1
|
Kane DL, Figula BC, Balaraman K, Bertke JA, Wolf C. Cryogenic Organometallic Carbon-Fluoride Bond Functionalization with Broad Functional Group Tolerance. J Am Chem Soc 2025; 147:5764-5774. [PMID: 39912296 PMCID: PMC11848826 DOI: 10.1021/jacs.4c13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The unique properties of fluorinated organic compounds have received intense interest and have conquered a myriad of applications in the chemical and pharmaceutical sciences. Today, an impressive range of alkyl fluorides are commercially available, and there are many practical methods to make them exist. However, the unmatched stability and inertness of the C-F bond have largely limited its synthetic value, which is very different from the widely accepted utility of alkyl chlorides, bromides, and iodides that serve everyday as "workhorse" building blocks in countless carbon-carbon bond forming reactions. This study demonstrates practical and high-yielding functionalization of the C-F bond under mild conditions, i.e., at temperatures as low as -78 °C, in short reaction times and with unconventional chemoselectivity. Cryogenic Csp3-F bond cleavage using fluorophilic organoaluminum compounds together with fast nucleophile transfer of intermediate ate complexes forge carbon-carbon bonds with unactivated primary, secondary, and tertiary alkyl fluorides alike. This method, which exploits the stability of the Al-F bond as the thermodynamic driving force, is highly selective toward Csp3-F bond functionalization, whereas many other functional groups including alkyl chloride, bromide, iodide, aryl halide, alkenyl, alkynyl, difluoroalkyl, trifluoromethyl, ether, ester, hydroxyl, acetal, heteroaryl, nitrile, nitro, and amide groups are tolerated, which is an unexpected reversal of long-standing main group organometallic and alkyl halide cross-coupling reactivity and compatibility patterns. As a result, the strongest single bond in organic chemistry can now be selectively targeted in high-yielding arylation, alkylation, alkenylation, and alkynylation reactions and used in late-stage functionalization applications that are complementary to currently available methods.
Collapse
Affiliation(s)
- D. Lucas Kane
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Bryan C. Figula
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Jeffery A. Bertke
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, D.C. 20057, United States
| |
Collapse
|
2
|
Villalba F, Albéniz AC. Understanding the Ligand Influence in the Multistep Reaction of Diazoalkanes with Palladium Complexes Leading to Carbene-Aryl Coupling. Organometallics 2025; 44:394-402. [PMID: 39886028 PMCID: PMC11776105 DOI: 10.1021/acs.organomet.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025]
Abstract
The reaction of diphosphino aryl complexes [Pd(C6F5)(L-L)(NCMe)](BF4) (L-L = dppe, dppp, dppb) with diazoalkanes N2CHR (R = -CH=CHPh, Ph) leads to η3-allyl or η3-benzyl palladium derivatives that are the organometallic products resulting from carbene-aryl coupling. The experimental trend shows that the reaction is favored for dppe > dppp > dppb. It involves several consecutive steps, i.e., diazoalkane coordination, nitrogen extrusion to give a Pd-carbene, and migratory insertion, which are experimentally inseparable, but they can be studied with the help of DFT calculations. The bulkiness and bite angle of the ligand exert a large influence in the relative rate of the steps involved in the reaction, and we have found that carbene formation by N2 extrusion is the step with the largest barrier for dppe. In contrast, the coordination of the diazoalkane is the most energy-demanding step for the larger dppp and dppb diphosphines. Thus, ligand substitution controls the rate, an important elemental step rarely considered in mechanistic studies of carbene cross coupling reactions. Since diazoalkanes are the most common carbene precursors, either directly or generated from hydrazones, the choice of ligand can be very important to facilitate the entrance of the carbene precursor in the catalytic cycle.
Collapse
Affiliation(s)
- Francisco Villalba
- IU CINQUIMA/Química
Inorgánica, Universidad de Valladolid, Valladolid 47071, Spain
| | - Ana C. Albéniz
- IU CINQUIMA/Química
Inorgánica, Universidad de Valladolid, Valladolid 47071, Spain
| |
Collapse
|
3
|
Nie Z, Wu K, Zhan X, Yang W, Lian Z, Lin S, Wang SG, Yin Q. Palladium-catalyzed difluorocarbene transfer enables access to enantioenriched chiral spirooxindoles. Nat Commun 2024; 15:8510. [PMID: 39353887 PMCID: PMC11445564 DOI: 10.1038/s41467-024-52392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
We disclose herein an unprecedented Pd-catalyzed difluorocarbene transfer reaction, which assembles a series of structurally interesting chiral spiro ketones with generally over 90% ee. Commercially available BrCF2CO2K serves as the difluorocarbene precursor, which is harnessed as a user-friendly and safe carbonyl source in this transformation. Preliminary mechanistic studies exclude the formation of free CO in the reaction process, and importantly, we also find that BrCF2CO2K outcompete gaseous CO and several common CO surrogates in this asymmetric process. The reaction mechanism, including the in-situ progressive release of the difluorocarbene, the rapid migratory insertion of ArPd(II) = CF2 species, and subsequent defluorination hydrolysis by water to introduce the carbonyl group, accounts for the overall high efficiency and uniqueness. This work clearly showcases the advantage and potential of the difluorocarbene in synthesis and supplies a mechanistically distinct route for asymmetric carbonylative cyclization reactions.
Collapse
Affiliation(s)
- Zhiwen Nie
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Keqin Wu
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiaohang Zhan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Weiran Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Shaoquan Lin
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qin Yin
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| |
Collapse
|
4
|
Meng F, Cui Y, Xu W, Yang WC. Visible-Light-Induced Domino Perfluoroalkylation/Cyclization to Access Perfluoroalkylated Quinazolinones by an EDA Complex. Org Lett 2024; 26:6884-6888. [PMID: 39087724 DOI: 10.1021/acs.orglett.4c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The electron donor-acceptor (EDA) complexes have been extensively studied, which formed an electronically excited state, obviating the need for an exogenous photocatalyst. Herein, we report a mild and efficient strategy for photoinduced radical domino perfluoroalkylation/cyclization using N,N,N',N'-tetramethylethane-1,2-diamine (TMEDA) as an electron donor. This protocol could be well expanded to access various polycyclic quinazolinones containing perfluoroalkyl groups, exhibiting photocatalyst-free, good functional group tolerance, and environmentally friendly features.
Collapse
Affiliation(s)
- Fei Meng
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yangyang Cui
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wen Xu
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wen-Chao Yang
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Lucas Kane D, Figula BC, Balaraman K, Bertke JA, Wolf C. General alkyl fluoride functionalization via short-lived carbocation-organozincate ion pairs. Nat Commun 2024; 15:1866. [PMID: 38424080 PMCID: PMC10904780 DOI: 10.1038/s41467-024-45756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Fluorinated organic compounds are frequently used across the chemical and life sciences. Although a large, structurally diverse pool of alkyl fluorides is nowadays available, synthetic applications trail behind the widely accepted utility of other halides. We envisioned that C(sp2)-C(sp3) cross-coupling reactions of alkyl fluorides with fluorophilic organozinc compounds should be possible through a heterolytic mechanism that involves short-lived ion pairs and uses the stability of the Zn-F bond as the thermodynamic driving force. This would be mechanistically different from previously reported radical reactions and overcome long-standing limitations of organometallic cross-coupling methodology, including competing β-hydride elimination, homodimerization and hydrodefluorination. Here, we show a practical Csp3-F bond functionalization method that expands the currently restricted synthetic space of unactivated primary, secondary and tertiary C(sp3)-F bonds but also uses benzylic, propargylic and acyl fluorides. Many functional groups and sterically demanding substrates are tolerated, which allows practical carbon-carbon bond formation and late-stage functionalization.
Collapse
Affiliation(s)
- D Lucas Kane
- Georgetown University, Chemistry Department, Washington, DC, 20057, USA
| | - Bryan C Figula
- Georgetown University, Chemistry Department, Washington, DC, 20057, USA
| | - Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, DC, 20057, USA
| | - Jeffery A Bertke
- Georgetown University, Chemistry Department, Washington, DC, 20057, USA
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, DC, 20057, USA.
| |
Collapse
|
6
|
Chakrabarti K, Wade Wolfe MM, Guo S, Tucker JW, Lee J, Szymczak NK. A metal-free strategy to construct fluoroalkyl-olefin linkages using fluoroalkanes. Chem Sci 2024; 15:1752-1757. [PMID: 38303957 PMCID: PMC10829021 DOI: 10.1039/d3sc05616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
We present a metal-free strategy to access fluoroalkyl-olefin linkages from fluoroalkane precursors and vinyl-pinacol boronic ester (BPin) reagents. This reaction sequence is templated by the boron reagent, which induces C-C bond formation upon oxidation. We developed this strategy into a one-pot synthetic protocol using RCF2H precursors directly with vinyl-BPin reagents in the presence of a Brønsted base, which tolerated oxygen- and nitrogen-containing heterocycles, and aryl halogens. We also found that HCF3 (HCF-23; a byproduct of the Teflon industry) and CH2F2 (HCF-32; a low-cost refrigerant) are amenable to this protocol, representing distinct strategies to generate RCF2H and RCF3 molecules. Finally, we demonstrate that the vinyldifluoromethylene products can be readily derivatized, representing an avenue for late-stage modification after installing the fluoroalkyl unit.
Collapse
Affiliation(s)
- Kaushik Chakrabarti
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Michael M Wade Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P.R. China
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Jisun Lee
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| |
Collapse
|
7
|
Bunnell A, Lalloo N, Brigham C, Sanford MS. Palladium-Catalyzed Decarbonylative Coupling of (Hetero)Aryl Boronate Esters with Difluorobenzyl Glutarimides. Org Lett 2023; 25:7584-7588. [PMID: 37811852 PMCID: PMC10629228 DOI: 10.1021/acs.orglett.3c03071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
This report describes the Pd-catalyzed decarbonylative coupling of difluorobenzyl glutarimides with (hetero)aryl boronate esters to yield difluorobenzyl-substituted (hetero)arene products. The use of PAd2Bu as the phosphine ligand in combination with neopentylboronate ester nucleophiles proved critical for the selective formation of the decarbonylative coupling product versus analogous difluorobenzyl ketone. This transformation is effective for electronically diverse (hetero)aryl boronate esters and substituted difluorobenzyl glutarimides.
Collapse
Affiliation(s)
- Alexander Bunnell
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Conor Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Zhang XY, Sun SP, Sang YQ, Xue XS, Min QQ, Zhang X. Reductive Catalytic Difluorocarbene Transfer via Palladium Catalysis. Angew Chem Int Ed Engl 2023; 62:e202306501. [PMID: 37365143 DOI: 10.1002/anie.202306501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
A palladium-catalyzed reductive difluorocarbene transfer reaction that tames difluorocarbene to couple with two electrophiles has been developed, representing a new mode of difluorocarbene transfer reaction. The approach uses low-cost and bulk industrial chemical chlorodifluoromethane (ClCF2 H) as the difluorocarbene precursor. It produces a variety of difluoromethylated (hetero)arenes from widely available aryl halides/triflates and proton sources, featuring high functional group tolerance and synthetic convenience without preparing organometallic reagents. Experimental mechanistic studies reveal that an unexpected Pd0/II catalytic cycle is involved in this reductive reaction, wherein the oxidative addition of palladium(0) difluorocarbene ([Pd0 (Ln )]=CF2 ) with aryl electrophile to generate the key intermediate aryldifluoromethylpalladium [ArCF2 Pd(Ln )X], followed by reaction with hydroquinone, is responsible for the reductive difluorocarbene transfer.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shi-Ping Sun
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yue-Qian Sang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiao-Qiao Min
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
9
|
Zeng X, Li Y, Min QQ, Xue XS, Zhang X. Copper-catalysed difluorocarbene transfer enables modular synthesis. Nat Chem 2023:10.1038/s41557-023-01236-8. [PMID: 37308708 DOI: 10.1038/s41557-023-01236-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/10/2023] [Indexed: 06/14/2023]
Abstract
The use of metal catalysts to produce and control the reactivity of carbenes has long offered a powerful approach to organic synthesis; however, difluorocarbene transfer catalysed by metal is an outlier and remains a substantial challenge. In that context, copper difluorocarbene chemistry has been elusive so far. Here we report the design, synthesis, characterization and reactivity of isolable copper(I) difluorocarbene complexes, which enable the development of a copper-catalysed difluorocarbene transfer reaction. The method offers a strategy for the modular synthesis of organofluorine compounds from simple and readily available components. This strategy facilitates a modular difluoroalkylation by coupling difluorocarbene with two inexpensive feedstocks, silyl enol ethers and allyl/propargyl bromides, in a one-pot reaction via copper catalysis, providing a diversity of difluoromethylene-containing products without laborious multistep synthesis. The approach enables access to various fluorinated skeletons of medicinal interest. Mechanistic and computational studies consistently reveal a mechanism involving nucleophilic addition to an electrophilic copper(I) difluorocarbene.
Collapse
Affiliation(s)
- Xin Zeng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yao Li
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiao-Qiao Min
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
10
|
Roh B, Farah AO, Kim B, Feoktistova T, Moeller F, Kim KD, Cheong PHY, Lee HG. Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. J Am Chem Soc 2023; 145:7075-7083. [PMID: 37016901 DOI: 10.1021/jacs.3c00637] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel strategy for the stereospecific Pd-catalyzed acylative cross-coupling of enantiomerically enriched alkylboron compounds has been developed. The protocol features an extremely high level of enantiospecificity to allow facile access to synthetically challenging and valuable chiral ketones and carboxylic acid derivatives. The use of a sterically encumbered and electron-rich phosphine ligand proved to be crucial for the success of the reaction. Furthermore, on the basis of experimental and computational studies, a unique mechanism for the transmetalation, assisted by the noncovalent interactions of the C(sp3)-based organoboron reagent, has been identified.
Collapse
Affiliation(s)
- Byeongdo Roh
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Beomsu Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Finn Moeller
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kyeong Do Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Guo S, Sun W, Tucker JW, Hesp KD, Szymczak NK. Preparation and Functionalization of Mono- and Polyfluoroepoxides via Fluoroalkylation of Carbonyl Electrophiles. Chemistry 2023; 29:e202203578. [PMID: 36478306 DOI: 10.1002/chem.202203578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
We outline a new synthetic method to prepare mono- and polyfluoroepoxides from a diverse pool of electrophiles (ketones, acyl chlorides, esters) and fluoroalkyl anion equivalents. The initially formed α-fluoro alkoxides undergo subsequent intramolecular ring closure when heated. We demonstrated the versatility of the method through the isolation of 16 mono- and polyfluoroepoxide products. These compounds provide unique entry points for further diversification via either fluoride migration coupled with ring opening, or defluorinative functionalization reactions, the latter of which can be used as a late-stage method to install select bioactive moieties. The reaction sequences described herein provide a pathway to functionalize the commonly observed products formed from 1,2-addition into carbonyl electrophiles.
Collapse
Affiliation(s)
- Shuo Guo
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Wei Sun
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc.: Eastern Point Rd., Groton, CT., 06340, USA
| | - Kevin D Hesp
- Medicine Design, Pfizer Inc.: Eastern Point Rd., Groton, CT., 06340, USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Liu A, Ni C, Xie Q, Hu J. Transition-Metal-Free Controllable Single and Double Difluoromethylene Formal Insertions into C-H Bonds of Aldehydes with TMSCF 2 Br. Angew Chem Int Ed Engl 2023; 62:e202217088. [PMID: 36517973 DOI: 10.1002/anie.202217088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We have developed a new strategy for controllable single and double difluoromethylene (CF2 ) formal insertions into C-H bonds of aldehydes with nearly full selectivity under transition-metal-free conditions. The key to the success of controllable CF2 insertions lies in the well-defined formation of 2,2-difluoroenolsilyl ether and 2,2,3,3-tetrafluorocyclopropanolsilyl ether intermediates using difluorocarbene reagent TMSCF2 Br (TMS=trimethylsilyl). These two intermediates can react with various electrophiles including proton sources and various halogenation reagents, allowing for the access to diverse arrays of ketones containing difluoromethylene (CF2 ) and tetrafluoroethylene (CF2 CF2 ) units. The first synthesis of relatively stable 2,2,3,3-tetrafluorocyclopropanolsilyl ethers has been achieved, which offers a new platform to explore other unknown chemical space.
Collapse
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
13
|
Sun G, Liu H, Wang X, Zhang W, Miao W, Luo Q, Gao B, Hu J. Palladium-Catalyzed Defluorinative Coupling of Difluoroalkenes and Aryl Boronic Acids for Ketone Synthesis. Angew Chem Int Ed Engl 2023; 62:e202213646. [PMID: 36315428 DOI: 10.1002/anie.202213646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/06/2022]
Abstract
The transition-metal-catalyzed carbonylation reaction is a useful approach for ketone synthesis. However, it is often problematic to use exogenous carbonyl reagents, such as gaseous carbon monoxide. In this manuscript, we report a novel palladium-catalyzed coupling reaction of gem-difluoroalkenes and aryl boronic acids that yields bioactive indane-type ketones with an all-carbon α-quaternary center. Characterization and stoichiometric reactions of the key intermediates RCF2 PdII support a water-induced defluorination and cross-coupling cascade mechanism. The vinyl difluoromethylene motif serves as an in situ carbonyl precursor which is unprecedented in transition-metal-catalyzed coupling reactions. It is expected to raise broad research interest from the perspectives of ketone synthesis, fluoroalkene functionalization, and rational design of new synthetic protocols based on the unique reactivity of difluoroalkyl palladium(II) species.
Collapse
Affiliation(s)
- Guangwu Sun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Herui Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Wenbo Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Wenjun Miao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qinyu Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
14
|
Abstract
Cross-coupling of alkyl fluorides and organocuprates is accomplished via aluminum halide mediated C-F bond activation and subsequent Csp2-Csp3 and Csp3-Csp3 bond formation. Relatively mild conditions allow for smooth activation of notoriously challenging primary and secondary alkyl fluorides while competing alkyl chain rearrangement, HF elimination, and homocoupling reactions are effectively controlled. The utility and functional group tolerance are demonstrated with 23 examples and a variety of coupling products obtained in up to 88% yield.
Collapse
Affiliation(s)
- Bryan C Figula
- Chemistry Department, Georgetown University, Washington, DC 20057, United States
| | - D Lucas Kane
- Chemistry Department, Georgetown University, Washington, DC 20057, United States
| | - Kaluvu Balaraman
- Chemistry Department, Georgetown University, Washington, DC 20057, United States
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
15
|
Li XX, Wang JS, You XX, Zhong RL, Su ZM. Theoretical Insight into the Multiple Roles of LiHMDS in Pd-Catalyzed Borylation of Fluorobenzene. J Org Chem 2022; 87:16039-16046. [PMID: 36379013 DOI: 10.1021/acs.joc.2c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pd-catalyzed borylation of fluorobenzene was theoretically studied. DFT calculations revealed that the reaction occurs through an unprecedented 3 + 6-membered ring transition state, in which one LiHMDS (HMDS = hexamethyldisilazane) acts as a ligand and another LiHMDS is essential to provide Li···N and Li···F interactions, overcoming the large destabilization of the strong phenyl-F bond distortion. The characteristic feature of LiHMDS was elucidated by comparing it with HMDS and NaHMDS analogues.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Jian-Sen Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Xiao-Xia You
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Rong-Lin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zhong-Min Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
16
|
Nishimoto Y, Yasuda M. Lewis Acid-mediated Carbon-Fluorine Bond Transformation: Substitution of Fluorine and Insertion into a Carbon-Fluorine Bond. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| |
Collapse
|
17
|
Choi K, Mormino MG, Kalkman ED, Park J, Hartwig JF. Palladium-Catalyzed Aryldifluoromethylation of Aryl Halides with Aryldifluoromethyl Trimethylsilanes. Angew Chem Int Ed Engl 2022; 61:e202208204. [PMID: 35960816 PMCID: PMC9530024 DOI: 10.1002/anie.202208204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 11/12/2022]
Abstract
Diaryl difluoromethanes are valuable targets for medicinal chemistry because they are bioisosteres of diaryl ethers and can function as replacements for diaryl methane, ketone, and sulfone groups. However, methods to prepare diaryl difluoromethanes are scarce, especially methods starting from abundant aryl halides. We report the Pd-catalyzed aryldifluoromethylation of aryl halides with aryldifluoromethyl trimethylsilanes (TMSCF2 Ar). The reaction occurs when the catalyst contains a simple, but unusual, dialkylaryl phosphine ligand that promotes transmetallation of the silane. Computational studies show that reductive elimination following transmetallation occurs with a low barrier, despite the fluorine atoms on the α-carbon, due to coordination of the difluorobenzyl π-system to palladium. The co-development of a cobalt-catalyzed synthesis of the silanes broadened the scope of the process including several applications to the synthesis biologically relevant diaryl difluoromethanes.
Collapse
Affiliation(s)
- Kyoungmin Choi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michael G. Mormino
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric D. Kalkman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Park
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Balaraman K, Kyriazakos S, Palmer R, Thanzeel FY, Wolf C. Selective Csp 3-F Bond Functionalization with Lithium Iodide. SYNTHESIS-STUTTGART 2022; 54:4320-4328. [PMID: 36330045 PMCID: PMC9624501 DOI: 10.1055/s-0041-1738383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A highly efficient method for C-F bond functionalization of a broad variety of activated and unactivated aliphatic substrates with inexpensive lithium iodide is presented. Primary, secondary, tertiary, benzylic, propargylic and α-functionalized alkyl fluorides react in chlorinated or aromatic solvents at room temperature or upon heating to the corresponding iodides which are isolated in 91-99% yield. The reaction is selective for aliphatic monofluorides and can be coupled with in situ nucleophilic iodide replacements to install carbon-carbon, carbon-nitrogen and carbon-sulfur bonds with high yields. Alkyl difluorides, trifluorides, even in activated benzylic positions, are inert under the same conditions and aryl fluoride bonds are also tolerated.
Collapse
Affiliation(s)
- Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | | | - Rachel Palmer
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | - F Yushra Thanzeel
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| |
Collapse
|
19
|
Villalba F, Albéniz AC. Diazo compounds and palladium-aryl complexes: trapping the elusive carbene migratory insertion organometallic products. Dalton Trans 2022; 51:14847-14851. [PMID: 36177939 DOI: 10.1039/d2dt02775e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of Pd-aryl complexes with diazo compounds N2CH-CHCHPh and N2CHPh allowed us to isolate the organometallic products formed right after the migratory insertion of a non-stabilized CHR carbene into the Pd-aryl bond. η3-Allylic and η3-benzylic palladium complexes were formed respectively. This is compelling experimental evidence for the key step in the palladium-catalyzed cascade transformations of diazo derivatives leading to multiple C-C or C-X bond formation.
Collapse
Affiliation(s)
- Francisco Villalba
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain.
| | - Ana C Albéniz
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain.
| |
Collapse
|
20
|
Sharutin VV, Sharutina OK, Senchurin VS. Palladium Complexes [Ph3PEt][PdBr3(DMSO)], [Ph3PCH2OMe][PdBr3(DMSO)], [Ph3PC5H9-cyclo][PdBr3(DMSO)], and [Ph3PCH2CH=CHCH2PPh3][PdBr3(DMSO)]2: Synthesis and Structure. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422090044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Choi K, Mormino MG, Kalkman ED, Park J, Hartwig JF. Palladium‐Catalyzed Aryldifluoromethylation of Aryl Halides with Aryldifluoromethyl Trimethylsilanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyoungmin Choi
- University of California Berkeley Chemistry UNITED STATES
| | | | | | - John Park
- University of California Berkeley Chemistry UNITED STATES
| | - John F. Hartwig
- University of California Department of Chemistry 718 LATIMER HALL #1460 94720-1460 Berkeley UNITED STATES
| |
Collapse
|
22
|
Wright SE, Bandar JS. A Base-Promoted Reductive Coupling Platform for the Divergent Defluorofunctionalization of Trifluoromethylarenes. J Am Chem Soc 2022; 144:13032-13038. [PMID: 35833781 PMCID: PMC9817215 DOI: 10.1021/jacs.2c05044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a trifluoromethylarene reductive coupling method that dramatically expands the scope of difluorobenzylic substructures accessible via C-F bond functionalization. Catalytic quantities of a Lewis base, combined with a disilane reagent in formamide solvent, promotes the replacement of a single trifluoromethyl fluorine atom with a silylated hemiaminal functional group. The reaction proceeds through a difluorobenzyl silane intermediate that can also be isolated. Together, these defluorinated products are shown to provide rapid access to over 20 unique difluoroalkylarene scaffolds.
Collapse
Affiliation(s)
- Shawn E. Wright
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
23
|
Sharutin VV, Sharutina OK, Senchurin VS. Palladium Complexes [Ph3PCH2CN]2[PdBr4], [Ph4P]2[PdBr4], [Ph3PC5H9-cyclo][PdBr3(Et2SO)], and [Ph4P]2[Pd2Br6]. Synthesis and Structure. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222070209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Cetin HK, Baytaroglu C. The Impact of Age on Percutaneous Thrombectomy Outcomes in the Management of Lower Extremity Deep Vein Thrombosis. HASEKI TIP BÜLTENI 2022. [DOI: 10.4274/haseki.galenos.2022.8233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
25
|
Gao F, Zhang S, Lv Q, Yu B. Recent advances in graphene oxide catalyzed organic transformations. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Rodríguez RI, Sicignano M, Alemán J. Fluorinated Sulfinates as Source of Alkyl Radicals in the Photo-Enantiocontrolled β-Functionalization of Enals. Angew Chem Int Ed Engl 2022; 61:e202112632. [PMID: 34982505 DOI: 10.1002/anie.202112632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 12/13/2022]
Abstract
The generation of sulfonyl radicals has long been known as a flexible strategy in a wide range of different sulfonylative transformations. Meanwhile their use in alkylation processes has been somehow limited due to their inherent difficulty in evolving to less-stable radicals after sulfur dioxide extrusion. Herein we report a convenient strategy that involves gem-difluorinated sulfinates as an "upgrading-mask", allowing these precursors to decompose into their corresponding alkyl radicals. The electron-donor character of sulfinates in the formation of an electron donor-acceptor (EDA) complex with transient iminium ions is displayed, achieving the first example of a stereocontrolled light-driven insertion of gem-difluoro derivatives into unsaturated aldehydes. This methodology is compatible with flow conditions, maintaining identical levels of enantiocontrol.
Collapse
Affiliation(s)
- Ricardo I Rodríguez
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marina Sicignano
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
27
|
Rodríguez RI, Sicignano M, Alemán J. Fluorinated Sulfinates as Source of Alkyl Radicals in the Photo‐Enantiocontrolled β‐Functionalization of Enals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ricardo I. Rodríguez
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Marina Sicignano
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - José Alemán
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
28
|
Liu C, Shen N, Shang R. Photocatalytic defluoroalkylation and hydrodefluorination of trifluoromethyls using o-phosphinophenolate. Nat Commun 2022; 13:354. [PMID: 35039496 PMCID: PMC8764036 DOI: 10.1038/s41467-022-28007-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Under visible light irradiation, o-phosphinophenolate functions as an easily accessible photoredox catalyst to activate trifluoromethyl groups in trifluoroacetamides, trifluoroacetates, and trifluoromethyl (hetero)arenes to deliver corresponding difluoromethyl radicals. It works in relay with a thiol hydrogen atom transfer (HAT) catalyst to enable selective defluoroalkylation and hydrodefluorination. The reaction allows for the facile synthesis of a broad scope of difluoromethylene-incorporated carbonyl and (hetero)aromatic compounds, which are valuable fluorinated intermediates of interest in the pharmaceutical industry. The ortho-diphenylphosphino substituent, which is believed to facilitate photoinduced electron transfer, plays an essential role in the redox reactivity of phenolate. In addition to trifluoromethyl groups, pentafluoroethyl groups could also be selectively defluoroalkylated. Photoredox catalysis can strongly reduce and cleave unactivated chemical bonds via photoinduced electron transfer. Here the authors use o-phosphinophenolate for photocatalytic C–F activation of a wide range of trifluoromethyl groups in trifluoroacetamides, trifluoroacetates, and trifluoromethyl(hetero)arenes to deliver corresponding difluoromethyl radicals.
Collapse
Affiliation(s)
- Can Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ni Shen
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Rui Shang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China. .,Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
29
|
Wang Z, Sun Y, Shen LY, Yang WC, Meng F, Li P. Photochemical and electrochemical strategies in C–F bond activation and functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01512e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent advances in photochemical or electrochemical C–F bond activation and functionalization have been summarized and discussed.
Collapse
Affiliation(s)
- Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yu Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Liu-Yu Shen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Fei Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Pinhua Li
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China
| |
Collapse
|
30
|
Zhao F, Zhou W, Zuo Z. Recent Advances in the Synthesis of Difluorinated Architectures from Trifluoromethyl Groups. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101234] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Zhao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| | - Wenlong Zhou
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| | - Zuo Zuo
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| |
Collapse
|
31
|
Balaraman K, Wolf C. Palladium and Nickel Catalyzed Suzuki Cross-Coupling with Alkyl Fluorides. Org Lett 2021; 23:8994-8999. [PMID: 34723542 DOI: 10.1021/acs.orglett.1c03515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Suzuki cross-coupling of benzylic and unactivated aliphatic fluorides with aryl- and alkenylboronic acids has been achieved via mechanistically distinct Pd and Ni catalyzed pathways that outperform competing protodeboronation, β-hydride elimination, and homocoupling processes. The utility is demonstrated with more than 20 examples including heterocyclic structures, 1,1-disubstituted and trans-1,2-disubstituted alkenes, and by the incorporation of acetonitrile into functionalized (hetero)arenes.
Collapse
Affiliation(s)
- Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, District of Columbia 20057, United States
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, District of Columbia 20057, United States
| |
Collapse
|
32
|
Wang F, Nishimoto Y, Yasuda M. Insertion of Diazo Esters into C-F Bonds toward Diastereoselective One-Carbon Elongation of Benzylic Fluorides: Unprecedented BF 3 Catalysis with C-F Bond Cleavage and Re-formation. J Am Chem Soc 2021; 143:20616-20621. [PMID: 34766748 DOI: 10.1021/jacs.1c10517] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective transformation of C-F bonds remains a significant goal in organic chemistry, but C-F insertion of a one-carbon-atom unit has never been established. Herein we report the BF3-catalyzed formal insertion of diazo esters as one-carbon-atom sources into C-F bonds to accomplish one-carbon elongation of benzylic fluorides. A DFT calculation study revealed that the BF3 catalyst could contribute to both C-F bond cleavage and re-formation. This elongation provided α-fluoro-α,β-diaryl esters with a high level of diastereoselectivity. Various benzylic fluorides and diazo esters were applicable. The synthetic utility of this method was demonstrated by the synthesis of a fluoro analogue of a compound that is used as a transient receptor and potential canonical channel inhibitor.
Collapse
Affiliation(s)
- Fei Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Zhou W, Pan WJ, Chen J, Zhang M, Lin JH, Cao W, Xiao JC. Transition-metal difluorocarbene complexes. Chem Commun (Camb) 2021; 57:9316-9329. [PMID: 34528952 DOI: 10.1039/d1cc04029d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although transition metal carbenes have found widespread applications and difluorocarbene has served as a versatile intermediate, it is still quite challenging to make use of transition-metal difluorocarbenes in synthetic chemistry due to their unpredictable reactivities. In this Highlight, we review recent developments in the transition-metal-catalyzed or -mediated transfer of difluorocarbene and the reactivies and conversions of transition-metal difluorocarbene complexes. We start with the MCF2 bonding, then provide the progress in the transfer of difluorocarbene, and finally briefly discuss the conversions of MCF2 into other metal complexes. The understanding of the interesting reactivities of MCF2 may help design the catalytic transfer of difluorocarbene for various reactions.
Collapse
Affiliation(s)
- Wei Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wen-Jie Pan
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China.
| | - Jie Chen
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China.
| | - Min Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| | - Jin-Hong Lin
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| | - Weiguo Cao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
34
|
Luo YC, Tong FF, Zhang Y, He CY, Zhang X. Visible-Light-Induced Palladium-Catalyzed Selective Defluoroarylation of Trifluoromethylarenes with Arylboronic Acids. J Am Chem Soc 2021; 143:13971-13979. [PMID: 34411483 DOI: 10.1021/jacs.1c07459] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective functionalization of inactive C(sp3)-F bonds to prepare medicinally interesting aryldifluoromethylated compounds remains challenging. One promising route is the transition-metal-catalyzed cross-coupling through oxidative addition of the C(sp3)-F bond in trifluoromethylarenes (ArCF3), which are ideal precursors for this process due to their ready availability and low cost. Here, we report an unprecedented excited-state palladium catalysis strategy for selective defluoroarylation of trifluoromethylarenes with arylboronic acids. This visible-light-induced palladium-catalyzed cross-coupling proceeds under mild reaction conditions and allows transformation of a variety of arylboronic acids and ArCF3. Preliminary mechanistic studies reveal that the oxidative addition of the C(sp3)-F bond in ArCF3 to excited-state palladium(0) via a single electron transfer pathway is responsible for the C(sp3)-F bond activation.
Collapse
Affiliation(s)
- Yun-Cheng Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Fei-Fei Tong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanxia Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
35
|
Yu YJ, Zhang FL, Peng TY, Wang CL, Cheng J, Chen C, Houk KN, Wang YF. Sequential C-F bond functionalizations of trifluoroacetamides and acetates via spin-center shifts. Science 2021; 371:1232-1240. [PMID: 33674411 DOI: 10.1126/science.abg0781] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Defluorinative functionalization of readily accessible trifluoromethyl groups constitutes an economical route to partially fluorinated molecules. However, the controllable replacement of one or two fluorine atoms while maintaining high chemoselectivity remains a formidable challenge. Here we describe a general strategy for sequential carbon-fluorine (C-F) bond functionalizations of trifluoroacetamides and trifluoroacetates. The reaction begins with the activation of a carbonyl oxygen atom by a 4-dimethylaminopyridine-boryl radical, followed by a spin-center shift to trigger the C-F bond scission. A chemoselectivity-controllable two-stage process enables sequential generation of difluoro- and monofluoroalkyl radicals, which are selectively functionalized with different radical traps to afford diverse fluorinated products. The reaction mechanism and the origin of chemoselectivity were established by experimental and computational approaches.
Collapse
Affiliation(s)
- You-Jie Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng-Lian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tian-Yu Peng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chang-Ling Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chen Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yi-Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Kumar G, Roy S, Chatterjee I. Tris(pentafluorophenyl)borane catalyzed C-C and C-heteroatom bond formation. Org Biomol Chem 2021; 19:1230-1267. [PMID: 33481983 DOI: 10.1039/d0ob02478c] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of boron based Lewis acids have been reported to date, but among them, tris(pentafluorophenyl)borane (BCF) has gained the most significant attention in the synthetic chemistry community. The viability of BCF as a potential Lewis acid catalyst has been vastly explored in organic and materials chemistry due to its thermal stability and commercial availability. Most explorations of BCF chemistry in organic synthesis has occurred in the last two decades and many new catalytic reactivities are currently under investigation. This review mainly focuses on recent reports from 2018 onwards and provides a concise knowledge to the readers about the role of BCF in metal-free catalysis. The review has mainly been categorized by different types of organic transformation mediated through BCF catalysis for the C-C and C-heteroatom bond formation.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
37
|
He SY, Yan XW, Tu HY, Zhang XG. Palladium-catalyzed selective defluorinative arylation for the efficient stereospecific synthesis of ( E)-β-fluoroacrylamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00721a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A practical and efficient method for the synthesis of (E)-β-fluoroacrylamides was developed by the selective defluorinative arylation of trifluoropropanamides with arylboronic acids.
Collapse
Affiliation(s)
- Shi-Yu He
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Wei Yan
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|