thus improving the redox reaction kinetics of Li-O2 batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress-strain transformation on the electrochemical reaction kinetics and Li+ interface transport for the Li-O2 batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li+ transport for battery system.
Collapse
Affiliation(s)
- Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Li-Na Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Shuang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Huan-Feng Wang
- College of Chemical and Food, Zhengzhou University of Technology, Zhengzhou, 450044, P. R. China
| | - Xing-Yuan Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
12
|
Xiong L, Su NQ, Fang WH. The Role of Self-Catalysis Induced by Co Doping in Nonaqueous Li-O 2 Batteries. J Phys Chem Lett 2023; 14:7526-7540. [PMID: 37584649 DOI: 10.1021/acs.jpclett.3c02041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
This work systematically studies the product self-catalysis of in situ electrochemical cobalt doping of Li2O2 and reveals its potential mechanism for improving the performance of lithium-oxygen (Li-O2) batteries. Theoretical calculations demonstrate that the discharge products contain substituted and interstitial Co impurities, which serve as active sites to promote the formation of Li3O4 crystallization, thus switching the nucleation mechanism from the main discharge product Li2O2 to Li3O4. This Co-doping behavior leads to the thermodynamically favorable and dynamically stable formation of Li3O4 crystals during the discharge process. Through systematic investigation of the structural, energetic, electronic, diffusive, and catalytic properties of the Co-doped Li2O2 and Li3O4 compounds, we found that Li3O4 has better charge/mass transport and a lower overpotential for the Li3O4 formation/decomposition reaction. Consequently, this work elucidates that Co doping provides a simple and effective approach for increasing the proportion of Li3O4, which can significantly improve the Li-O2 battery performance.
Collapse
Affiliation(s)
- Lixin Xiong
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wei-Hai Fang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Liu RZ, Shen ZZ, Wen R, Wan LJ. Recent advances in the application of scanning probe microscopy in interfacial electroanalytical chemistry. J Electroanal Chem (Lausanne) 2023; 938:117443. [DOI: 10.1016/j.jelechem.2023.117443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
14
|
Yan H, Wang WW, Wu TR, Gu Y, Li KX, Wu DY, Zheng M, Dong Q, Yan J, Mao BW. Morphology-Dictated Mechanism of Efficient Reaction Sites for Li 2O 2 Decomposition. J Am Chem Soc 2023. [PMID: 37216562 DOI: 10.1021/jacs.2c12267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the pursuit of a highly reversible lithium-oxygen (Li-O2) battery, control of reaction sites to maintain stable conversion between O2 and Li2O2 at the cathode side is imperatively desirable. However, the mechanism involving the reaction site during charging remains elusive, which, in turn, imposes challenges in recognition of the origin of overpotential. Herein, via combined investigations by in situ atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS), we propose a universal morphology-dictated mechanism of efficient reaction sites for Li2O2 decomposition. It is found that Li2O2 deposits with different morphologies share similar localized conductivities, much higher than that reported for bulk Li2O2, enabling the reaction site not only at the electrode/Li2O2/electrolyte interface but also at the Li2O2/electrolyte interface. However, while the mass transport process is more enhanced at the former, the charge-transfer resistance at the latter is sensitively related to the surface structure and thus the reactivity of the Li2O2 deposit. Consequently, for compact disk-like deposits, the electrode/Li2O2/electrolyte interface serves as the dominant decomposition site, which causes premature departure of Li2O2 and loss of reversibility; on the contrary, for porous flower-like and film-like Li2O2 deposits bearing a larger surface area and richer surface-active structures, both the interfaces are efficient for decomposition without premature departure of the deposit so that the overpotential arises primarily from the sluggish oxidation kinetics and the decomposition is more reversible. The present work provides instructive insights into the understanding of the mechanism of reaction sites during the charge process, which offers guidance for the design of reversible Li-O2 batteries.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tai-Rui Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai-Xuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - MingSen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Qiu Q, Long J, Yao P, Wang J, Li X, Pan ZZ, Zhao Y, Li Y. Cathode electrocatalyst in aprotic lithium oxygen (Li-O2) battery: A literature survey. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
16
|
Inoue KI, Mao J, Okamoto R, Shibata Y, Song W, Ye S. Development of Line-Detected UV-Vis Absorption Microscope and Its Application to Quantitative Evaluation of Lithium Surface Reactivity. Anal Chem 2023; 95:4550-4555. [PMID: 36826446 DOI: 10.1021/acs.analchem.2c05759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Electrochemical reactions in practical batteries occur in confined environments where anode and cathode electrodes are separated only by a thin separator. Therefore, their electrochemical behaviors may differ from those obtained in the conventional experimental cells, where the two electrodes (working and counter electrodes) are largely separated compared to the batteries. The spatial and temporal distributions of the chemical species in the vicinity of each electrode are highly expected to be determined for quantitatively understanding the phenomena in confined environments. In the present study, we developed a line-detected UV-vis absorption microscope that simultaneously measures space-resolved UV-vis absorption spectra. This novel technique has been successfully applied to evaluate the reactivities of the highly reactive lithium (Li) surfaces in organic electrolyte solutions under in situ conditions. The quantitative evaluations of the dissolution rate of Li and the diffusion constant of the product were successfully realized by analyzing the space- and time-resolved absorption spectra based on Fick's law of diffusion. The microscopic technique is expected to open the door to understanding the fundamental electrochemistry in batteries.
Collapse
Affiliation(s)
- Ken-Ichi Inoue
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Jianxin Mao
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Rika Okamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
17
|
Gao Y, Zhou W, Wen Z, Dou R, Liu X. Meso-scale Simulation of Li–O2 Battery Discharge Process by an Improved Lattice Boltzmann Method. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Zhao J, Lian J, Zhao Z, Wang X, Zhang J. A Review of In-Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions. NANO-MICRO LETTERS 2022; 15:19. [PMID: 36580130 PMCID: PMC9800687 DOI: 10.1007/s40820-022-00984-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 06/03/2023]
Abstract
Electrocatalytic oxygen reduction reaction (ORR) is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal-O2/air batteries, etc. However, the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process, and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction. This makes them difficult to be accurately captured, making the identification of ORR active sites and the elucidation of ORR mechanisms difficult. Thus, it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR. This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts. Specifically, the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized, such as phase, valence, electronic transfer, coordination, and spin states varies. In-situ revelation of intermediate adsorption/desorption behavior, and the real-time monitoring of the product nucleation, growth, and reconstruction evolution are equally emphasized in the discussion. Other interference factors, as well as in-situ signal assignment with the aid of theoretical calculations, are also covered. Finally, some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.
Collapse
Affiliation(s)
- Jinyu Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Jie Lian
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Zhenxin Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Xiaomin Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Jiujun Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
19
|
Tong Z, Lv C, Zhou Y, Zhang PF, Xiang CC, Li ZG, Wang Z, Liu ZK, Li JT, Sun SG. Highly Dispersed Ru-Co Nanoparticles Interfaced With Nitrogen-Doped Carbon Polyhedron for High Efficiency Reversible Li-O 2 Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204836. [PMID: 36251775 DOI: 10.1002/smll.202204836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The lithium-oxygen (Li-O2 ) battery with high energy density of 3860 Wh kg-1 represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li-O2 battery. Herein, Ru-modified nitrogen-doped porous carbon-encapsulated Co nanoparticles (Ru/Co@CoNx -C) are synthesized through reduction of Ru on metal-organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co-Nx sites and high specific surface area (353 m2 g-1 ) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoNx -C can regulate the growth of Li2 O2 to improve reversibility of Li-O2 batteries. Li-O2 batteries with Ru/Co@CoNx -C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g-1 ). Furthermore, pouch-type Li-O2 batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoNx -C catalyst's great application potential in Li-O2 batteries.
Collapse
Affiliation(s)
- Zhen Tong
- College of Energy, Xiamen University, Xiamen, 361005, P. R. China
| | - Chao Lv
- College of Energy, Xiamen University, Xiamen, 361005, P. R. China
| | - Yao Zhou
- College of Energy, Xiamen University, Xiamen, 361005, P. R. China
| | - Peng-Fang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | | | - Zhen-Gang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhen Wang
- College of Energy, Xiamen University, Xiamen, 361005, P. R. China
| | - Zong-Kui Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun-Tao Li
- College of Energy, Xiamen University, Xiamen, 361005, P. R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
20
|
Li Y, Qin J, Ding Y, Ma J, Das P, Liu H, Wu ZS, Bao X. Two-Dimensional Mn 3O 4 Nanosheets with Dominant (101) Crystal Planes on Graphene as Efficient Oxygen Catalysts for Ultrahigh Capacity and Long-Life Li–O 2 Batteries. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuejiao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing100049, P. R. China
| | - Jieqiong Qin
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou450002, P. R. China
| | - Yajun Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing100049, P. R. China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing100049, P. R. China
| | - Hanqing Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing100049, P. R. China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
| |
Collapse
|
21
|
Synthesis of C/MoS2-CoMo2S4 for application in Li-O2 batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Li F, Li ML, Wang HF, Wang XX, Zheng LJ, Guan DH, Chang LM, Xu JJ, Wang Y. Oxygen Vacancy-Mediated Growth of Amorphous Discharge Products toward an Ultrawide Band Light-Assisted Li-O 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107826. [PMID: 35266208 DOI: 10.1002/adma.202107826] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Photoassisted electrochemical reaction is regarded as an effective approach to reduce the overpotential of lithium-oxygen (Li-O2 ) batteries. However, the achievement of both broadband absorption and long term battery cycling stability are still a formidable challenge. Herein, an oxygen vacancy-mediated fast kinetics for a photoassisted Li-O2 system is developed with a silver/bismuth molybdate (Ag/Bi2 MoO6 ) hybrid cathode. The cathode can offer both double advantages for light absorption covering UV to visible region and excellent electrochemical activity for O2 . Upon discharging, the photoexcited electrons from Ag nanoplate based on the localized surface plasmon resonance (LSPR) are injected into the oxygen vacancy in Bi2 MoO6 . The fast oxygen reaction kinetics generate the amorphous Li2 O2 , and the discharge plateau is improved to 3.05 V. Upon charging, the photoexcited holes are capable to decompose amorphous Li2 O2 promptly, yielding a very low charge plateau of 3.25 V. A first cycle round-trip efficiency is 93.8% and retention of 70% over 500 h, which is the longest cycle life ever reported in photoassisted Li-O2 batteries. This work offers a general and reliable strategy for boosting the electrochemical kinetics by tailoring the crystalline of Li2 O2 with wide-band light.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ma-Lin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Huan-Feng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- College of Chemical and Food, Zhengzhou University of Technology, Zhengzhou, 450044, P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - De-Hui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Li-Min Chang
- Key Laboratory of Preparation and Applications of Environmentally Friendly Material of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Yu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Zhou C, Shen ZZ, Wen R, Wan LJ. Direct Visualization of Dynamic Mobility of Li 2O 2 in Li-O 2 Batteries: A Differential Interference Microscopy Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5395-5401. [PMID: 35068138 DOI: 10.1021/acsami.1c22004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The reversibility and the discharge/charge performance in nonaqueous lithium-oxygen (Li-O2) batteries are critically dependent on the kinetics of interfacial reactions. However, the interfacial reaction dynamic behaviors, especially the quantitative analysis, are still far from deep understanding. Using the method of laser confocal microscopy combined with differential interference contrast microscopy (LCM-DIM), we monitored the Li-O2 interfacial reaction and in situ traced the Li2O2 migration processes promoted by the solution catalyst. Different dynamic behaviors exist when regulating the concentration of the redox mediator. Quantitative analysis of the discharged Li2O2 particles shows high mobility at the early discharge stage and decayed motion in the subsequent process, indicating the solution-mediated pathway participating Li2O2 formation in the low-concentration redox mediator addition, while particles/aggregates confined into the amorphous film demonstrate simultaneous solution and surface route-mediated pathway participation in the high-concentration case. These distinctive observations of Li2O2 formation and decomposition processes present the advantage of LCM-DIM to fundamentally understand the dynamic evolution in Li-O2 batteries.
Collapse
Affiliation(s)
- Chi Zhou
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhen-Zhen Shen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rui Wen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
24
|
Li D, Liang J, Robertson SJ, Chen Y, Wang N, Shao M, Shi Z. Heterogeneous Bimetallic Organic Coordination Polymer-Derived Co/Fe@NC Bifunctional Catalysts for Rechargeable Li-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5459-5467. [PMID: 35075893 DOI: 10.1021/acsami.1c22643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Li-O2 battery has attracted substantial attention due to its high theoretical energy density. In particular, high-efficiency oxygen catalysts are very important for the design of practical Li-O2 batteries. Herein, we have synthesized heterogeneous crystalline-coated partially crystalline bimetallic organic coordination polymers (PC@C-BMOCPs), which are further pyrolyzed to obtain Co- and Fe-based nanoparticles embedded within rodlike N-doped carbon (Co/Fe@NC) as a bifunctional oxygen reduction reaction/oxygen evolution reaction (ORR/OER) catalyst used in the Li-O2 battery. Owing to excellent ORR/OER catalytic ability, the Co/Fe@NC bifunctional catalyst exhibits an efficient reversible reaction between O2 and Li2O2. Additionally, a large number of mesoporous channels are present in the core-shell Co/Fe@NC nanoparticles. These channels not only promote the diffusion of Li+ and O2, but also create ample room to store insoluble discharge product Li2O2. The Li-O2 batteries utilizing the bifunctional Co/Fe@NC oxygen electrode exhibit a large capacity of 17,326 mAh g-1, a long cycling life of more than 250 cycles, and excellent reversibility. This work provides a universally applicable strategy for designing nonnoble metal ORR/OER catalysts with excellent electrochemical performance for metal-air batteries.
Collapse
Affiliation(s)
- Dongdong Li
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianwen Liang
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Stuart J Robertson
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yingtong Chen
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Naiguang Wang
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Guangzhou HKUST, HKUST-Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Zhicong Shi
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
25
|
Zhang P, Han B, Yang X, Zou Y, Lu X, Liu X, Zhu Y, Wu D, Shen S, Li L, Zhao Y, Francisco JS, Gu M. Revealing the Intrinsic Atomic Structure and Chemistry of Amorphous LiO 2-Containing Products in Li-O 2 Batteries Using Cryogenic Electron Microscopy. J Am Chem Soc 2022; 144:2129-2136. [PMID: 35075901 DOI: 10.1021/jacs.1c10146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aprotic lithium-oxygen batteries (LOBs) are promising energy storage systems characterized by ultrahigh theoretical energy density. Extensive research has been devoted to this battery technology, yet the detailed operational mechanisms involved, particularly unambiguous identification of various discharge products and their specific distributions, are still unknown or are subjects of controversy. This is partly because of the intrinsic complexity of the battery chemistry but also because of the lack of atomic-level insight into the oxygen electrodes acquired via reliable techniques. In the current study, it is demonstrated that electron beam irradiation could induce crystallization of amorphous discharge products. Cryogenic conditions and a low beam dosage have to be used for reliable transmission electron microscopy (TEM) characterization. High-resolution cryo-TEM and electron energy loss spectroscopy (EELS) analysis of toroidal discharge particles unambiguously identified the discharge products as a dominating amorphous LiO2 phase with only a small amount of nanocrystalline Li2O2 islands dispersed in it. In addition, uniform mixing of carbon-containing byproducts is identified in the discharge particles with cryo-EELS, which leads to a slightly higher charging potential. The discharge products can be reversibly cycled, with no visible residue after full recharge. We believe that the amorphous superoxide dominating discharge particles can lead researchers to reconsider the chemistry of LOBs and pay special attention to exclude beam-induced artifacts in traditional TEM characterizations.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.,Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Bing Han
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.,Department of Nano Engineering, University of California San Diego, La Jolla, California 92093-0448, United States
| | - Xuming Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yucheng Zou
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xinzhen Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Yuanmin Zhu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.,School of Material Science and Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Duojie Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shaocheng Shen
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas 77251, United States
| | - Lei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
26
|
Liu L, Liu Y, Wang C, Peng X, Fang W, Hou Y, Wang J, Ye J, Wu Y. Li 2 O 2 Formation Electrochemistry and Its Influence on Oxygen Reduction/Evolution Reaction Kinetics in Aprotic Li-O 2 Batteries. SMALL METHODS 2022; 6:e2101280. [PMID: 35041287 DOI: 10.1002/smtd.202101280] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Aprotic Li-O2 batteries are regarded as the most promising technology to resolve the energy crisis in the near future because of its high theoretical specific energy. The key electrochemistry of a nonaqueous Li-O2 battery highly relies on the formation of Li2 O2 during discharge and its reversible decomposition during charge. The properties of Li2 O2 and its formation mechanisms are of high significance in influencing the battery performance. This review article demonstrates the latest progress in understanding the Li2 O2 electrochemistry and the recent advances in regulating the Li2 O2 growth pathway. The first part of this review elaborates the Li2 O2 formation mechanism and its relationship with the oxygen reduction reaction/oxygen evolution reaction electrochemistry. The following part discusses how the cycling parameters, e.g., current density and discharge depth, influence the Li2 O2 morphology. A comprehensive summary of recent strategies in tailoring Li2 O2 formation including rational design of cathode structure, certain catalyst, and surface engineering is demonstrated. The influence resulted from the electrolyte, e.g., salt, solvent, and some additives on Li2 O2 growth pathway, is finally discussed. Further prospects of the ways in making advanced Li-O2 batteries by control of favorable Li2 O2 formation are highlighted, which are valuable for practical construction of aprotic lithium-oxygen batteries.
Collapse
Affiliation(s)
- Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihao Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Chen Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Xiaohui Peng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuyang Hou
- CSIRO Mineral Resources, Clayton, VIC, 3168, Australia
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, P. R. China
| | - Jilei Ye
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| |
Collapse
|
27
|
Tian J, Guo H, Wan J, Liu G, Yan H, Wen R, Wan L. In Situ/ Operando Advances of Electrode Processes in Solid-state Lithium Batteries. ACTA CHIMICA SINICA 2021; 79:1197. [DOI: 10.6023/a21060255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|