1
|
Scott NW, Chirila P, Horbaczewskyj CS, Slack ED, Whitwood AC, Fairlamb IJS. Catalyst Activation and Speciation Involving DyadPalladate Precatalysts in Suzuki-Miyaura and Buchwald-Hartwig Cross-Couplings. Organometallics 2025; 44:654-664. [PMID: 40083950 PMCID: PMC11898177 DOI: 10.1021/acs.organomet.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
Understanding mechanisms underpinning Pd precatalyst activation and formation of active species is important in maximizing catalyst activity and lifetime. DyadPalladate precatalysts, represented by the general formula [R3PH+]2[Pd2Cl6]2- (R3P = tertiary alkylphosphine/arylphosphines), have recently emerged as sustainable, active Pd precatalysts for cross-couplings (e.g., Suzuki-Miyaura {SMCC} and Buchwald-Hartwig aryl amination {BHA}). This study investigates the activation of the [HXPhos]2[Pd2Cl6] 1, as a model precatalyst from the DyadPalladate class, against BHA and SMCC reactions. It was found that BHA and SMCC reactions reached the same active Pd0 catalyst, [Pd0(XPhos)2]. This species is generated efficiently through a reductive activation step involving a dual base/nucleophile chemical trigger. However, the mechanistic path of each is somewhat different based on the selected nucleophile. The active Pd complex participates in oxidative addition with aryl halides, the first committed step in many cross-coupling reactions. The activation pathway and catalytic efficiency of [HXPhos]2[Pd2Cl6] 1 were compared with those of known PdII precatalysts, possessing the XPhos ligand, through both stoichiometric and catalytic studies. Investigating the activation triggers and characterizing the active Pd0 catalyst, under catalytically relevant conditions, provide valuable insight into future catalyst design, targeting optimal efficiency in specific reactions, i.e., knowing that the precatalyst has been fully activated.
Collapse
Affiliation(s)
- Neil W.
J. Scott
- Department
of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| | - Paula Chirila
- Johnson
Matthey PLC, 28 Cambridge Science Park, Milton Road, Cambridge CB4 0FP, United
Kingdom
| | | | - Eric D. Slack
- Johnson
Matthey, 2001 Nolte Drive, West Deptford, New Jersey 08066, United States
| | - Adrian C. Whitwood
- Department
of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| | - Ian J. S. Fairlamb
- Department
of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| |
Collapse
|
2
|
Yin Y, Xiao Y, Yang X, Li H, Du J, Duan W, Yu L. Palladium-catalyzed N-arylation of (hetero)aryl chlorides with pyrroles and their analogues. Org Biomol Chem 2025; 23:1581-1587. [PMID: 39760244 DOI: 10.1039/d4ob01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We present a mild and efficient method for the arylation of N-H heteroarenes using a low-loading Pd/keYPhos catalyst (0.8 mol%). This approach employs inexpensive and structurally diverse aryl chlorides as electrophiles in reactions with indoles, pyrroles, and carbazole, enabling the construction of a wide range of N-arylated products. The method exhibits excellent functional group tolerance and is suitable for gram-scale synthesis. Furthermore, the relatively inert Ar-Cl bond allows for late-stage functionalization of pharmaceuticals and stepwise coupling reactions, providing a complementary strategy for the N-arylation of N-H heteroarenes.
Collapse
Affiliation(s)
- Ying Yin
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Yuxuan Xiao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Xun Yang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Haiyan Li
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Jiahui Du
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| | - Lin Yu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China.
| |
Collapse
|
3
|
Raguram ER, Dahl JC, Jensen KF, Buchwald SL. Kinetic Modeling Enables Understanding of Off-Cycle Processes in Pd-Catalyzed Amination of Five-Membered Heteroaryl Halides. J Am Chem Soc 2024; 146:33035-33047. [PMID: 39566015 PMCID: PMC11906019 DOI: 10.1021/jacs.4c10488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The mechanism of Pd-catalyzed amination of five-membered heteroaryl halides was investigated by integrating experimental kinetic analysis with kinetic modeling through predictive testing and likelihood ratio analysis, revealing an atypical productive coupling pathway and multiple off-cycle events. The GPhos-supported Pd catalyst, along with the moderate-strength base NaOTMS, was previously found to promote efficient coupling between five-membered heteroaryl halides and secondary amines. However, slight deviations from the optimal concentration, temperature, and/or solvent resulted in significantly lower yields, contrary to typical reaction optimization trends. We found that the coupling of 4-bromothiazole with piperidine proceeds through an uncommon mechanism in which the NaOTMS base, rather than the amine, binds first to the oxidative addition complex; the resulting OTMS-bound Pd species is the resting state. Formation of the Pd-amido complex via base/amine exchange was identified as the turnover-limiting step, unlike other reported catalyst systems for which reductive elimination is turnover-limiting. We determined that the amine-bound Pd complex, usually an on-cycle intermediate, is instead a reversibly generated off-cycle species, and that base-mediated decomposition of 4-bromothiazole is the primary irreversible catalyst deactivation pathway. Predictive testing and kinetic modeling were key to the identification of these off-cycle processes, providing insight into minor mechanistic pathways that are difficult to observe experimentally. Collectively, this report reveals the unique enabling features of the Pd-GPhos/NaOTMS system, implementing mechanistic insights to improve the yields of particularly challenging coupling reactions. Moreover, these findings highlight the utility of applying predictive tests to kinetic models for the rapid evaluation of mechanistic possibilities in small-molecule catalytic systems.
Collapse
Affiliation(s)
- Elaine Reichert Raguram
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jakob C Dahl
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Iyer KS, Dismuke Rodriguez KB, Lammert RM, Yirak JR, Saunders JM, Kavthe RD, Aue DH, Lipshutz BH. Rapid Aminations of Functionalized Aryl Fluorosulfates in Water. Angew Chem Int Ed Engl 2024; 63:e202411295. [PMID: 39034288 DOI: 10.1002/anie.202411295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Aryl fluorosulfates of varying complexities have been used in amination reactions in water using a new Pd oxidative addition complex (OAC-1) developed specifically to match the needs of the fine chemicals industry, not only in terms of functional group tolerance, but also reflecting time considerations associated with these important C-N couplings. Also especially noteworthy is that they replace both PFAS-related triflates and nonaflates, which are today out of favor due to recent government regulations. The new complex based on the BippyPhos ligand is used at low loadings and under aqueous micellar conditions. Moreover, it is easily prepared and stable to long term storage. DFT calculations on the OAC precatalyst compare well with the X-ray structure of the crystals with π-complexation to the aromatic system of the ligand and also confirm the NMR data showing a mixture of conformers in solution that differ from the X-ray structure in rotation of the phenyl and t-butyl ligand substituents. An extensive variety of coupling partners, including pharmaceutically relevant APIs, readily participate under mild and environmentally responsible reaction conditions.
Collapse
Affiliation(s)
- Karthik S Iyer
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | - Robert M Lammert
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Jordan R Yirak
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - John M Saunders
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Rahul D Kavthe
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Donald H Aue
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Arango-Daza JC, Cabrero-Antonino JR, Adam R. A General and Highly Versatile Heterogeneous Pd-Catalyzed Oxidative Aminocarbonylation of Alkynes with Aromatic and Aliphatic Amines. CHEMSUSCHEM 2024; 17:e202400331. [PMID: 38695852 DOI: 10.1002/cssc.202400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Indexed: 06/12/2024]
Abstract
An efficient heterogeneous catalytic system for the oxidative aminocarbonylation of alkynes and amines in the presence of CO/O2 to afford substituted propiolamides has been developed. The active nanocatalyst, [Pd/Mg3Al-LDH]-300(D), is composed by Pd nanoaggregates (2-3 nm average particle size) stabilized over a partially dehydrated [Mg3Al-LDH] matrix. The methodology has resulted widely applicable, being the first catalytic system, either homogeneous or heterogeneous, able to activate not only aliphatic amines but also poorly-nucleophilic aromatic amines. In fact, >60 substituted propiolamides have been synthesized in good to excellent isolated yields through this methodology, being 27 novel compounds. An important characterization effort (XRD, 27Al MAS NMR, TGA, TPD-CO2, BET area, XPS, HAADF-HRSTEM and HRTEM) and optimization of the synthesis conditions of the optimal catalyst has been performed. This study, together with a series of kinetic and mechanistic essays, indicates that the optimal catalyst is composed by Pd(0) species stabilized in a partially dehydrated/dehydroxylated LDH material with a Mg/Al molar ratio of 3 and a small crystallite size. All the experimental data indicates that the in situ formation of [PdI2] active species in the material surface together with the presence of a matrix with the optimal acid/base properties are key aspects of this process.
Collapse
Affiliation(s)
- Juan Camilo Arango-Daza
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
| | - Jose R Cabrero-Antonino
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
| | - Rosa Adam
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
6
|
Sujansky SJ, Hoteling GA, Bandar JS. A strategy for the controllable generation of organic superbases from benchtop-stable salts. Chem Sci 2024; 15:10018-10026. [PMID: 38966380 PMCID: PMC11220602 DOI: 10.1039/d4sc02524e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Organic superbases are a distinct class of strong base that enable numerous modern reaction applications. Despite their great synthetic potential, widespread use and study of superbases are limited by their air sensitivity and difficult preparation. To address this, we report air-stable carboxylate salts of BTPP and P2-t-Bu phosphazene superbases that, when added to solution with an epoxide, spontaneously generate freebase. These systems function as effective precatalysts and stoichiometric prereagents for superbase-promoted addition, substitution and polymerization reactions. In addition to improving the synthesis, shelf stability, handling and recycling of phosphazenes, this approach enables precise regulation of the rate of base generation in situ. The activation strategy effectively mimics manual slow addition techniques, allowing for control over a reaction's rate or induction period and improvement of reactions that require strong base but are also sensitive to its presence, such as Pd-catalyzed coupling reactions.
Collapse
Affiliation(s)
- Stephen J Sujansky
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Garrett A Hoteling
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
7
|
Waddell PM, Tian L, Scavuzzo AR, Venigalla L, Scholes GD, Carrow BP. Visible light-induced palladium-carbon bond weakening in catalytically relevant T-shaped complexes. Chem Sci 2023; 14:14217-14228. [PMID: 38098701 PMCID: PMC10717500 DOI: 10.1039/d3sc02588h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Triggering one-electron redox processes during palladium catalysis holds the potential to unlock new reaction mechanisms and synthetic methods not previously accessible in the typical two-electron reaction manifolds that dominate palladium catalysis. We report that T-shaped organopalladium(ii) complexes coordinated by a bulky monophosphine, a class of organometallic intermediate featured in a range of contemporary catalytic reactions, undergo blue light-promoted bond weakening leading to mild and efficient homolytic cleavage of strong Pd(ii)-C(sp3) bonds under ambient conditions. The origin of light-triggered radical formation in these systems, which lack an obvious ligand-based chromophore (i.e., π-systems), was investigated using a combination of DFT calculations, photoactinometry, and transient absorption spectroscopy. The available data suggest T-shaped organopalladium(ii) complexes manifest unusual blue light-accessible Pd-to-C(sp3) transition. The quantum efficiency and excited state lifetime of this process were unexpectedly superior compared to a prototypical (α-diimine)Pd(ii) complex featuring a low-lying, ligand-centered LUMO (π*). These results suggest coordinatively-unsaturated organopalladium(ii) compounds, catalysts in myriad catalytic processes, have untapped potential for one-electron reactivity under visible light excitation.
Collapse
Affiliation(s)
- Peter M Waddell
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Lei Tian
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | | | - Lalu Venigalla
- Department of Chemistry, University of Houston Houston TX 77204 USA
| | - Gregory D Scholes
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Brad P Carrow
- Department of Chemistry, University of Houston Houston TX 77204 USA
| |
Collapse
|
8
|
Ouyang JS, Zhang X, Pan B, Zou H, Chan ASC, Qiu L. Solvent-Free Buchwald-Hartwig Amination of Heteroaryl Chlorides by N-Heterocyclic Carbene-Palladium Complex (SIPr) Ph2Pd(cin)Cl at Room Temperature. Org Lett 2023; 25:7491-7496. [PMID: 37816042 DOI: 10.1021/acs.orglett.3c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Using the robust N-heterocyclic carbene-palladium complex (SIPr)Ph2Pd(cin)Cl, a highly efficient and easy-to-operate method has been developed at room temperature for the solvent-free Buchwald-Hartwig amination of heteroaryl chlorides with various amines. The amount of catalyst can be as low as 0.05 wt %. The system was demonstrated on 47 substrates and successfully applied to the synthesis of commercial pharmaceuticals and candidate drugs with high yields. Furthermore, the protocol can be used to prepare aniline derivatives on a multigram scale without yield loss.
Collapse
Affiliation(s)
- Jia-Sheng Ouyang
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Panyu, Guangzhou 510006, China
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xinhuan Zhang
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Panyu, Guangzhou 510006, China
| | - Bendu Pan
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Panyu, Guangzhou 510006, China
| | - Haobin Zou
- Guangdong TONESET Science & Technology Co., Ltd, No. 63 Chuangqi Road, Guangzhou 511447, China
| | - Albert S C Chan
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Panyu, Guangzhou 510006, China
| | - Liqin Qiu
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Panyu, Guangzhou 510006, China
| |
Collapse
|
9
|
Monti A, López-Serrano J, Prieto A, Nicasio MC. Broad-Scope Amination of Aryl Sulfamates Catalyzed by a Palladium Phosphine Complex. ACS Catal 2023; 13:10945-10952. [PMID: 37614522 PMCID: PMC10443792 DOI: 10.1021/acscatal.3c03166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Among phenol-derived electrophiles, aryl sulfamates are attractive substrates since they can be employed as directing groups for C-H functionalization prior to catalysis. However, their use in C-N coupling is limited only to Ni catalysis. Here, we describe a Pd-based catalyst with a broad scope for the amination of aryl sulfamates. We show that the N-methyl-2-aminobiphenyl palladacycle supported by the PCyp2ArXyl2 ligand (Cyp = cyclopentyl; ArXyl2 = 2,6-bis(2,6-dimethylphenyl)phenyl) efficiently catalyzes the C-N coupling of aryl sulfamates with a variety of nitrogen nucleophiles, including anilines, primary and secondary alkyl amines, heteroaryl amines, N-heterocycles, and primary amides. DFT calculations support that the oxidative addition of the aryl sulfamate is the rate-determining step. The C-N coupling takes place through a cationic pathway in the polar protic medium.
Collapse
Affiliation(s)
- Andrea Monti
- Departamento
de Química Inorgánica, Universidad
de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| | - Joaquín López-Serrano
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación Química Avanzada
(ORFEO-CINQA), Universidad de Sevilla and
CSIC, 41092 Sevilla, Spain
| | - Auxiliadora Prieto
- Laboratorio
de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro
de Investigación en Química Sostenible and Departamento
de Química, Universidad de Huelva, Campus de El Carmen s/n, 21007 Huelva, Spain
| | - M. Carmen Nicasio
- Departamento
de Química Inorgánica, Universidad
de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| |
Collapse
|
10
|
Debnath B, Sarkar T, Karjee P, Purkayastha SK, Guha AK, Punniyamurthy T. Palladium-Catalyzed Annulative Coupling of Spirovinylcyclopropyl Oxindoles with p-Quinone Methides. J Org Chem 2023. [PMID: 37437136 DOI: 10.1021/acs.joc.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Pd-catalyzed annulative coupling of spirovinylcyclopropyl oxindoles with p-quinone methides has been accomplished via cascade carbon-carbon bond formation to afford bis-spirooxindole scaffolds. The mild reaction conditions, diastereoselectivity, functional group diversity, post-synthetic transformations, and mechanistic studies using DFT calculations are the important practical features.
Collapse
Affiliation(s)
- Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Guwahati 781001, India
| | | |
Collapse
|
11
|
Firsan S, Sivakumar V, Colacot TJ. Emerging Trends in Cross-Coupling: Twelve-Electron-Based L 1Pd(0) Catalysts, Their Mechanism of Action, and Selected Applications. Chem Rev 2022; 122:16983-17027. [PMID: 36190916 PMCID: PMC9756297 DOI: 10.1021/acs.chemrev.2c00204] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Monoligated palladium(0) species, L1Pd(0), have emerged as the most active catalytic species in the cross-coupling cycle. Today, there are methods available to generate the highly active but unstable L1Pd(0) catalysts from stable precatalysts. While the size of the ligand plays an important role in the formation of L1Pd(0) during in situ catalysis, the latter can be precisely generated from the precatalyst by various technologies. Computational, kinetic, and experimental studies indicate that all three steps in the catalytic cycle─oxidative addition, transmetalation, and reductive elimination─contain monoligated Pd. The synthesis of precatalysts, their mode of activation, application studies in model systems, as well as in industry are discussed. Ligand parametrization and AI based data science can potentially help predict the facile formation of L1Pd(0) species.
Collapse
Affiliation(s)
- Sharbil
J. Firsan
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| | - Vilvanathan Sivakumar
- Merck
Life Science Pvt Ltd, No-12, Bommasandra-Jigani Link Road, Industrial Area, Bangalore560100, India
| | - Thomas J. Colacot
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| |
Collapse
|
12
|
Fordham JM, Kollmus P, Cavegn M, Schneider R, Santagostino M. A "Pool and Split" Approach to the Optimization of Challenging Pd-Catalyzed C-N Cross-Coupling Reactions. J Org Chem 2022; 87:4400-4414. [PMID: 35263990 DOI: 10.1021/acs.joc.2c00104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A screening method for the rapid identification of catalytic conditions for Pd-catalyzed C-N cross-coupling reactions is reported. The strategy evaluates mixtures of precatalysts, ligands, and bases to identify productive conditions that are subsequently optimized through two deconvolution steps, which uncover the active catalyst and identify the optimal solvent and base for the catalytic system. The efficacy of this approach was demonstrated through application to a previously reported reaction, whereby both the literature conditions and additional solutions were retrieved. The same approach to Ni-catalyzed C-N cross-coupling was investigated in parallel but was found to be less successful due to limited activity of the evaluated reagent combinations. Finally, the utility of this method was showcased by identifying effective conditions for the Pd-catalyzed cross-coupling of complex molecules, which not only revealed nonobvious solutions for the processes under evaluation but also resulted in the discovery of new chemical reactions.
Collapse
Affiliation(s)
- James M Fordham
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Philipp Kollmus
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Monika Cavegn
- Analytical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Regina Schneider
- Analytical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Marco Santagostino
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| |
Collapse
|
13
|
Feng L, Yao J, Yu L, Duan WG. Palladium-catalyzed denitrative N-arylation of nitroarenes with pyrroles, indoles, and carbazole. Org Chem Front 2022. [DOI: 10.1039/d2qo00010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an efficient palladium-catalyzed denitrative N-arylation via cross-coupling of N–H heteroarenes with nitroarenes, one of the most inexpensive and fundamental feedstocks in the chemical industry. A variety of...
Collapse
|
14
|
Steinsoultz P, Bailly A, Wagner P, Oliva E, Schmitt M, Grimaud L, Bihel F. In Situ Formation of Cationic π-Allylpalladium Precatalysts in Alcoholic Solvents: Application to C–N Bond Formation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Philippe Steinsoultz
- Laboratoire d’Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
- Médalis, Institut du Médicament de Strasbourg (IMS), Université de Strasbourg, 67401 Illkirch-Graffenstaden, France
| | - Aurélien Bailly
- Laboratoire de Biomolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Patrick Wagner
- Laboratoire d’Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
- Médalis, Institut du Médicament de Strasbourg (IMS), Université de Strasbourg, 67401 Illkirch-Graffenstaden, France
| | - Estefania Oliva
- Plateforme d’Analyse Chimique de Strasbourg-Illkirch, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Martine Schmitt
- Laboratoire d’Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
- Médalis, Institut du Médicament de Strasbourg (IMS), Université de Strasbourg, 67401 Illkirch-Graffenstaden, France
| | - Laurence Grimaud
- Laboratoire de Biomolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Bihel
- Laboratoire d’Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
- Médalis, Institut du Médicament de Strasbourg (IMS), Université de Strasbourg, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
15
|
Sai M. A Tetraarylpyrrole‐Based Phosphine Ligand for the Palladium‐Catalyzed Amination of Aryl Chlorides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Masahiro Sai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering Gifu University 1–1 Yanagido Gifu 501-1193 Japan
- Research Foundation ITSUU Laboratory C1232 Kanagawa Science Park R & D Building 3-2-1 Sakado, Takatsu-ku, Kawasaki Kanagawa 213-0012 Japan
| |
Collapse
|
16
|
Scattolin T, Voloshkin VA, Martynova E, Vanden Broeck SMP, Beliš M, Cazin CSJ, Nolan SP. Synthesis and catalytic activity of palladium complexes bearing N-heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) ligands. Dalton Trans 2021; 50:9491-9499. [PMID: 34254628 DOI: 10.1039/d1dt01716k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthesis and characterization of novel palladium complexes bearing N-heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) are reported. These organometallic complexes can be easily obtained using two different synthetic strategies that involve either the substitution of the pyridine ligand from trans-[Pd(NHC)(Py)Cl2] or by simple addition of the CAP ligand to dimeric species [Pd(NHC)Cl2]2. The mixed NHC/CAP complexes were tested as pre-catalysts in the Buchwald-Hartwig aryl amination coupling, showing good catalytic activity, especially in the case of cis-[Pd(IPr)(CAP)Cl2].
Collapse
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Vladislav A Voloshkin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Ekaterina Martynova
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Sofie M P Vanden Broeck
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Marek Beliš
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| |
Collapse
|
17
|
Ouyang JS, Liu S, Pan B, Zhang Y, Liang H, Chen B, He X, Chan WTK, Chan ASC, Sun TY, Wu YD, Qiu L. A Bulky and Electron-Rich N-Heterocyclic Carbene–Palladium Complex (SIPr)Ph2Pd(cin)Cl: Highly Efficient and Versatile for the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides with (Hetero)aryl Amines at Room Temperature. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jia-Sheng Ouyang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bendu Pan
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Yaqi Zhang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Hao Liang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Bin Chen
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Xiaobo He
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Albert S. C. Chan
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yun-Dong Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liqin Qiu
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| |
Collapse
|
18
|
Kubota K, Ito H. Development of Selective Reactions Using Ball Milling. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University
| |
Collapse
|