1
|
Pan Y, Zhou M, Wang R, Song D, Yiu SM, Xie J, Lau KC, Lau TC, Liu Y. Structure and Reactivity of a Seven-Coordinate Ruthenium Iodosylbenzene Complex. Inorg Chem 2023; 62:7772-7778. [PMID: 37146252 DOI: 10.1021/acs.inorgchem.3c00417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Seven-coordinate (CN7) ruthenium-oxo species have attracted much attention as highly reactive intermediates in both organic and water oxidation. Apart from metal-oxo, other metal-oxidant adducts, such as metal-iodosylarenes, have also recently emerged as active oxidants. We reported herein the first example of a CN7 Ru-iodosylbenzene complex, [RuIV(bdpm)(pic)2(O)I(Cl)Ph]+ (H2bdpm = [2,2'-bipyridine]-6,6'-diylbis(diphenylmethanol); pic = 4-picoline). The X-ray crystal structure of this complex shows that it adopts a distorted pentagonal bipyramidal geometry with Ru-O(I) and O-I distances of 2.0451(39) and 1.9946(40) Å, respectively. This complex is highly reactive, and it readily undergoes O-atom transfer (OAT) and C-H bond activation reactions with various organic substrates. This work should provide insights for the development of new highly reactive oxidizing agents based on CN7 geometry.
Collapse
Affiliation(s)
- Yunling Pan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Miaomiao Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, P. R. China
| | - Rui Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Dan Song
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, P. R. China
| | - Jianhui Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, P. R. China
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
2
|
Jeong D, Kim H, Cho J. Oxidation of Aldehydes into Carboxylic Acids by a Mononuclear Manganese(III) Iodosylbenzene Complex through Electrophilic C-H Bond Activation. J Am Chem Soc 2023; 145:888-897. [PMID: 36598425 DOI: 10.1021/jacs.2c09274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The oxidation of aldehyde is one of the fundamental reactions in the biological system. Various synthetic procedures and catalysts have been developed to convert aldehydes into corresponding carboxylic acids efficiently under ambient conditions. In this work, we report the oxidation of aldehydes by a mononuclear manganese(III) iodosylbenzene complex, [MnIII(TBDAP)(OIPh)(OH)]2+ (1), with kinetic and mechanistic studies in detail. The reaction of 1 with aldehydes resulted in the formation of corresponding carboxylic acids via a pre-equilibrium state. Hammett plot and reaction rates of 1 with 1°-, 2°-, and 3°-aldehydes revealed the electrophilicity of 1 in the aldehyde oxidation. A kinetic isotope effect experiment and reactivity of 1 toward cyclohexanecarboxaldehyde (CCA) analogues indicate that the reaction of 1 with aldehyde occurs through the rate-determining C-H bond activation at the formyl group. The reaction rate of 1 with CCA is correlated to the bond dissociation energy of the formyl group plotting a linear correlation with other aliphatic C-H bonds. Density functional theory calculations found that 1 electrostatically interacts with CCA at the pre-equilibrium state in which the C-H bond activation of the formyl group is performed as the most feasible pathway. Surprisingly, the rate-determining step is characterized as hydride transfer from CCA to 1, affording an (oxo)methylium intermediate. At the fundamental level, it is revealed that the hydride transfer is composed of H atom abstraction followed by a fast electron transfer. Catalytic reactions of aldehydes by 1 are also presented with a broad substrate scope. This novel mechanistic study gives better insights into the metal oxygen chemistry and would be prominently valuable for development of transition metal catalysts.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Hyokyung Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea.,Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
3
|
Oxidative N-Dealkylation of N,N-Dimethylanilines by Non-Heme Manganese Catalysts. Catalysts 2023. [DOI: 10.3390/catal13010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Non-heme manganese(II) complexes [(IndH)MnIICl2] (1) and [(N4Py*)MnII(CH3CN)](ClO4)2 (2) with tridentate isoindoline and pentadentate polypyridyl ligands (IndH = 1,3-bis(2′-pyridylimino)isoindoline; N4Py* = N,N-bis(2-pyridylmethyl)-1,2- di(2-pyridyl)ethylamine) proved to be suitable to catalyze the oxidative demethylation of N,N-dimethylaniline (DMA) with various oxidants such as tert-butyl hydroperoxide (TBHP), peracetic acid (PAA), and meta-chloroperoxybenzoic acid (mCPBA), resulting N-methylaniline (MA) as a main product with N-methylformanilide (MFA) as a result of a free-radical chain process under air. The effect of electron-donating and electron-withdrawing substituents on the aromatic ring on the relative reactivity of the substrates and on the product composition (MA/MFA) was also studied and showed a significant impact on the catalytic N-demethylation reaction. Based on the Hammett correlation with ρ = −0.38 (PAA), −0.45 (mCPBA), and −0.63 (TBHP) for 1 and ρ = −0.38 (PAA) and −0.37 (mCPBA) for 2, an electrophilic intermediate is suggested as the key oxidant. Furthermore, the spectral investigation (UV-Vis) resulted in direct evidence for the formation of a high-valent oxomanganese(IV) and a transient radical cation intermediate, p-Me-DMA•+, suggesting that the initial step in the manganese-catalyzed oxidations is a fast electron-transfer between the amine and the high valent oxometal species. The mechanisms of the subsequent steps are discussed.
Collapse
|
4
|
Chen X, Duez Q, Tripodi GL, Gilissen PJ, Piperoudis D, Tinnemans P, Elemans JAAW, Roithová J, Nolte RJM. Mechanistic Studies on the Epoxidation of Alkenes by Macrocyclic Manganese Porphyrin Catalysts. European J Org Chem 2022; 2022:e202200280. [PMID: 36249861 PMCID: PMC9541230 DOI: 10.1002/ejoc.202200280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Indexed: 11/08/2022]
Abstract
Macrocyclic metal porphyrin complexes can act as shape-selective catalysts mimicking the action of enzymes. To achieve enzyme-like reactivity, a mechanistic understanding of the reaction at the molecular level is needed. We report a mechanistic study of alkene epoxidation by the oxidant iodosylbenzene, mediated by an achiral and a chiral manganese(V)oxo porphyrin cage complex. Both complexes convert a great variety of alkenes into epoxides in yields varying between 20-88 %. We monitored the process of the formation of the manganese(V)oxo complexes by oxygen transfer from iodosylbenzene to manganese(III) complexes and their reactivity by ion mobility mass spectrometry. The results show that in the case of the achiral cage complex the initial iodosylbenzene adduct is formed on the inside of the cage and in the case of the chiral one on the outside of the cage. Its decomposition leads to a manganese complex with the oxo ligand on either the inside or outside of the cage. These experimental results are confirmed by DFT calculations. The oxo ligand on the outside of the cage reacts faster with a substrate molecule than the oxo ligand on the inside. The results indicate how the catalytic activity of the macrocyclic porphyrin complex can be tuned and explain why the chiral porphyrin complex does not catalyze the enantioselective epoxidation of alkenes.
Collapse
Affiliation(s)
- Xiaofei Chen
- Radboud UniversityInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Quentin Duez
- Radboud UniversityInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Guilherme L. Tripodi
- Radboud UniversityInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Pieter J. Gilissen
- Radboud UniversityInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Dimitrios Piperoudis
- Radboud UniversityInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Paul Tinnemans
- Radboud UniversityInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Johannes A. A. W. Elemans
- Radboud UniversityInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Jana Roithová
- Radboud UniversityInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Roeland J. M. Nolte
- Radboud UniversityInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
5
|
Yokota S, Suzuki Y, Yanagisawa S, Ogura T, Nozawa S, Hada M, Fujii H. How Do the Axial and Equatorial Ligands Modulate the Reactivity of a Metal-Bound Terminal Oxidant? An Answer from the Hypochlorite Adduct of Iron(III) Porphyrin. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sawako Yokota
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| | - Yuna Suzuki
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| | - Sachiko Yanagisawa
- Graduate School of Science, University of Hyogo, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Graduate School of Science, University of Hyogo, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| |
Collapse
|
6
|
Recent advances in organic electrosynthesis using heterogeneous catalysts modified electrodes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Gupta R, Li XX, Lee Y, Seo MS, Lee YM, Yanagisawa S, Kubo M, Sarangi R, Cho KB, Fukuzumi S, Nam W. Heme compound II models in chemoselectivity and disproportionation reactions. Chem Sci 2022; 13:5707-5717. [PMID: 35694346 PMCID: PMC9116367 DOI: 10.1039/d2sc01232d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Heme compound II models bearing electron-deficient and -rich porphyrins, [FeIV(O)(TPFPP)(Cl)]- (1a) and [FeIV(O)(TMP)(Cl)]- (2a), respectively, are synthesized, spectroscopically characterized, and investigated in chemoselectivity and disproportionation reactions using cyclohexene as a mechanistic probe. Interestingly, cyclohexene oxidation by 1a occurs at the allylic C-H bonds with a high kinetic isotope effect (KIE) of 41, yielding 2-cyclohexen-1-ol product; this chemoselectivity is the same as that of nonheme iron(iv)-oxo intermediates. In contrast, as observed in heme compound I models, 2a yields cyclohexene oxide product with a KIE of 1, demonstrating a preference for C[double bond, length as m-dash]C epoxidation. The latter result is interpreted as 2a disproportionating to form [FeIV(O)(TMP+˙)]+ (2b) and FeIII(OH)(TMP), and 2b becoming the active oxidant to conduct the cyclohexene epoxidation. In contrast to 2a, 1a does not disproportionate under the present reaction conditions. DFT calculations confirm that compound II models prefer C-H bond hydroxylation and that disproportionation of compound II models is controlled thermodynamically by the porphyrin ligands. Other aspects, such as acid and base effects on the disproportionation of compound II models, have been discussed as well.
Collapse
Affiliation(s)
- Ranjana Gupta
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Youngseob Lee
- Department of Chemistry, Jeonbuk National University Jeonju 54896 Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo Hyogo 678-1297 Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo Hyogo 678-1297 Japan
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University California 94023 USA
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University Jeonju 54896 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
8
|
Li R, Khan FST, Hematian S. Dioxygen Reactivity of Copper(I)/Manganese(II)-Porphyrin Assemblies: Mechanistic Studies and Cooperative Activation of O 2. Molecules 2022; 27:molecules27031000. [PMID: 35164265 PMCID: PMC8839022 DOI: 10.3390/molecules27031000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (-110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•-)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear μ-peroxo species, [(tmpa)CuII-(O22-)-MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a μ-oxo complex, [(tmpa)CuII-O-MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-μ-peroxo species, i.e., [(tmpa)CuII-(O22-)-MnIV(TPP)-(O22-)-CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = -44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.
Collapse
|
9
|
Tessaro PS, Meireles AM, Guimarães AS, Schmitberger B, Lage ALA, Patrício PSDO, Martins DCDS, DeFreitas-Silva G. The polymerization of carvacrol catalyzed by Mn-porphyrins: obtaining the desired product guided by the choice of solvent, oxidant, and catalyst. NEW J CHEM 2022. [DOI: 10.1039/d2nj03171j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Less polar solvents could modulate the catalytic activity of Mn(iii)-porphyrins in carvacrol's oxidation leading to polymer/oligomer formation instead of thymoquinone formation.
Collapse
Affiliation(s)
- Patrícia Salvador Tessaro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Alexandre Moreira Meireles
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Adriano Silva Guimarães
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Bernardo Schmitberger
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Ana Luísa Almeida Lage
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | | | - Dayse Carvalho da Silva Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Gilson DeFreitas-Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| |
Collapse
|
10
|
Meena BI, Lakk-Bogáth D, Kaizer J. Effect of redox potential on manganese-mediated benzylalcohol and sulfide oxidation. CR CHIM 2021. [DOI: 10.5802/crchim.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|