1
|
DiBello M, Xu Z, Palazzo AM, Herzon SB. A Stereoselective Oxidative Dimerization En Route to (-)-Lomaiviticin A. Org Lett 2025; 27:937-941. [PMID: 39846772 PMCID: PMC11883818 DOI: 10.1021/acs.orglett.4c04098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
We describe a stereoselective synthesis of the dimeric diazofluorene 15, a potential precursor to the cytotoxic C2-symmetric bacterial metabolite (-)-lomaiviticin A (1). An efficient route was developed to convert the tetracyclic diol 5 to the diketone 4 (five steps, 30% overall). Oxidative dimerization of the enoxysilane 14 provided the C2-symmetric dimeric diazofluorene 15 in 56% yield and with 15:1:0 diastereoselectivity. Deprotection and 2D NMR analysis indicated that the major diastereomer possessed the (2S,2'S) configuration found in 1. This approach may ultimately be useful in the synthesis of 1 itself.
Collapse
Affiliation(s)
- Mikaela DiBello
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alexandria M Palazzo
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
2
|
Lin B, Liu T, Luo T. Gold-catalyzed cyclization and cycloaddition in natural product synthesis. Nat Prod Rep 2024; 41:1091-1112. [PMID: 38456472 DOI: 10.1039/d3np00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Covering: 2016 to mid 2023Transition metal catalysis, known for its remarkable capacity to expedite the assembly of molecular complexity from readily available starting materials in a single operation, occupies a central position in contemporary chemical synthesis. Within this landscape, gold-catalyzed reactions present a novel and versatile paradigm, offering robust frameworks for accessing diverse structural motifs. In this review, we highlighted a curated selection of publications in the past 8 years, focusing on the deployment of homogeneous gold catalysis in the ring-forming step for the total synthesis of natural products. These investigations are categorized based on the specific ring formations they engender, accentuating the prevailing gold-catalyzed methodologies applied to surmount intricate challenges in natural products synthesis.
Collapse
Affiliation(s)
- Boxu Lin
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tianran Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Zhang Z, Wu R, Cao S, Li J, Huang G, Wang H, Yang T, Tang W, Xu P, Yu B. Merging total synthesis and NMR technology for deciphering the realistic structure of natural 2,6-dideoxyglycosides. SCIENCE ADVANCES 2024; 10:eadn1305. [PMID: 38608021 PMCID: PMC11014444 DOI: 10.1126/sciadv.adn1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
The structural identification and efficient synthesis of bioactive 2,6-dideoxyglycosides are daunting challenges. Here, we report the total synthesis and structural revision of a series of 2,6-dideoxyglycosides from folk medicinal plants Ecdysanthera rosea and Chonemorpha megacalyx, which feature pregnane steroidal aglycones bearing an 18,20-lactone and glycans consisting of 2,6-dideoxy-3-O-methyl-β-pyranose residues, including ecdysosides A, B, and F and ecdysantheroside A. All the eight possible 2,6-dideoxy-3-O-methyl-β-pyranoside stereoisomers (of the proposed ecdysantheroside A) have been synthesized that testify the effective gold(I)-catalyzed glycosylation methods for the synthesis of various 2-deoxy-β-pyranosidic linkages and lays a foundation via nuclear magnetic resonance data mapping to identify these sugar units which occur promiscuously in the present and other natural glycosides. Moreover, some synthetic natural compounds and their isomers have shown promising anticancer, immunosuppressive, anti-inflammatory, and anti-Zika virus activities.
Collapse
Affiliation(s)
- Zhaolun Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjie Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Cao
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Jiaji Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangen Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haoyu Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
4
|
Shen L, Sun X, Chen Z, Guo Y, Shen Z, Song Y, Xin W, Ding H, Ma X, Xu W, Zhou W, Che J, Tan L, Chen L, Chen S, Dong X, Fang L, Zhu F. ADCdb: the database of antibody-drug conjugates. Nucleic Acids Res 2024; 52:D1097-D1109. [PMID: 37831118 PMCID: PMC10768060 DOI: 10.1093/nar/gkad831] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of innovative biopharmaceutical drugs, which, via their antibody (mAb) component, deliver and release their potent warhead (a.k.a. payload) at the disease site, thereby simultaneously improving the efficacy of delivered therapy and reducing its off-target toxicity. To design ADCs of promising efficacy, it is crucial to have the critical data of pharma-information and biological activities for each ADC. However, no such database has been constructed yet. In this study, a database named ADCdb focusing on providing ADC information (especially its pharma-information and biological activities) from multiple perspectives was thus developed. Particularly, a total of 6572 ADCs (359 approved by FDA or in clinical trial pipeline, 501 in preclinical test, 819 with in-vivo testing data, 1868 with cell line/target testing data, 3025 without in-vivo/cell line/target testing data) together with their explicit pharma-information was collected and provided. Moreover, a total of 9171 literature-reported activities were discovered, which were identified from diverse clinical trial pipelines, model organisms, patient/cell-derived xenograft models, etc. Due to the significance of ADCs and their relevant data, this new database was expected to attract broad interests from diverse research fields of current biopharmaceutical drug discovery. The ADCdb is now publicly accessible at: https://idrblab.org/adcdb/.
Collapse
Affiliation(s)
- Liteng Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Guo
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zheyuan Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Song
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenxiu Xin
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Haiying Ding
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Xinyue Ma
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Weiben Xu
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wanying Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lili Tan
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Liangsheng Chen
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Siqi Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
5
|
Gall BK, Smith AK, Ferreira EM. Dearomative (3+2) Cycloadditions between Indoles and Vinyldiazo Species Enabled by a Red-Shifted Chromium Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202212187. [PMID: 36063422 PMCID: PMC9828771 DOI: 10.1002/anie.202212187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/12/2023]
Abstract
A direct dearomative photocatalyzed (3+2) cycloaddition between indoles and vinyldiazo reagents is described. The transformation is enabled by the development of a novel oxidizing CrIII photocatalyst, its specific reactivity attributed to increased absorptive properties over earlier Cr analogs and greater stability than Ru counterparts. A variety of fused indoline compounds are synthesized using this method, including densely functionalized ring systems that are feasible due to base-free conditions. Experimental insights corroborate a cycloaddition initiated by nucleophilic attack at C3 of the indole radical cation by the vinyldiazo species.
Collapse
Affiliation(s)
- Bradley K. Gall
- Department of ChemistryUniversity of GeorgiaAthensGA 30602USA
| | - Avery K. Smith
- Department of ChemistryUniversity of GeorgiaAthensGA 30602USA
| | | |
Collapse
|
6
|
Demkiw KM, Remmerswaal WA, Hansen T, van der Marel GA, Codée JDC, Woerpel KA. Halogen Atom Participation in Guiding the Stereochemical Outcomes of Acetal Substitution Reactions. Angew Chem Int Ed Engl 2022; 61:e202209401. [PMID: 35980341 PMCID: PMC9561118 DOI: 10.1002/anie.202209401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/11/2023]
Abstract
Acetal substitution reactions of α-halogenated five- and six-membered rings can be highly stereoselective. Erosion of stereoselectivity occurs as nucleophilicity increases, which is consistent with additions to a halogen-stabilized oxocarbenium ion, not a three-membered-ring halonium ion. Computational investigations confirmed that the open-form oxocarbenium ions are the reactive intermediates involved. Kinetic studies suggest that hyperconjugative effects and through-space electrostatic interactions can both contribute to the stabilization of halogen-substituted oxocarbenium ions.
Collapse
Affiliation(s)
- Krystyna M. Demkiw
- Department of ChemistryNew York University100 Washington Square EastNew YorkNY 10003USA
| | - Wouter A. Remmerswaal
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552300 RALeidenThe Netherlands
| | - Thomas Hansen
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552300 RALeidenThe Netherlands
| | | | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552300 RALeidenThe Netherlands
| | - K. A. Woerpel
- Department of ChemistryNew York University100 Washington Square EastNew YorkNY 10003USA
| |
Collapse
|
7
|
Xu Z, DiBello M, Wang Z, Rose JA, Chen L, Li X, Herzon SB. Stereocontrolled Synthesis of the Fully Glycosylated Monomeric Unit of Lomaiviticin A. J Am Chem Soc 2022; 144:16199-16205. [PMID: 35998350 DOI: 10.1021/jacs.2c07631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a stereocontrolled synthesis of 3, the fully glycosylated monomeric unit of the dimeric cytotoxic bacterial metabolite (-)-lomaiviticin A (2). A novel strategy involving convergent, site- and stereoselective coupling of the β,γ-unsaturated ketone 6 and the naphthyl bromide 7 (92%, 15:1 diastereomeric ratio (dr)), followed by radical-based annulation and silyl ether cleavage, provided the tetracycle 5 (57% overall), which contains the carbon skeleton of the aglycon of 3. The β-linked 2,4,6-trideoxy-4-aminoglycoside l-pyrrolosamine was installed in 73% yield and with 15:1 β:α selectivity using a modified Koenigs-Knorr glycosylation. The diazo substituent was introduced via direct diazo transfer to an electron-rich benzoindene (4 → 27). The α-linked 2,6-dideoxyglycoside l-oleandrose was introduced by gold-catalyzed activation of an o-alkynyl glycosylbenzoate (75%, >20:1 α:β selectivity). A carefully orchestrated endgame sequence then provided efficient access to 3. Cell viability studies indicated that monomer 3 is not cytotoxic at concentrations up to 1 μM, providing conclusive evidence that the dimeric structure of (-)-lomaiviticin A (2) is required for cytotoxic effects. The preparation of 3 provides a foundation to complete the synthesis of (-)-lomaiviticin A (2) itself.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Mikaela DiBello
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Zechun Wang
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - John A Rose
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Lei Chen
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Xin Li
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States.,Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut06520, United States
| |
Collapse
|
8
|
Demkiw KM, Remmerswaal WA, Hansen T, van der Marel GA, Codée JDC, Woerpel K. Halogen Atom Participation in Guiding the Stereochemical Outcomes of Acetal Substitution Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Krystyna M. Demkiw
- New York University Department of Chemistry Department of ChemistryNew York University100 Washington Square East 10003 New York UNITED STATES
| | - Wouter A. Remmerswaal
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry Einsteinweg 552333 CC Leiden NETHERLANDS
| | - Thomas Hansen
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry Einsteinweg 552333 CC Leiden NETHERLANDS
| | - Gijsbert A. van der Marel
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry Einsteinweg 552333 CC Leiden NETHERLANDS
| | - Jeroen D. C. Codée
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry Einsteinweg 552333 CC Leiden NETHERLANDS
| | - Keith Woerpel
- NYU: New York University Chemistry 100 Washington Square East 10003 New York UNITED STATES
| |
Collapse
|
9
|
Hazra G, Mishra G, Dandela R, Thirupathi B. A Method to Access Highly Functionalized Dibenzobicyclo[3.2.1]octadienones: Application to the Construction of the 6/6/5/6/6 Carbon Skeleton of Rubialatin A. J Org Chem 2022; 87:11925-11938. [PMID: 35475607 DOI: 10.1021/acs.joc.2c00340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dibenzobicyclo[3.2.1]octadienone scaffold, which has been found in naphthocyclinones, engelharquinones, rubialatin A, etc., has been synthesized under mild transition metal-free conditions by aryne insertion reaction with 2-keto-1,3-indandiones. The application of this methodology has been demonstrated for the synthesis of the 6/6/5/6/6 scaffold of rubialatin A. 1H NMR experimental studies confirm that the reaction proceeds through the formation of benzocyclobutane followed by a 7-member carbocycle ring.
Collapse
Affiliation(s)
- Gurupada Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760010, Odisha, India
| | - Gitanjali Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760010, Odisha, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indianoil Odisha Campus, Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Barla Thirupathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760010, Odisha, India
| |
Collapse
|
10
|
Hetzler BE, Trauner D, Lawrence AL. Natural product anticipation through synthesis. Nat Rev Chem 2022; 6:170-181. [PMID: 36747591 PMCID: PMC9899497 DOI: 10.1038/s41570-021-00345-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
Natural product synthesis remains one of the most vibrant and intellectually rewarding areas of chemistry, although the justifications for pursuing it have evolved over time. In the early years, the emphasis lay on structure elucidation and confirmation through synthesis, as exemplified by celebrated studies on cocaine, morphine, strychnine and chlorophyll. This was followed by a phase where the sheer demonstration that highly complex molecules could be recreated in the laboratory in a rational manner was enough to justify the economic expense and intellectual agonies of a synthesis. Since then, syntheses of natural products have served as platforms for the demonstration of elegant strategies, for inventing new methodology 'on the fly' or to demonstrate the usefulness and scope of methods established with simpler molecules. We now add another aspect that we find fascinating, viz. 'natural product anticipation'. In this Review, we survey cases where the synthesis of a compound in the laboratory has preceded its isolation from nature. The focus of our Review lies on examples where this anticipation of a natural product has triggered a successful search or where synthesis and isolation have occurred independently. Finally, we highlight cases where a potential natural product structure has been suggested as a result of synthetic endeavours but not yet confirmed by isolation, inviting further collaborations between synthetic and natural product chemists.
Collapse
Affiliation(s)
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY, USA
| | | |
Collapse
|
11
|
Meng S, Li X, Zhu J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132140] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Kim LJ, Xue M, Li X, Xu Z, Paulson E, Mercado B, Nelson HM, Herzon SB. Structure Revision of the Lomaiviticins. J Am Chem Soc 2021; 143:6578-6585. [DOI: 10.1021/jacs.1c01729] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lee Joon Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Xin Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Eric Paulson
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Chemical and Biological Instrumentation Center, Yale University, New Haven, Connecticut 06511, United States
| | - Brandon Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Chemical and Biological Instrumentation Center, Yale University, New Haven, Connecticut 06511, United States
| | - Hosea M. Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
13
|
Hsu IT, Tomanik M, Herzon SB. Metric-Based Analysis of Convergence in Complex Molecule Synthesis. Acc Chem Res 2021; 54:903-916. [PMID: 33523640 DOI: 10.1021/acs.accounts.0c00817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Convergent syntheses are characterized by the coupling of two or more synthetic intermediates of similar complexity, often late in a pathway. At its limit, a fully convergent synthesis is achieved when commercial or otherwise readily available intermediates are coupled to form the final target in a single step. Of course, in all but exceptional circumstances this level of convergence is purely hypothetical; in practice, additional steps are typically required to progress from fragment coupling to the target. Additionally, the length of the sequence required to access each target is a primary consideration in synthetic design.In this Account, we provide an overview of alkaloid, polyketide, and diterpene metabolites synthesized in our laboratory and present parameters that may be used to put the degree of convergence of each synthesis on quantitative footing. We begin with our syntheses of the antiproliferative, antimicrobial bacterial metabolite (-)-kinamycin F (1) and related dimeric structure (-)-lomaiviticin aglycon (2). These synthetic routes featured a three-step sequence to construct a complex diazocyclopentadiene found in both targets and an oxidative dimerization to unite the two halves of (-)-lomaiviticin aglycon (2). We then follow with our synthesis of the antineurodegenerative alkaloid (-)-huperzine A (3). Our route to (-)-huperzine A (3) employed a diastereoselective three-component coupling reaction, followed by the intramolecular α-arylation of a β-ketonitrile intermediate, to form the carbon skeleton of the target. We then present our syntheses of the hasubanan alkaloids (-)-hasubanonine (4), (-)-delavayine (5), (-)-runanine (6), (+)-periglaucine B (7), and (-)-acutumine (8). These alkaloids bear a 7-azatricyclo[4.3.3.01,6]dodecane (propellane) core and a highly oxidized cyclohexenone ring. The propellane structure was assembled by the addition of an aryl acetylide to a complex iminium ion, followed by intramolecular 1,4-addition. We then present our synthesis of the guanidinium alkaloid (+)-batzelladine B (9), which contains two complex polycyclic guanidine residues united by an ester linkage. This target was logically disconnected by an esterification to allow for the independent synthesis of each guanidine residue. A carefully orchestrated cascade reaction provided (+)-batzelladine B (9) in a single step following fragment coupling by esterification. We then discuss our synthesis of the diterpene fungal metabolite (+)-pleuromutilin (10). The synthesis of (+)-pleuromutilin (10) proceeded via a fragment coupling involving two neopentylic reagents and employed a nickel-catalyzed reductive cyclization reaction to close the eight-membered ring, ultimately providing access to (+)-pleuromutilin (10), (+)-12-epi-pleuromutilin (11), and (+)-12-epi-mutilin (12). Finally, we discuss our synthesis of (-)-myrocin G (13), a tricyclic pimarane diterpene that was assembled by a convergent annulation.In the final section of this Account, we present several paramaters to analyze and quantitatively assess the degree of convergence of each synthesis. These parameters include: (1) the number of steps required following the point of convergence, (2) the difference in the number of steps required to prepare each coupling partner, (3) the percentage of carbons (or, more broadly, atoms) present at the point of convergence, and (4) the complexity generated in the fragment coupling step. While not an exhaustive list, these parameters bring the strengths and weaknesses each synthetic strategy to light, emphasizing the key contributors to the degree of convergence of each route while also highlighting the nuances of these analyses.
Collapse
Affiliation(s)
- Ian Tingyung Hsu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Martin Tomanik
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
14
|
Kaneko M, Li Z, Burk M, Colis L, Herzon SB. Synthesis and Biological Evaluation of (2 S,2' S)-Lomaiviticin A. J Am Chem Soc 2021; 143:1126-1132. [PMID: 33410680 PMCID: PMC8174553 DOI: 10.1021/jacs.0c11960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(-)-Lomaiviticin A (1) is a genotoxic C2-symmetric metabolite that arises from the formal dimerization of two bis(glycosylated) diazotetrahydrobenzo[b]fluorenes. Here we present a synthesis of the monomer 17 and its coupling to form (2S,2'S)-lomaiviticin A (4), an unnatural diastereomer of 1. (2S,2'S)-Lomaiviticin A (4) is significantly less genotoxic, a result we attribute to changes in the orientation of the diazofluorene and carbohydrate residues, relative to 1. These data bring the importance of the configuration of the conjoining bond to light and place the total synthesis of 1 itself within reach.
Collapse
Affiliation(s)
- Miho Kaneko
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zhenwu Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Matthew Burk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Laureen Colis
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|